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Chapter 1

Introduction

Kilometer-wise, the most common type of optical fiber todaythe step-index,
single-mode fiber which forms the backbone of the globattal@munications net-
work. In addition, various specialty optical fibers are eoyeld, e.g., for dispersion
and polarization controlling, amplification, and filterifij. Specialty fibers are
widely used also in other fields of technology and sciencé siscnonlinear op-
tics [2, 3], (medical) imaging [4], and especially sensipgplecations [5-7]. For
the special purposes in particular, various microstr@stewan be employed to gain
substantial design flexibility. Indeed, microstructurgdical fibers have enabled
the guiding of light along an air channel with low loss by mea the photonic-
bandgap or the low-density-of-states effect [8], and theegation of supercontin-
uum radiation covering the near-infrared and visible saébtands [9]. The appli-
cations of these and other fiber-optical components andegwdontinue to grow
rapidly in number.

The design of novel specialty and microstructured optitedrg often relies on nu-
merical modeling, as the structures can be very complex ampleacomputational

resources are readily available. A powerful approach fermiodeling task is that
of modal analysis where the propagation-invariant fieldn®rnof the waveguide

are identified. Their generic mathematical properties ban be employed to find
out, for instance, the excitation efficiency of a particdier mode, multimode

interference patterns, and the characteristics of spgagias$itions in terms of local

modes. Yet, analytic and semi-analytic approaches renheast equally important
in that they provide insight into the problem at hand and hetjuce the computa-
tion times. The same holds true for approximative techrsgifghese are chosen
wisely enough. In this thesis, a host of mode-analysis tecies are applied to spe-
cialty and microstructured optical fibers as well as to pdticoherent free-space
fields. The work is divided into three parts each of which iefty described in the

following.
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In the first part of the thesis, the modal fields of hollow-coptical fibers (HOFS)
and annular-core optical fibers (ACFs) are considered. IrO& lthe section sur-
rounding the optical axis is empty, whereas in an ACF thisigeds similar to the
cladding outside the core. Although there are no ubiquitiker” applications
for these fibers, they have found use in many contexts. Feanne, besides the
applications considered in this thesis, HOFs can serve dsilfitiers or mode con-
verters [10] and the output beam of an ACF as an optical trapforon-size parti-
cles [11]. Quite commonly, the modal analysis of HOFs and &@&Fperformed in
terms of scalar fields by adopting the weak-guidance appraton (WGA) [12].
The legitimacy of using this approach to describe the lodeomodal fields in
HOFs and ACFs is established in Sec. 3.1 [Paper I]. One of thst exciting appli-
cations of HOFs is in the field of atom optics where they caraaatonveyor tubes
for slow, laser-cooled atoms [13]. A prerequisite for thimdtion is a spatially
smooth field that is strongly localized in the vicinity of tiner wall of a HOF.
Weakly guided fiber modes are employed in Sec. 3.2 to analyaerethods for
creating such a smooth atom-guiding field onto the HOF walpg® Il]. Thin-core
ACFs, on the other hand, can be used to produce self-imag&alamt images, of
annular wavefields [14—16]. This has proven to be useful, im.ghase-locking of a
circular array of fiber lasers [17,18]. The rationale belihmalself-imaging capabil-
ity builds on the scalar-field approximation which, as destmated in Sec. 3.1, can
be particularly unreliable in the case of a thin-core ACFe Tésults of a full-vector
investigation of the self-imaging phenomenon are presentSec. 3.3 [Paper lI].

In the second part, the electromagnetic fields of holey,@stcuctured optical fibers
with coated dielectric and metal inclusions are considefé@ motivation for mod-

eling such structures arises mainly from a recent expetiahdemonstration where
high-pressure chemical deposition techniques were ssittlysused to uniformly

coat the surfaces of the minuscule fiber holes with semicciodsiand metals [19].
Advancements of this kind pave the way, e.g., for compacgritegrated opto-
electronic device concepts. To support the experimenfiatef the effect of a uni-
form, high-index dielectric coating on the transmissioareltteristics of an off-the-
shelf photonic-bandgap fiber is specified in Sec. 4.1. Adogiy, the spectral posi-
tion of the photonic bandgap will signal the thickness of¢bating. Furthermore,
in Sec. 4.2, a novel fiber-integrated sensor concept foraguanalytes is put for-
ward [Paper IV]. The sensor design is based on the excitafignrface-plasmon-
polariton resonances in a three-hole microstructurecalfiber with metal-coated
pore surfaces.

In the third and final part comprising Ch. 5, the mode-analysols are applied to
partially coherent, free-space optical fields. In the césa completely coherent
field, the optical angular-momentum content is known to [spoesible for the
spectral shifts that occur when the field rotates with relspe@an observer [20].
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Such shifts manifest themselves in the direction of thetimtaaxis and are thus
different from the ordinary, linear Doppler shifts. By exypling a partially coherent
field in terms of angular-momentum-carrying modes, it issghthat the coherence
properties of the field will significantly affect the qualitf the rotational shifts
[Paper V].






Chapter 2

Modal analysis of electromagnetic
fields

In this chapter, the principles of mode-analysis techrsqaie covered. Starting
from Maxwell’s equations, the relevant characteristicthefmodal solutions of the
wave equation in fiber waveguides and in free space are pgegseh special class
of free-space beams possessing orbital angular momentoomssdered. Finally,
the coherent-mode representation of partially coherestisas briefly surveyed.

2.1 Modal fields in optical fibers

2.1.1 Wave equations

The electromagnetic fields in optical fiber waveguides areged by the macro-
scopic Maxwell's equations which in their complete formdes [21, 22]

V-D(r,t) = pg(r,t), (2.1)

V. -B(r,t) = 0, (2.2)

V x E(r,t) = —w, (2.3)
OD(r, t)

Vx H(r,t) = J(rt)+

2.4
o (2.4)
Here, E and H are the electric and magnetic fields, respectively, Bhdnd B

denote the electric and magnetic flux densities, respégtiFarthermore, the term
J is the current densityy; is the charge density, is the spatial coordinate, and
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t denotes time. Time-harmonic solutions describing syrictbnochromatic fields
can be sought for by writing [23]

E(r,t) = E(r,w)exp(iwt), (2.5)
H(r,t) = H(r,w)exp(iwt), (2.6)

wherew is the angular frequency of light. In this representatibe,real parts of the
expressions correspond to the physical fields [1]. By assgmilinear, isotropic,
and nonmagnetic medium, one can write the constitutivéiogia as [24]

D(r,w) = €€ (r,w)E(r,w), (2.7)
B(r,w) = pH(r,w), (2.8)

wheree, and ., are the permittivity and permeability of free space, retipely,
and e, denotes the relative, material-dependent permittivitg. sfudy the modal
fields in fibers with metallic (lossy) inclusions, ohmic caietion currents can be
included by writing

J(r,w) =o(r,w)E(r,w) (2.9)
whereo is the conductivity [24].
By taking the curl of Eg. (2.3), and by using Egs. (2.4)—(20®) obtains the wave

equation for the electric field
2

V x V x E(r,w)—w— € (r,w) —

c? weg

io{r,w) E(r,w)=10 (2.10)

wherec = 1/, /éo denotes the speed of light in free space. The term in the squar
brackets can be identified with the complex, relative digleéunction which, from

this point on, is also represented by the variablR4]. Similarly, by starting from

Eqg. (2.4), one can derive the wave equation for the magnetttifi the form

1

- (r,w)

V x

V x H(r,w) — k3H(r,w) =0 (2.11)
where the wavenumber is denotediy= w/c. For homogeneous media, the wave
equations simplify to
V2E(r,w) + kin?(w)E(r,w) = 0, (2.12)
V2H(r,w) + kin?(w)H(r,w) = 0, (2.13)
where the refractive index is introduced through the retati’ = ¢, [25].
To obtain the modes of an optical fiber, thelependence along the fiber is separated
by writing
Ej(r,w) = E;(r.,w)exp[—i8;(w)z], (2.14)
H;(r,w) = H;(r,,w)exp[—if;(w)z], (2.15)
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whereg; is the propagation constant of thith mode and-, describes a position
vector in the transverse plane of the fiber. In principle iage equations hold an
infinite number of transverse modes in the form of Eqgs. (2atd))(2.15) for a given
optical frequency. With conventional optical fibers, thessdes are categorized as
bound, guided modes and radiation modes, the latter onag béher evanescent
or propagating in character [26]. Of most practical inteees the guided modes
and slowly radiating leaky modes.

2.1.2 Solving methods

In this thesis, three approaches for solving the wave egpmtre used. The first
method makes use of analytical trial functions for the Itudjnal field components
E. and H, of a guided mode in a piecewise homogeneous, dielectric fitudile.
The remaining transverse components within each of the gemeous regions are
then retrieved from the relations

7
El = m(ﬁVLEZ — wWlupa, X VLHZ), (216)
1
H, = W(WLHZ +wepn*u, x V_ E.), (2.17)
which are obtained by making use of Maxwell’s curl equatjcass well as EQs.
(2.14) and (2.15). Here, the transverse nablaoperates only in the cross-sectional
plane of the fiber and. is a unit vector pointing along the fiber. At the boundary
between two neighboring homogeneous regibasd?2, the fields are matched by

using the continuity relations [27]

n X (E1 — Eg) = O, (218)
n X (Hl — Hg) = O, (219)

wheren denotes a unit vector normal to the boundary. The expres$iom each
boundary can be collected to a matrix equation

Mx =0 (2.20)

where the matrix\ multiplies the trial-function coefficients lumped in thecter x.
For the above homogeneous equation, nontrivial solutiansbe found whenever
the determinant of the matri%{ vanishes. The characteristic equatidet,(M) =
0, is solved numerically to obtain the propagation constéatoode. This approach
is used to solve the guided vector modes in Secs. 3.1 and 3.3.

The second method employs a plane-wave expansion for thdrfial spatially pe-
riodic, two-dimensional lattice. Such a lattice can actresdladding in a photonic-
bandgap fiber to confine and guide light along an air core. Bgnitating the
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problem in terms of the magnetic field [Eq. (2.11)] insteadhef electric field, the
transversality conditior’V - H = 0 can be enforced leading to reduced computa-
tional burden [28]. The periodic structure is charactetibg a dielectric function
with the propertye,.(r;) = €.(r; + R ) whereR, is an arbitrary lattice vector.
With these assumptions, Bloch’s theorem can be invokedite far the modal field

H(r) = Hy (r))exp[—i(k, -r) + 52)] (2.21)

whereHy  is a periodic function with the propertdy (r,) = Hyx (r, + R))
andk is the Bloch wavevector [28]. By denoting the inverse of thitide vector
R, by G, one can expand the periodic part of the field as a sum of plavesv
according to

HkL(rL) = Z hGL,n exp(—iGl -I'l) (222)

G| .k

where the summation is taken over all vect@s for two mutually orthogonal
polarization states labeled with = 1,2 [29]. By using this formalism, the pho-
tonic band structures for two-dimensional lattices are mot®ed and the photonic
bandgaps permitting optical guidance are identified in 8€c.

The third method used in this thesis is the finite-elementhoe{FEM). In this
method, the computation region is divided into homogenaolspaces (the finite
elements) in which Maxwell's equations are discretized.t@mboundaries of the
regions, the continuity relations of Eqgs. (2.18) and (2.4@ applied [30]. The
ensuing set of coupled equations is then numerically sobyecheans of matrix
methods. The FEM is well suited for computing the modes insayjovaveguide
with a perfectly matched layer (PML) as the outer boundaty.[2 properly cho-
sen PML eliminates the reflections from the outer boundack bathe computing
region, thus acting as an absorbing boundary. The FEM isins&ekt. 4.2 to investi-
gate the excitation of surface-plasmon polaritons in a oetated microstructured
optical fiber for sensing applications.

2.1.3 Mode orthogonality and overlap integrals
The bound and radiation modes together form a complete senofions in the

transverse plane of the fiber. In a non-absorbing fiber wadegthe modes can be
normalized to fulfill an orthonormality relation in the forf23, 26]

/(E);< X Hk)derJ_ = 5jk (223)

where the indiceg andk label the fiber modes and the integration is performed
over the transverse plane of the fiber. In such an orthonobawsis, an arbitrary
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electromagnetic field can be expanded. In particular, ttteoaormality properties
can be employed to quantify the power transfer to a specifer filbode, when a
light beam is incident on the end face of the fiber (transversee fiber axis). The
reflection losses from the end face are usually ignored, l@addupling coefficient
to a particular mode is calculated directly from the oveitdpgral [26]

¢; = / (E: x H,).d%r, (2.24)

whereH; is the magnetic field associated with the incident beam.

For instance, if the incident field is mode-matched to thelamental guided mode
of the fiber, only the corresponding coupling coefficieny, ga will be nonzero. In
such a case, the excited mode will carry all the incident po® the same token,
the modulus oty is maximized for the given incident power. The mode-matghin
principles are applied in Secs. 3.1 and 3.3 to quantify threlarities between two
optical vector fields in terms of a single number akirdo

2.1.4 Weakly guiding fibers

Cylindrical optical fibers with a small refractive-indexrtoast between the core
and the cladding are said to be weakly guiding [12]. In suchegaides, the modes
are uniformly polarized in the cross-sectional plane.dadtof Eq. (2.14), one can
proceed by writing for the electric field

E;(r,w) = u, E;(r,,w) exp[—if;(w)z]. (2.25)

Here, the field is represented by a scalar ampliﬂdandul denotes a polarization
unit vector in the transverse plane of the fiber. The tildesesd.io indicate quantities
that are exclusive to the weak-guidance approximation (\WGAe magnetic field
of the mode is obtained from Eqg. (2.3) as

ﬁj(r,w) = ¢oen(w)u, X f]j(r,w) (2.26)

where the refractive index is approximated to be equal to that of the core ev-
erywhere (zeroth-order WGA) [26]. By normalizing the fielaispropriately, the
orthonormality relation of Eq. (2.23) can be rewritten faotsimilarly polarized
modes in terms of their scalar electric-field amplitudes as

/ ErEyd’r, = . (2.27)
The overlap integral of Eq. (2.24) can correspondingly h@essed as

G = / E!Ed’r,. (2.28)
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Weakly guided modes are considered in Secs. 3.1 and 3.2e Thedes are com-
puted by choosing the trial function fdf. (see Section 2.1.2) to directly stand for
the scalar field amplitud®);, and consequently requiring the radial part and its first
derivative be continuous over the cylindrical material hdaries [26].

2.2 Free-space beams

2.2.1 Laguerre—Gaussian beams

The weak-guidance approximation of optical fibers is clpselated to the paraxial
approximation of free-space propagation. In free spaeawtve equation assumes
the form

V2(r,w) + kg (r,w) =0 (2.29)

wherey describes the amplitude of a scalar field. For propagatiomgathez-axis,
one can write

Y(r) = u(r) exp(—ikoz). (2.30)

In the paraxial approximation, the second derivative,afith respect to: is as-
sumed to be negligible, yielding the paraxial wave equd@h

Viu— 22’/@0% =0. (2.31)

Paraxial beams satisfying Eq. (2.31), as well as the weaklyegl fiber modes, can
be characterized with a small-angle propagation with retsjpethe optical axis [1].

Among the solutions of the paraxial wave equation are theiterGaussian modes
of a spherical-mirror laser resonator [1]. Another famifysolutions is that of the
Laguerre—Gaussian (LG) modes for which the spatial partittem in polar coor-
dinates(p, 0, z) as

u(r) = fiq(p, z) exp(—ilf). (2.32)

The first part reads explicitly as [1, 20]

1 2
fl,q = C’l,q (%) eXp(—pQ/VV2)Ll1” (2‘/‘%)
x exp{i[(2q + |I| + 1) arctan(z/zg) — kop® /2R]}, (2.33)
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when the following notation is used

) 9 1/2 q! 1/2
cu = 0(zz) |ra (239
wo= wy(l+22/2%)2 (2.35)
R = z+2%/z, (2.36)
zr = Wiko/2. (2.37)

Here,w, denotes the beam-waist parame[élﬂis the associated Laguerre polyno-
mial, the parameteR defines the radius of curvature of the wavefront, and the term
(2q + |I] + 1) arctan(z/zg) is the Gouy phase. The indicesand! determine the
radial and azimuthal orders of the mode, respectively, Withlowest-order case
g = 0 andl! = 0 corresponding to the ordinary on-axis Gaussian beam. largén
the transverse intensity profiles of the higher-order LGnieavith! = 0 (I # 0)
consist ofg (¢ + 1) rings surrounding the optical axis [33]. In addition, thedital
phasefront of the beams with# 0 embody an optical vortex, and thus, they are
dark on the optical axis [34]. Experimentally, the higheder LG beams could
be produced directly within a laser cavity, but in practicey are often generated
from the standard Hermite—Gaussian laser beams outsidatity by using, e.g.,
cylindrical-lens converters [35]. Another popular corsren technique employs a
spatial light modulator to introduce the helical, azimuhizase twist of Eq. (2.32)
into a Gaussian beam [33,36]. LG beams are considered irBSeand in Ch. 5.

2.2.2 Optical angular momentum

The cycle-averaged linear-momentum density of an elecgmrtic field can be
calculated from the expression [21]

p=—(S) (2.38)
where the cycle-averaged Poynting vector is given by
(S) = %Re(E x H"). (2.39)

In analogy to classical mechanics, the angular-momentumsitgyeof the field is
determined by the cross product [37]

j=rxp. (2.40)
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Higher-order helical beams ¢ 0) of the form of Eq. (2.32) carry orbital angu-
lar momentum, which is manifested by a non-vanishingpmponent of the cor-
responding angular-momentum density. Explicitly, theomponent for a linearly
polarized LG mode is obtained as [38]

Jx = €owl| fiql* (2.41)

In addition to the above orbital contribution, one can asdec¢he polarization state
of the beam with spin angular momentum. For example, if omets the left- and
right-handed circular polarization states with= +1, the ratio of the total angular-
momentum flux and the energy flux (per unit length) can be nbthas [38]

Jz o f.jderJ_ _l+az
cPZ_cfpderl_ w

(2.42)

where the quantity, is thez-component of the momentum and the integrations are
performed over the transverse plane.

Equation (2.42) expresses the total angular momentum flterms of the orbital

and spin contributions. This very sum term turns out to bpaesible for the spec-
tral shifts that occur when the optical field and an obserweirarelative rotational

motion about the optical axis [39]. In Ch. 5, such rotaticstafts are considered,
for the first time, for optical fields which are only partiattpherent.

2.2.3 Partially coherent beams

Thus far, completely coherent, monochromatic fields hawn lm®nsidered. In re-
ality, however, random fluctuations are always presentgintlj1l]. The coherence
properties of a random, uniformly polarized, stationaryicgd beam can be de-
scribed by the mutual coherence function [40]

L(r,r';7) = (W*(r, o', 1)). (2.43)

Here, ¢, t) and ¢’, t') denote two space-time points, and the explicit introauctf
the variabler = ¢ — ¢’ indicates the stationarity of the field. Furthermore, thgl@an
brackets denote the ensemble average of all possible faidagons. The spectral
coherence properties are described by the cross-speetrsityl function which is
obtained by using the (generalized) Wiener-Khintchin@tbm [40]

T o

1 o0
W(r,r',w) / [(r,r', 7) exp(iwT)dr. (2.44)

— 00
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A convenient tool for the investigations in the realm of opticoherence is the
coherent-mode representation of the cross-spectraltgdnaction [40]. Accord-

ingly, a complete set of basis functions, such as the fraeeshG modes [41], can
be employed to write

(r,r',w) Z Z)\lq W)y o (1, W)ty g(r', w). (2.45)

l=—00 q¢=0

In this summation, each term represents a fully coherenenoithe space-frequency
domain [40]. The coherent-mode representation is put tarugé. 5.
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Chapter 3

Guided modes in hollow-core and
annular-core optical fibers

In this chapter, mode-analysis techniques are applied tor@ore and annular-
core fibers. The accuracy of the weak-guidance approximagifirst assessed by
considering some low-order modes [Paper I]. Then, the aqupiation is employed
to investigate the use of hollow-core multimode fibers asieseent-wave conveyor
tubes for laser-cooled atoms in two configurations; by $eiely exciting tubular
fiber modes with Laguerre—-Gaussian beams and by ditheringusstan beam at
the fiber input to average out the speckles due to multimotkference [Paper
I]. Finally, the Talbot effect related to annular-core fibés analyzed by using the
full-vector mode description [Paper Il].

3.1 Weakly guided modes vs. exact vector modes

The majority of optical fibers in use today, e.g., in the gldeéecommunication
network, are composed of pure and doped silica glass [1]s,Tthe fibers typically
exhibit only small refractive-index contrasts in theirrtsaerse profiles legitimat-
ing modal analysis in the weak-guidance approximation (W@&A&]. The uniform
polarization state of the weakly guided modes is usuallgnaio be linear in the
transverse plane of the fiber. Since most of the laser beaensrafiormly polar-
ized [42], the field patterns of such linearly polarized (ltRydes are commonly
encountered when light is coupled to fibers. Of course, thdazkfield will always
comprise a superposition of the actual (hybrid) vector nsqd8]. Incidentally, the
WGA can be successfully used outside its apparent regimealdafity, as in cor-
rectly yielding the propagation constants of all transgestectric (TE) modes [26].
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Figure 3.1: (a) Schematic cross-section of annular-core and hollow-optical fibers
with ¢ andb denoting the inner and outer radii of the core, respectivdlge refractive
index of the corep, is higher than the indices of the inner and outer claddingsndn.,
respectively. (b) Polarization patterns of the fundamigrs, ; mode and the correspond-
ing linearly polarized LR; mode. (c) Emergence of the second-order L hodes as a
superposition of the corresponding vector modes.

In addition to the refractive-index contrasts, the tramsgdiber geometry may also
affect the accuracy of the WGA.

The cross-sectional fiber geometry of annular-core andWwetiore optical fibers
is schematically shown in Fig. 3.1(a). In an annular-corgcapfiber (ACF), the
refractive index in the inner cladding equals that of theeogtadding o = n»),
whereas in a hollow-core optical fiber (HOF), the inner cladds missing o, =
1). The modal fields in these fibers are similar to the ones inn@exttional step-
index fiber, apart from a reduced intensity in the region @setl by the core [44,
45]. Accordingly, the fundamental HE mode is represented by the { Pmode
in the WGA [26]. Both of these modes are two-fold degenerane, their generic
polarization patterns are schematically depicted in Fig(§. The LR; mode,
on the other hand, corresponds to an equal-weight sup&gyosf the odd (even)
HE, ; mode and the T§; (TM, ;) mode [26], as visualized in Fig. 3.1(c). By taking
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into account the possible combinations of the vector matied.P, ; mode is seen
to be altogether four-fold degenerate. Moreover, the aogi of this mode has a
sinusoidal azimuthal variation.

In a weakly guiding fiber with the property, — n, < 1, the modes are often calcu-
lated by using the WGA. On the face of it, this would seem toustified only for
ACFs, but the approach has proven to work well also for somé&$[@4, 45]. To
establish the range of geometry and material parametemstHmh the WGA will
yield accurate results, the overlap integral of Eq. (2.24)rought into service. By
taking the magnetic field in this integral to be that of the L&d®a [from Eq. (2.26)]
and the electric field to be the corresponding vector modéh@mappropriate su-
perposition), one can quantify how well the two modal fields matched. Since
only the electric-field components parallel to the polar@adirection of the LP
mode remain in the integrand, one can equivalently congidaojection integral
by writing

2

W|? = '/E ‘Ed’r,| <1. (3.1)

Here, the upper bound of unity is due to the following noretions

/|E|2d2n = / |EPd’r, =1, (3.2)

and it corresponds to the case where the two fields are exaetighed. The value
of \W\Z is reduced below unity whenever the electric-field pattefiffer in am-
plitude and/or polarization. In fact, by including the neanishingz-component
of the exact vector field in the normalization integral, tfmejWP = 1 can be
approached only asymptotically.

In paper I, the above overlap-integral formalism is appleedeakly guiding ACFs
and HOFs with the following rule-of-thumb findings: For ACRie WGA de-
scribes the low-order modes well for core thicknesses mbokiea(or much below)
the optical wavelength. For HOFs, on the other hand, thermeees be thicker than
roughly half the outer radius of the core for the WGA to bedalihe quantit)){W\2

Is in general closer to unity for the second-order modal $igh@n for the fundamen-
tal fields. Furthermore, the discrepancies between theoajppate and exact fields
are emphasized if the transverse core dimensions are laigeree operates near
a modal cutoff. Naturally, the weaker the guidance in terfrth® refractive-index
contrast, the more functional the approximation. Moreplgretting the value of
no vary, the parameters for single-mode guidance can mostatetyibe obtained
in the WGA if the ratioa/b has a high value, i.e., if the core is thin.
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3.2 Spatially smooth fields within a multimode hollow-
core fiber

The electromagnetic fields of a HOF can be exploited in camfirand guiding
small, polarizable particles in the empty pore by means t€alforces. For a uni-
formly polarized, spatially inhomogeneous field, the caam@Emplitude of Eq. (2.5)
can be separated into amplitude and phase contributior2glas [

E(r) = Eo(r) exp[i¢(r)Jug (3.3)

whereE, and¢ are assumed to be real-valued functions apds the polarization
vector. The dipole moment induced on a dipole-like particigne field is [32]

p = o (3.4)

wherex = o 4+ ix” is the complex polarizability. By using this notation, the
cycle-averaged force acting on the particle can be casthietform [24]
/ "

(F) = %VES + %ngs. (3.5)
The first component in Eq. (3.5) corresponds to the gradiemefwhich either
attracts the particle toward regions of high intensity £ 0) or repels the particle
from such regionsf < 0). The second force component is the scattering force
which originates from the momentum transfer from the fieltheparticle.

The attractive gradient force can be employed in particieigg by exciting the
leaky EH ; mode which has an on-axis intensity maximum in the pore of &HO
Consequently, the particles with sufficiently small tragrse velocities are held
near the optical axis far away from the fiber wall. This medsmnhas been used
to demonstrate, e.g., direct-write lithography [46] ane transfer of laser-cooled
atoms from one vacuum chamber to another [47]. However, tidirgy distance
in this scheme is limited by the inherent decay of the modeli&umae. Also, when
dealing with cold atoms, the heating effect due to the sgagdorce can become
crucial [48]. To overcome these issues, the repulsive gradorce associated with
the evanescent wave of a core-guided optical field can iddieaused. Since the
evanescent wave of such a field is strongly localized nedtiltke wall, the atoms
will spend most of their time in the dark near the optical axis principle, the
tubular fundamental field of a single-mode HOF would lendlitperfectly to the
task, but in practice, multimode HOFs are resorted to owmnrgarily to their much
larger openings. The basic problem with the use of multimd@&s is the speckle
due to multimode interference [49]. As a consequence, thérbe dark and faint
spots on the fiber wall, which decimates the flux of guided atbmway of their
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van der Waals interaction with the fiber [50]. In what follgww&o methods for
obtaining a smooth evanescent-wave field on the inner sudéa weakly guid-
ing multimode HOF are analyzed [Paper Il]. The example filmzameters for the
calculations are chosen so that the WGA can be adopted.

The first method relies on the notion that a superpositioh@gtven and odd variant
of a higher-order LR, , mode with a relativer/2 phase difference will lead to an
azimuthally flat intensity distribution. This can be verifjes.g., by superposing
the even and odd LR modes of Fig. 3.1(c). The resulting modal field will then
have a helical azimuthal phase dependence of the éafi—im#6) reminiscent of
the Laguerre—Gaussian mode in Eq. (2.32). If circularlyapekd light is used,
such a helical field can be made to propagate in an invarianharaeven when
the WGA is not valid [43, 51]. According to the overlap intagof Eq. (2.28),

a normal-incidence LG beam would exclusively couple to filmedes that have
the same helical twist, i.e., to the modes for whieh= [. When individually
excited, the helical fiber mode will provide a spatially wnifi evanescent-wave
field on the fiber wall. Additionally, the optical axis will meain dark outside the
fiber when beams with ## 0 are used, which should be an advantage for loading
and unloading of the atoms. An atom guiding scheme basedism@piproach is
sketched in Fig. 3.2(a).

If the HOF supports higher-radial-order . modes (withp > 1) for a given value

of the azimuthal index:, the selection between them can be carried out by adjusting
the beam-waist parameter, of the LG beam. This is exemplified in Fig. 3.3(a)
which shows the highest relative intensities attainablthennner surface of a HOF
as a function of the azimuthal mode indefor m) of an incident LG beam carrying
unit power. The radial LG-beam ordey, is shown above each data point, and the
underscore marks the excitation of an LP mode with a highdiakraumber, i.e.,
with p = 2 for this particular fiber. In all other cases, the, | Pmode is the excited
one. Also plotted is the squared modulus of the couplingfmieht of Eq. (2.28),
l.e., the fraction of the incident power carried by the mo8eom the figure, one
can note that the highest intensity values originate froenetkcitation of the LF »
modes, whereas the excitation efficiency can be very high fagher-order LR ;
mode.

The second method, sketched in Fig. 3.2(b), makes use ofichvapation of the
incident angle of a Gaussian input beam in the time scaleecdittimic motion [52].
At a given time instant, several fiber modes will be excitetijol gives rise to a
multimode speckle. Dithering of the incident angle in tineads to a constantly
varying speckle pattern which, from the standpoint of csldwly moving atoms,
manifests itself as a smooth, time-averaged field. The jplmcs similar to that of
the time-averaged, orbiting-potential (TOP) method uséti¢ first observation of
Bose—Einstein condensation [53], or to that of the rotabegm ROBOT trap [54].
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Figure 3.2: Atom guiding through hollow-core optical fibers (HOFs). (sguerre—
Gaussian (LG) beam excites a helical, linearly polarize#) (fliber mode which provides a
spatially uniform evanescent wave on the fiber wall. (b) &ngonditions on the fiber wall
can be produced by dithering the incident angle of a Gaudsam at the fiber input, as
first suggested in Ref. [52].

The field on the fiber wall needs to be obtained by numericalnsiesince its di-
rect observation would be cumbersome. By denoting the angith respect to
the optical axis byx and~ [perpendicular and parallel to the plane of Fig. 3.2(b),
respectively], one can construct the spatial speckle praofil the fiber wall as a
function of the input-beam angle by using Eg. (2.28). Theimaxn angle is taken
to be equal to the numerical aperture of the fiber. The sumeotéhculated mul-
timode intensity profiles divided by their count results iprafile that corresponds



—-21 -

1 - ¥ 1 1
x
2
08 8 iy 0.8 0.8 No dithering
= 1
£ 3 ox 2
506 06 § €
= 1 T 5 Sos
2 ® x - 2
£04ti7 3 x x 04 2 B yis dithered
g LY 3 2 ¥
o & x x x n 0.4 RRIE T
0.2 x x & *J10.2 N
T e R e A
- o is dithered
0 0 0.2
0 1 2 3 4 5 0 10 20 30
Azimuthal index Beam waist [um]
(a) (b)

Figure 3.3: (a) Highest attainable intensity on the fiber wall as a fuorctf the azimuthal
mode index for LG beams with radial indices= 0, ..., 3 (dots). The underscore indicates
the excitation of a higher-order L., mode. Also shown is the relative amount of power
in the mode (crosses). (b) Contrast of the speckle pattethefiber wall when the input-
beam angle is dithered in two mutually orthogonal direcidror reference, the undithered
case is also shown. [Paper Il]

to a time-average over all profiles. The granularity of timsetaveraged intensity
profile on the fiber wall is characterized by its contrast defias

Cyp = o1 /(1) (3.6)

whereo; denotes the standard deviation in the pattern @nds the average in-
tensity. By assuming that a Gaussian beam is incident onethtecof the rim of

the fiber core, the contrast values given in Fig. 3.3(b) atainbd as a function of
the incident-beam waist. Also shown is the static case farmal-incidence beam
without the dithering. After studying a number of multimod®Fs with thicker

cores, and thus with more supported guided modes, it was\adakthat the dither-
ing of the anglex always yields the smoothest optical wave on the fiber wall.

3.3 Self-imaging in annular-core fibers

A laterally periodic solution to the paraxial free-spacesevaquation of Eq. (2.31)
will be periodic also in the propagation direction. This pbmenon is known as the
self-imaging effect, or the Talbot effect, and it can be emtered in an approxi-
mate form with cylindrical multimode waveguides. In pantar, annular-core fibers
(ACFs) naturally provide periodicity in the azimuthal dite®n. Thus, one often ap-
proximates the field in such a waveguide as being a wrappmdidrequivalent of
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Figure 3.4: Normalized propagation constanigk, of the vector modes arranged accord-
ing to the indexn of the LR, ; modes (dots). The insets illustrate that for> 1 there are
two modes (three modes fat = 1) with almost degenerate propagation constants (trian-
gles). Dashed lines are least-squares fits witlienoting their standard deviations. [Paper

1]

a one-dimensional, laterally periodic field. Based on thiglagy, an ACF with a
thin core appears to be the best choice for the self-imagopyications [14—16].
However, as indicated in Sec. 3.1, the scalar, weak-guaapproximation behind
this reasoning tends to break down in particular for suchegaides.

To investigate the applicability of the ACFs for self-imagj the vector modes of
the fiber are grouped according to their WGA counterparteHtor the low-order
modes, are indicated in Figs. 3.1(b) and (c). Figure 3.4ttates how the propaga-
tion constants of the vector modes then place themselveuastion of m? in two
weakly guiding, single-radial-mode example ACFs. The pggiion constants of
the LB, ; modes of such ACFs approximately obey the quadratic depeedé5]

B = Bo - BlmQ (3.7)
where3, and3; are positive constants. If the relation given in Eq. (3.7} wictly

obeyed, a superposition of the modal fields at the plare 0 would be perfectly
imaged to the plane located at the Talbot distance, given by

2y = 27/@1, (3.8)
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with the phase factor of each mode being equadxtp(—z’@ozT). Thus, by deter-
mining how well the vector modes obey this same quadratiedi@pnce, one can
evaluate the self-imaging capability of an ACF. For thisgmse, a straight line is
fitted [from Eq. (3.7)] to the propagation-constant datallastrated by the dashed
lines in Fig. 3.4. The slope of the line will then yield the Gal distance, as in
Eqg. (3.8), while the standard deviation of the data pointswill be used to quan-
tify the general self-imaging capability from the plane- 0 to the plane: = z7.

The above fitting approach is applied to weakly guiding AGFRaper Ill. The re-

sults indicate that, as a trend, the general self-imagitgrnial weakens in terms of
the fitting deviation when the core is made thicker. This pb&tis also weakened
when the radius of the core is made larger for a fixed value @fctire thickness
in order to increase the number of modes available in theimgadn particular, a

mode just above its cutoff strongly deteriorates the fit,\adesced by the lower
data set in Fig. 3.4. The example cases considered in Pdpeakie use of the
overlap integral of Eg. (3.1) to compare the original vedield and its image.
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Chapter 4

Microstructured optical fibers with
coated inclusions

The technology for manufacturing microstructured optidaérs with an array of
holes in their transverse profiles is nowadays well estadtis[55, 56]. When
filled with liquids or gases, the fibers can be employed inowsisensing con-
figurations [57]. Furthermore, the use of coated, solidesiaclusions within the
fiber holes has aroused interest, as this opens up persgsetdivcompact, fiber-
integrated optoelectronic devices [19] and sensors [58—60

In this chapter, two numerical studies related to the reseaf coated microstruc-
tured optical fibers are summarized. First, the effect ofedediric, high-index
coating on the transmission band of an air-guiding, phattaindgap fiber is char-
acterized. Second, a novel design for a surface-plasnsomasce sensor for ague-
ous analytes is proposed [Paper IV]. The sensor design edbas a three-hole
microstructured optical fiber with metal-coated hole stefa

4.1 Photonic-bandgap fibers with dielectric high-index
inclusions

The light-guiding mechanism of a photonic-bandgap fiberKPB based on the
photonic-bandgap effect caused by a spatially periodaditey structure [61]. Since
the total internal reflection is not employed, even an em@gyan surrounding the
optical axis can function as the fiber core. However, onlywthagelengths that fall
within the full, transverse bandgap of the fiber claddingefficiently be guided. A
typical PBF is made of silica glass with the cladding holearged in a triangular
formation in the cross-sectional plane of the fiber [8]. Theddral width of the
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Figure 4.1: Bandgap-edge wavelengths as a function of the coatingrtegsk for three
values of the coating refractive index. Inset: Cross-saabif the original fiber cladding and
one with coated inclusions.

transmission bandgap can be increased by increasing tfiliagy fraction in the
cladding [62]. With high enough air-filling fractions, thelks assume a strongly
hexagonal form in the triangular lattice. In what followkgteffect of uniform,
dielectric, high-index coated inclusions on the (main)tpha bandgap of such a
fiber is characterized. The fiber is assumed to be made o gillass with a refrac-
tive index ofn. = 1.45 and an air-filling fraction off = 0.95.

The photonic bands of the cladding are calculated by usinmgedyf available im-
plementation of the plane-wave expansion method [63, 68ine@d in Sec. 2.1.2.
By scanning through thE, M, andK points of the first irreducible Brillouin zone
associated with the triangular lattice [28], one obtairesghotonic band structure
for a fixed value of the propagation constaht From the band structure, the fre-
quencies that lie within a full, transverse photonic bamda then retrieved. This
procedure is repeated for each valuesofin order to guide light along the fiber
core by exploiting the bandgap effect, the dispersion cofitbe core material has
to intersect with the obtained bandgaps in theplane [2]. Figure 4.1 shows the
wavelengths at the intersection points, i.e., at the attaatigap edges for air guid-
ance as a function of the coating thickness [65]. The dieteptofile of the fiber
cladding is depicted in the inset witkh denoting the hole-to-hole distance. Three
pairs of curves are shown for different values of the reivaandexn of the coat-
ing, including for reference the case where both the coaimdjthe fiber material
are taken to be silicau(= n.) [62].
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From the figure, one can note that the bandgap shifts to longeelengths and
narrows when the coating is made thicker. These featuremare pronounced
with the higher-index the coating materials. Typical valwé A are on the order
of a couple of microns, and thus, even a few nm layer on the siaces can
perceivably alter the spectral position (and width) of thgioal bandgap.

4.2 Surface-plasmon-resonance sensor based on mi-
crostructured fiber with metal inclusions

In recent experimental demonstrations, the micron-sizeshof a microstructured
optical fiber (MOF) have successfully been coated with gb8] find silver [66,67].
When the right conditions are met, the interfaces betweenniktallic and di-
electric domains in the fiber support the propagation ofamgdplasmon polari-
tons [68]. These electromagnetic surface waves are assoeuth collective elec-
tronic oscillations [69], and they have two important cluéesaistics that are partic-
ularly useful for sensing applications. First, the plasnsstrongly localized near
the interface [70], which contributes, e.g., to surfachaated Raman scattering
(SERS) [71,72]. Second, the wavelength for which the plasexeitation is at its
strongest, i.e., the resonance wavelength, will sengtibepend on the dielectric
in contact with the metal [73, 74].

By taking a MOF with metal-coated pore surfaces, one cantnartisa highly com-
pact, fiber-integrated surface-plasmon-resonance segsofiltrating a liquid ana-
lyte into the empty pores. In such configurations, light pggting in the fiber core
excites a surface-plasmon polariton at the metal-anatygeface. For a given metal
structure, the plasmon-resonance characteristics asgelidy the refractive index
of the analyte. Several sensor designs based on these t®hesp been proposed
so far [58-60]. However, all of them require selective aogitand filling of tiny,
micron-size cladding holes. Also, the loss level of thesaads could not be tuned
without affecting the spectral signature of the plasmoomasce.

In this thesis, a novel sensor design is put forward to oveecthese drawbacks
[Paper IV]. The starting point here is a three-hole MOF, sashhe one shown in
Fig. 4.2(a). This template fiber can be converted into a setedce by first coat-
ing the hole surfaces with an auxiliary low-index dielectayer on top of which a
thin gold layer is deposited. The cross-section of the tegustructure is schemat-
ically depicted in Fig. 4.2(b). The parameterg:), h (n;), andd (n,) denote the
thicknesses (refractive indices) of the auxiliary dieliectayer, the core strut, and
the gold layer, respectively. The analyte filling the poeassumed to be water-
based with a refractive index af, ~ 1.33. Furthermore, the parametedenotes
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Figure 4.2: (a) Micrograph of a three-hole MOF [75]. (b) Parameters alttyered sensor
design. (c) Longitudinal component of the time-averageghBing vector for the Gaussian
guided mode. (d) Vertical cut of the mode profile plot. (e) $&laup of the norm of the
electric field in the vicinity of the gold layer. Red vertidaies mark the locations of the
gold-layer interfaces. [Paper V]

the radius of curvature from poit which locally dictates the growth direction of
the layers [19]. In the proposed approach, all three fibeedroln be coated and
later filled with the analyte simultaneously. The hole sizas be taken as large
as practically possible to facilitate the coating and fglprocesses. Recently, strut
lengths on the order of tens of microns have been reportdd [ffést importantly,
the thickness parameteof the auxiliary dielectric can be used to exclusively tune
the loss level of the sensor by controlling the overlap betwthe core-confined
mode and the gold layer.

The modal fields of the structure are calculated by using B! [iscussed in
Sec. 2.1.2. A commercial software is employed in the catmra [77]. Among
the obtained solutions, the spatially Gaussian ones amghsasince at each wave-
length an incident Gaussian beam would most efficiently g such modes.
The Gaussian mode of the device is doubly degenerate whbkiadcuracy of the
computations, and its spatial characteristics are ikstt in Figs. 4.2(c)-(e). Fig-
ures 4.2(c) and (d) show thecomponent of the time-averaged Poynting vector,
and Fig. 4.2(e) illustrates the local behavior of the fieldohtude near the gold
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layer. The spatially decaying character of a plasmon is regopan Fig. 4.2(e), and
the propagation losses of the mode are thus attributed texitigation of a surface-
plasmon polariton.

The decay of the optical power of the Gaussian mode is goddméhe imaginary
part of the propagation constant through the relation [22]

ar = 2Im(3). (4.1)

By considering the loss as a function of the optical wavetlefay two different ana-
lytes, the sensitivity of the sensor fiber can be assesseashréing to a conservative
estimate, refractive-index changes on the orddrofl0~* can be detected with the
device. Fortunately, this figure is obtained when the réifragndex contrast be-
tween the auxiliary layer and the fiber core is made smallchishould enable
single-core-mode operation with fibers having a sufficieathall core. Instead of
gold, copper could in principle be used as it exhibits vemyilsir plasmon-resonance
characteristics.



— 30—



—-31 -

Chapter 5

Rotational frequency shifts in
partially coherent optical fields

In addition to linear momentum, light can also carry optiaaular momentum
[78]. In analogy to atomic physics, this is often separatgd spin and orbital
angular-momentum contributions which are associated thighpolarization state
and the phasefront of a light beam, respectively [78]. Autady polarized beam
propagating along the-axis carries spin angular momentum @f: per photon
with o, = 41 denoting the two orthogonal states of circular polarizatémd
being the Planck constant divided By. Beams with helical phasefronts of the
form exp(—il#), such as the LG beams of Eq. (2.32), additionally carry atbit
angular momentum aofi per photon [1, 20]. The mechanical equivalence of the
spin and orbital parts has experimentally been establiblgetiansferring optical
angular momentum to a weakly absorbing particle trappet wojitical tweezers
[79]. The tweezers comprise a tightly focused beam whodéyata capture and
trap the particle can be understood by means of the atteegitadient force [80]. As
demonstrated in this micromanipulation experiment, ihis total optical angular-
momentum content of the beam per phot@ny o)k, that is responsible for the
torsional action on the particle.

Another phenomenon intimately tied to the total opticalldagmomentum content
of a light beam is the rotational frequency shift. This shdh be observed in the
direction of the rotation axis, and thus, it is distinct frone translational Doppler
effect. In quantitative terms, the angular frequency of licaebeam is shifted by
the amount/+ o)< where(2 is the angular frequency of rotation (about the optical
z-axis) between the field and the observer [39]. Since the L&msecomprise

a complete set of basis functions, any beam can be expandedms of these
functions. Indeed, the shifts have been used to determaeelhative weights of
the helicity components of a light beam [81], also at the Isiphoton level [82].
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The shifts have also been used in creating moving interéergatterns for optical
micromanipulation [83]. In a similar vein, the guided atomighin a hollow-core
optical fiber considered in Sec. 3.2 experience a shiftecta@prequency due to
their azimuthal motion [84]. In this thesis, the rotatioshifts are for the first time
considered in the context of partially coherent fields [Pafie

In the theory of optical coherence, one formally deals witheasemble of field
realizations [1,40]. A realization of a uniformly polartz&eld propagating toward
the positivez-direction can be expanded in terms of the LG modes. Hererthe
plitudes of the basis modes are taken to be randomly flua&tinctions of time
with zero mean. The rotational motion between the field ardtiserver about the
z-axis can be treated with a simple coordinate transformdgs]. In effect, the
azimuthal coordinate for each basis mode becomes a furmttiime according to

o(t) — 0 — Q. (5.1)

By making this substitution to the field realizations, andgtiwg the expression for
the mutual coherence function in the space-time domain(E43)], one can make
the following general observations: The angular frequesfaach basis mode will

be shifted by the amourit + o,){2 as expected. As a consequence, even a field
which is stationary fof2 = 0 can become nonstationary far=# 0. This behavior
will occur whenever the modes with different azimuthal oeti/, and thus with
differently shifted optical frequencies, are at leastipdytcorrelated.

The above formalism is exemplified in Paper V by considerirsgi@erposition of
completely uncorrelated LG basis modes. The resulting Waldhen be stationary
also for the casé) # 0, and one can proceed as in Sec. 2.2.3 to calculate the
cross-spectral density function from the coherence fondtirough Eq. (2.44). For
the field at rest, i.e., fof) = 0, Gaussian Schell-model spatial correlations and a
Lorentzian spectrum centered at the angular frequep@re assumed. With these
assumptions, the cross-spectral density function for #se@ +# 0 can be derived

in the form of a coherent-mode representation. From thisesgpon, the spectral
density is explicitly obtained as

S = (g ) ewl-2P1+ €]
X Z Iy(28%7%) glw — wo — (I + 0.)Q). (5.2)

Here, w; is the beam-waist parameter,= r/w, is the normalized radial coor-
dinate, I;; is the modified Bessel function of the first kind of ord&r andg is a

Lorentzian spectral profile centereduat+ (I + o.)€2. The parametef describes
the global spatial coherence properties of the field; forrapetely coherent field
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Figure 5.1: Spectral density for different rotation frequenci@swith weight functions
(@) I;(10) and (b)1};(200). The Lorentzian lineshape function of widthw is shown in
dashed line. All the curves are normalized to have the pelale & unity. [Paper V]

¢ = 0 and for a completely incoherent fief[d— oo. Thus, the more incoherent
the field, the more terms in the summation of Eq. (5.2), andequently, the more
diverse the spectral effects due to the rotation. This samaétgtive argument ap-
plies to observation points far from the optical axis, asgaemeter, will equally
affect the summation.

Figure 5.1 illustrates the effect of rotation on the speutfar two argument values
of the termsl|; (2£%n?) in Eq. (5.2). In both of the plots, the overall spectral width
is seen to increase along with the valueSnf Also, with high enough rotation
frequencies, the peaks of the individual Lorentzians appejparately. For a fixed
value ofr, one can consider the differences between Figs. 5.1(a}and fhanifest
changes in the state of spatial coherence through the pwafné&/ice versa, for a
fixed value of¢, these differences manifest changes in the observatitendis;.
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Chapter 6

Summary and discussion

Various specialty optical fibers are widely used in many bnas of science and
technology. Novel fiber-optical components are often desigwith numerical
tools, because ample computational resources are nowsaeyidy available. In
this thesis, analytical and numerical mode-analysis tiegelas are applied to layer-
structured optical fibers and partially coherent opticatiEe More explicitly, these
techniques are employed to study the accuracy of the staldanalysis of a class
of specialty fibers, to advance fiber-optical atom-guidicigesnes and the develop-
ment of sensor fibers, and to investigate rotation-indupedtsal effects in partially
coherent fields.

The thesis presents guidelines for accurate modal analf/sie low-order modes
in hollow-core and annular-core optical fibers in terms oflg guided, scalar
fields. It turns out that the scalar-field description is esgly inaccurate when
the thickness of the core is on the order of a few optical wengths. This finding
suggests that the self-imaging capability of annular-&ibers, which is deduced by
considering the scalar fields of the fiber, can in fact be muealkar than previously
thought [14-16]. A rigorous, full-vector investigation tife self-imaging effect
included in this thesis supports this conclusion. Furtleemthe analysis indicates
that it is altogether difficult to find a decent regime for gegurpose (annular)
self-imaging with such fibers.

In this thesis, two methods for obtaining a spatially smaitim-guiding field on
the inner surface of a hollow-core fiber are analyzed by ntakise of the weak-
guidance approach. The first method is based on the selesthitation of tubular
fiber modes with angular-momentum-carrying beams. In tieersst method [52],
the incident angle of a Gaussian beam is rapidly dithereidne yielding a smooth,
time-averaged atom-guiding field. Besides fiber-opticafraguiding [49] and trap-
ping [86], such smooth time-average fields have recentiy lagplied, e.g., in the
delivery of high-peak-power nanosecond pulses for fluid fie@asurements [87].
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In this thesis, the spectral transmission characteristigghotonic-bandgap and
index-guiding fibers with coated inclusions are specifiedieldtric inclusions

are considered with the bandgap fiber, whereas the indehkrgimicrostructured

fiber is assumed to additionally contain metal inclusionpéomit the excitation

of surface-plasmon-polariton resonances. Such resos@acebe employed in the
construction of compact, fiber-integrated (bio)sensoiads/for which a novel de-
sign is proposed in this thesis. The design makes use ofe-hHuile microstructured
fiber with uniform gold and low-refractive-index dielectrinclusions. Besides
uniform metal layers, it is possible to fabricate micrometeale metal structures
within the holes of a microstructured fiber [19]. In additi@miniaturized in-fiber

devices, these structures are potentially useful in fufibes-integrated plasmonic
applications [88].

The thesis also includes an investigation of the rotatibre@juency shifts in par-
tially coherent fields. The field realizations are expandederms of angular-
momentum-carrying modes which contribute to the overadcsal change due to
the rotation. Such changes are not only of fundamentalgatéut can also be bene-
ficial to remote-sensing and gyroscopic technologies [8Bg angular-momentum-
carrying, vortical modes themselves have found numeropdicagions ranging
from optical spanning to quantum entanglement [90, 91]. eR#yg, helical-core
fibers allowing the propagation of a single helical mode Hasen introduced [92].

Besides performing modal analyses for given fiber profilas,@an also find the in-
verse process meaningful, i.e., the determination of acgfre-index profile which
would yield a desired modal field. This would be especiallgfukin tailoring the

output field of a fiber for applications, e.g., in particlepping and guiding, ma-
terials processing, and lighting. Genetic algorithms caov@to be helpful in the
design process [93].
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Abstracts of publications -V

We study the applicability of the weakly guiding approximat(WGA) to

the modal analysis of an M-type optical fiber in which a rifgysed core lies
between two uniform cladding layers. Besides being dep@ratethe refrac-
tive indices, the accuracy of the approximation is showreteubstantially af-
fected by the transverse dimensions of the core. The agcigrabaracterized
by calculating an overlap integral between the exact and VW&@proximated
modal fields. Fibers that have an inner cladding similar éodhiter cladding,
or similar to vacuum, are considered in detail. The feasjolf the WGA in

determining the fiber parameters for single-mode guidasme¢so discussed.

. We analyze two methods for obtaining a smooth evanesceve-imgéensity

profile on the inner surface of a multimode hollow optical filbe be used
as a waveguide for neutral atoms. The first method is basedeosetective
excitation of fiber modes with a laser beam possessing odmngular mo-

mentum, of which Laguerre—Gaussian beams are considersud @sample.
The second method makes use of a rapid variation of the speeklern of

the fiber’'s evanescent-wave in the timescale of the atomicomor he varia-

tion is provided by dithering the angle of incidence of a Gaaus laser beam
at the fiber entrance. The optimal beam waist and directiafitbéring are

determined.

We investigate the occurrence of self-images, or Talbogesain a spatially
multimode field that propagates along an optical fiber whase tas an
annular-shaped cross section. By use of full-vectorial ah@ahalysis, we
study the effect of the transverse fiber dimensions on tHamaling prop-

erties. According to our analysis, good self-images carxpe@ed when the
fiber core is thin and the modes are far from their cutoffs. ey, as the
core diameter is made larger to increase the number of meddalae in the

imaging, the general self-imaging properties tend to dmiae.

We propose a novel surface-plasmon-resonance sensondesigd on coat-
ing the holes of a three-hole microstructured optical fibéhwa low-index
dielectric layer on top of which a gold layer is depositedeTise of all three
fiber holes and their relatively large size should faciitite fabrication of the
inclusions and the infiltration of the analyte. Our numdrresults indicate
that the optical loss of the Gaussian guided mode can be nmegtesmall
by tuning the thickness of the dielectric layer and that tfeactive-index
resolution for aqueous analyteslis< 1074,

We study the frequency shifts taking place when a randortipetay opti-
cal field rotates with respect to an observer. The field is eapd in terms
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of fully coherent Laguerre—Gaussian basis modes, for wttiehrotational
frequency shifts have been studied previously. We dematesthe formal-
ism by considering the spectrum of a Gaussian Schell-maeldl find show
that for a spatially highly incoherent field, significant spal changes can be
expected.
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