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Numerical modeling techniques play a key role in the development of new fiber optics, e.g., for telecommunications or
sensing applications. In particular, the refractive-index profiles of various specialty optical fibers are increasingly
designed with numerical tools. In this thesis, analytical and numerical mode-analysis techniques are applied to
layer-structured specialty fibers as well as to partially coherent optical fields. The work is divided into three parts.

In the first part, hollow-core and annular-core optical fibers are considered. The accuracy of the weak-guidance
approximation for the low-order modes of such fibers is first assessed. Then, the approximation is employed to
investigate the use of hollow-core multimode fibers in evanescent-wave guiding of laser-cooled atoms. Two schemes
for creating the required evanescent-wave field on the innersurface of the fiber are analyzed. These are based on the
selective excitation of tubular fiber modes with Laguerre–Gaussian input beams and on the dithering of a Gaussian
beam at the fiber input to average out the speckles due to multimode interference. The first part of the thesis is
concluded with a full-vector analysis of the self-imaging properties of annular-core fibers.

In the second part, microstructured optical fibers with coated inclusions are studied. The effect of high-refractive-index
dielectric inclusions on the photonic bandgap of a photonic-crystal fiber is characterized. Also, a novel design for a
fiber-integrated surface-plasmon-resonance sensor basedon a three-hole microstructured fiber with metal inclusionsis
proposed. The sensor makes use of an aqueous analyte infiltrated into the fiber pores.

In the third part, the coherent-mode analysis of partially coherent light is applied to a random, stationary optical field
which rotates with respect to an observer. The spectral changes due to the rotation are exemplified for a field with
Gaussian Schell-model space correlations.
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Laskennallisilla menetelmillä on keskeinen rooli, kun uutta kuituoptiikkaa kehitetään esimerkiksi tietoliikenne-tai
sensorisovellusten tarpeisiin. Varsinkin uusia valokuituja suunniteltaessa taitekerroinprofiili räätälöidään yhä
useammin laskennallisilla työkaluilla. Tässä väitöskirjassa laskennallista ja analyyttistä kenttämuotoanalyysiä
sovelletaan kerrosrakenteisten valokuitujen sekä osittain koherenttien optisten kenttien tutkimiseen. Työ jakautuu
kolmeen osaan.

Ensimmäisessä osassa tarkastellaan valokuituja, joiden ydin on poikkileikkaukseltaan rengasmainen. Ensin
määritetään optisen skalaariteorian (weak-guidance approximation) soveltuvuus tällaisten valokuitujen alimpien
kenttämuotojen analysointiin. Skalaariteoriaa hyödyntäen seuraavaksi tutkitaan onttojen monimuotokuitujen käyttöä
laserjäähdytettyjen atomien kuljettamiseen. Tähän tarvittava putkimainen, vaimeneva optinen kenttä voidaan tuottaa
joko kytkemällä kuituun Laguerre–Gaussinen säde tai moduloimalla tavallisen Gaussisen säteen sisääntulokulmaa
kuidun päässä muotokohinan tasoittamiseksi. Työn ensimmäisen osan lopussa kartoitetaan rengasytimisten
valokuitujen käytettävyyttä optisen kentän itseiskuvautumisessa (self-imaging).

Toisessa osassa tarkastellaan mikrorakenteisia valokuituja, joiden sisäpinnoille on kasvatettu tasainen materiaalikerros.
Aluksi karakterisoidaan korkean taitekertoimen eristemateriaalin vaikutus onton fotonikidekuidun transmissiokaistaan.
Lisäksi ehdotetaan uutta rakennetta kuituun integroitavan, pintaplasmonien resonanssiominaisuuksia hyödyntävän
sensorin toteuttamiseen. Ehdotus pohjautuu kolmireikäiseen mikrorakennekuituun, jossa ilmahuokoset on ensin
päällystetty metallilla ja tämän jälkeen täytetty vesipohjaisella analyytillä.

Kolmannessa osassa sovelletaan osittain koherentin valonkoherenttimuotokehitelmää satunnaisesti värähtelevään,
stationääriseen valokenttään, joka on pyörivässä liikkeessä havaitsijan suhteen. Pyörimisestä johtuvia spektrimuutoksia
havainnollistetaan olettamalla kentän paikkakorrelaatiot Gaussisen Schell-mallin mukaisiksi.
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Chapter 1

Introduction

Kilometer-wise, the most common type of optical fiber today is the step-index,
single-mode fiber which forms the backbone of the global telecommunications net-
work. In addition, various specialty optical fibers are employed, e.g., for dispersion
and polarization controlling, amplification, and filtering[1]. Specialty fibers are
widely used also in other fields of technology and science such as nonlinear op-
tics [2, 3], (medical) imaging [4], and especially sensing applications [5–7]. For
the special purposes in particular, various microstructures can be employed to gain
substantial design flexibility. Indeed, microstructured optical fibers have enabled
the guiding of light along an air channel with low loss by means of the photonic-
bandgap or the low-density-of-states effect [8], and the generation of supercontin-
uum radiation covering the near-infrared and visible spectral bands [9]. The appli-
cations of these and other fiber-optical components and devices continue to grow
rapidly in number.

The design of novel specialty and microstructured optical fibers often relies on nu-
merical modeling, as the structures can be very complex and ample computational
resources are readily available. A powerful approach for the modeling task is that
of modal analysis where the propagation-invariant field forms of the waveguide
are identified. Their generic mathematical properties can then be employed to find
out, for instance, the excitation efficiency of a particularfiber mode, multimode
interference patterns, and the characteristics of spatialtransitions in terms of local
modes. Yet, analytic and semi-analytic approaches remain at least equally important
in that they provide insight into the problem at hand and helpreduce the computa-
tion times. The same holds true for approximative techniques, if these are chosen
wisely enough. In this thesis, a host of mode-analysis techniques are applied to spe-
cialty and microstructured optical fibers as well as to partially coherent free-space
fields. The work is divided into three parts each of which is briefly described in the
following.
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In the first part of the thesis, the modal fields of hollow-coreoptical fibers (HOFs)
and annular-core optical fibers (ACFs) are considered. In a HOF the section sur-
rounding the optical axis is empty, whereas in an ACF this section is similar to the
cladding outside the core. Although there are no ubiquitous“killer” applications
for these fibers, they have found use in many contexts. For instance, besides the
applications considered in this thesis, HOFs can serve as modal filters or mode con-
verters [10] and the output beam of an ACF as an optical trap for micron-size parti-
cles [11]. Quite commonly, the modal analysis of HOFs and ACFs is performed in
terms of scalar fields by adopting the weak-guidance approximation (WGA) [12].
The legitimacy of using this approach to describe the low-order modal fields in
HOFs and ACFs is established in Sec. 3.1 [Paper I]. One of the most exciting appli-
cations of HOFs is in the field of atom optics where they can actas conveyor tubes
for slow, laser-cooled atoms [13]. A prerequisite for this function is a spatially
smooth field that is strongly localized in the vicinity of theinner wall of a HOF.
Weakly guided fiber modes are employed in Sec. 3.2 to analyze two methods for
creating such a smooth atom-guiding field onto the HOF wall [Paper II]. Thin-core
ACFs, on the other hand, can be used to produce self-images, or Talbot images, of
annular wavefields [14–16]. This has proven to be useful, e.g., in phase-locking of a
circular array of fiber lasers [17,18]. The rationale behindthe self-imaging capabil-
ity builds on the scalar-field approximation which, as demonstrated in Sec. 3.1, can
be particularly unreliable in the case of a thin-core ACF. The results of a full-vector
investigation of the self-imaging phenomenon are presented in Sec. 3.3 [Paper III].

In the second part, the electromagnetic fields of holey, microstructured optical fibers
with coated dielectric and metal inclusions are considered. The motivation for mod-
eling such structures arises mainly from a recent experimental demonstration where
high-pressure chemical deposition techniques were successfully used to uniformly
coat the surfaces of the minuscule fiber holes with semiconductors and metals [19].
Advancements of this kind pave the way, e.g., for compact, fiber-integrated opto-
electronic device concepts. To support the experimental efforts, the effect of a uni-
form, high-index dielectric coating on the transmission characteristics of an off-the-
shelf photonic-bandgap fiber is specified in Sec. 4.1. Accordingly, the spectral posi-
tion of the photonic bandgap will signal the thickness of thecoating. Furthermore,
in Sec. 4.2, a novel fiber-integrated sensor concept for aqueous analytes is put for-
ward [Paper IV]. The sensor design is based on the excitationof surface-plasmon-
polariton resonances in a three-hole microstructured optical fiber with metal-coated
pore surfaces.

In the third and final part comprising Ch. 5, the mode-analysis tools are applied to
partially coherent, free-space optical fields. In the case of a completely coherent
field, the optical angular-momentum content is known to be responsible for the
spectral shifts that occur when the field rotates with respect to an observer [20].
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Such shifts manifest themselves in the direction of the rotation axis and are thus
different from the ordinary, linear Doppler shifts. By expanding a partially coherent
field in terms of angular-momentum-carrying modes, it is shown that the coherence
properties of the field will significantly affect the qualityof the rotational shifts
[Paper V].
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Chapter 2

Modal analysis of electromagnetic
fields

In this chapter, the principles of mode-analysis techniques are covered. Starting
from Maxwell’s equations, the relevant characteristics ofthe modal solutions of the
wave equation in fiber waveguides and in free space are presented. A special class
of free-space beams possessing orbital angular momentum isconsidered. Finally,
the coherent-mode representation of partially coherent beams is briefly surveyed.

2.1 Modal fields in optical fibers

2.1.1 Wave equations

The electromagnetic fields in optical fiber waveguides are governed by the macro-
scopic Maxwell’s equations which in their complete form read as [21,22]

∇ ·D(r, t) = ρf(r, t), (2.1)

∇ · B(r, t) = 0, (2.2)

∇× E(r, t) = −∂B(r, t)

∂t
, (2.3)

∇× H(r, t) = J(r, t) +
∂D(r, t)

∂t
. (2.4)

Here, E and H are the electric and magnetic fields, respectively, andD and B

denote the electric and magnetic flux densities, respectively. Furthermore, the term
J is the current density,ρf is the charge density,r is the spatial coordinate, and
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t denotes time. Time-harmonic solutions describing strictly monochromatic fields
can be sought for by writing [23]

E(r, t) = E(r, ω) exp(iωt), (2.5)

H(r, t) = H(r, ω) exp(iωt), (2.6)

whereω is the angular frequency of light. In this representation, the real parts of the
expressions correspond to the physical fields [1]. By assuming a linear, isotropic,
and nonmagnetic medium, one can write the constitutive relations as [24]

D(r, ω) = ǫ0ǫr(r, ω)E(r, ω), (2.7)

B(r, ω) = µ0H(r, ω), (2.8)

whereǫ0 andµ0 are the permittivity and permeability of free space, respectively,
and ǫr denotes the relative, material-dependent permittivity. To study the modal
fields in fibers with metallic (lossy) inclusions, ohmic conduction currents can be
included by writing

J(r, ω) = σ(r, ω)E(r, ω) (2.9)

whereσ is the conductivity [24].

By taking the curl of Eq. (2.3), and by using Eqs. (2.4)–(2.9), one obtains the wave
equation for the electric field

∇×∇× E(r, ω)− ω2

c2

[
ǫr(r, ω)− iσ(r, ω)

ωǫ0

]
E(r, ω) = 0 (2.10)

wherec = 1/
√
ǫ0µ0 denotes the speed of light in free space. The term in the square

brackets can be identified with the complex, relative dielectric function which, from
this point on, is also represented by the variableǫr [24]. Similarly, by starting from
Eq. (2.4), one can derive the wave equation for the magnetic field in the form

∇× 1

ǫr(r, ω)
∇×H(r, ω) − k2

0
H(r, ω) = 0 (2.11)

where the wavenumber is denoted byk0 = ω/c. For homogeneous media, the wave
equations simplify to

∇2E(r, ω) + k2

0
n2(ω)E(r, ω) = 0, (2.12)

∇2H(r, ω) + k2

0
n2(ω)H(r, ω) = 0, (2.13)

where the refractive index is introduced through the relationn2 = ǫr [25].

To obtain the modes of an optical fiber, thez-dependence along the fiber is separated
by writing

Ej(r, ω) = Ej(r⊥, ω) exp[−iβj(ω)z], (2.14)

Hj(r, ω) = Hj(r⊥, ω) exp[−iβj(ω)z], (2.15)
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whereβj is the propagation constant of thejth mode andr⊥ describes a position
vector in the transverse plane of the fiber. In principle, thewave equations hold an
infinite number of transverse modes in the form of Eqs. (2.14)and (2.15) for a given
optical frequency. With conventional optical fibers, thesemodes are categorized as
bound, guided modes and radiation modes, the latter ones being either evanescent
or propagating in character [26]. Of most practical interest are the guided modes
and slowly radiating leaky modes.

2.1.2 Solving methods

In this thesis, three approaches for solving the wave equations are used. The first
method makes use of analytical trial functions for the longitudinal field components
Ez andHz of a guided mode in a piecewise homogeneous, dielectric fiberprofile.
The remaining transverse components within each of the homogeneous regions are
then retrieved from the relations

E⊥ =
i

β2 − k2

0
n2

(β∇⊥Ez − ωµ0uz ×∇⊥Hz), (2.16)

H⊥ =
i

β2 − k2

0
n2

(β∇⊥Hz + ωǫ0n
2uz ×∇⊥Ez), (2.17)

which are obtained by making use of Maxwell’s curl equations, as well as Eqs.
(2.14) and (2.15). Here, the transverse nabla∇⊥ operates only in the cross-sectional
plane of the fiber anduz is a unit vector pointing along the fiber. At the boundary
between two neighboring homogeneous regions1 and2, the fields are matched by
using the continuity relations [27]

n × (E1 − E2) = 0, (2.18)

n× (H1 − H2) = 0, (2.19)

wheren denotes a unit vector normal to the boundary. The expressions from each
boundary can be collected to a matrix equation

Mx = 0 (2.20)

where the matrixMmultiplies the trial-function coefficients lumped in the vectorx.
For the above homogeneous equation, nontrivial solutions can be found whenever
the determinant of the matrixM vanishes. The characteristic equation,det(M) =
0, is solved numerically to obtain the propagation constant of a mode. This approach
is used to solve the guided vector modes in Secs. 3.1 and 3.3.

The second method employs a plane-wave expansion for the field in a spatially pe-
riodic, two-dimensional lattice. Such a lattice can act as the cladding in a photonic-
bandgap fiber to confine and guide light along an air core. By formulating the
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problem in terms of the magnetic field [Eq. (2.11)] instead ofthe electric field, the
transversality condition∇ · H = 0 can be enforced leading to reduced computa-
tional burden [28]. The periodic structure is characterized by a dielectric function
with the propertyǫr(r⊥) = ǫr(r⊥ + R⊥) whereR⊥ is an arbitrary lattice vector.
With these assumptions, Bloch’s theorem can be invoked to write for the modal field

H(r) = Hk⊥
(r⊥) exp[−i(k⊥ · r⊥ + βz)] (2.21)

whereHk⊥
is a periodic function with the propertyHk⊥

(r⊥) = Hk⊥
(r⊥ + R⊥)

andk⊥ is the Bloch wavevector [28]. By denoting the inverse of the lattice vector
R⊥ by G⊥, one can expand the periodic part of the field as a sum of plane waves
according to

Hk⊥
(r⊥) =

∑

G⊥,κ

hG⊥,κ exp(−iG⊥ · r⊥) (2.22)

where the summation is taken over all vectorsG⊥ for two mutually orthogonal
polarization states labeled withκ = 1, 2 [29]. By using this formalism, the pho-
tonic band structures for two-dimensional lattices are computed and the photonic
bandgaps permitting optical guidance are identified in Sec.4.1.

The third method used in this thesis is the finite-element method (FEM). In this
method, the computation region is divided into homogeneoussubspaces (the finite
elements) in which Maxwell’s equations are discretized. Onthe boundaries of the
regions, the continuity relations of Eqs. (2.18) and (2.19)are applied [30]. The
ensuing set of coupled equations is then numerically solvedby means of matrix
methods. The FEM is well suited for computing the modes in a lossy waveguide
with a perfectly matched layer (PML) as the outer boundary [31]. A properly cho-
sen PML eliminates the reflections from the outer boundary back to the computing
region, thus acting as an absorbing boundary. The FEM is usedin Sec. 4.2 to investi-
gate the excitation of surface-plasmon polaritons in a metal-coated microstructured
optical fiber for sensing applications.

2.1.3 Mode orthogonality and overlap integrals

The bound and radiation modes together form a complete set offunctions in the
transverse plane of the fiber. In a non-absorbing fiber waveguide, the modes can be
normalized to fulfill an orthonormality relation in the form[23,26]

∫
(E∗

j ×Hk)zd
2r⊥ = δjk (2.23)

where the indicesj andk label the fiber modes and the integration is performed
over the transverse plane of the fiber. In such an orthonormalbasis, an arbitrary
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electromagnetic field can be expanded. In particular, the orthonormality properties
can be employed to quantify the power transfer to a specific fiber mode, when a
light beam is incident on the end face of the fiber (transverseto the fiber axis). The
reflection losses from the end face are usually ignored, and the coupling coefficient
to a particular mode is calculated directly from the overlapintegral [26]

cj =

∫
(E∗

j × Hi)zd
2r⊥ (2.24)

whereHi is the magnetic field associated with the incident beam.

For instance, if the incident field is mode-matched to the fundamental guided mode
of the fiber, only the corresponding coupling coefficient, say c0, will be nonzero. In
such a case, the excited mode will carry all the incident power. By the same token,
the modulus ofc0 is maximized for the given incident power. The mode-matching
principles are applied in Secs. 3.1 and 3.3 to quantify the similarities between two
optical vector fields in terms of a single number akin toc0.

2.1.4 Weakly guiding fibers

Cylindrical optical fibers with a small refractive-index contrast between the core
and the cladding are said to be weakly guiding [12]. In such waveguides, the modes
are uniformly polarized in the cross-sectional plane. Instead of Eq. (2.14), one can
proceed by writing for the electric field

Ẽj(r, ω) = u⊥Ẽj(r⊥, ω) exp[−iβ̃j(ω)z]. (2.25)

Here, the field is represented by a scalar amplitudeẼj andu⊥ denotes a polarization
unit vector in the transverse plane of the fiber. The tilde is used to indicate quantities
that are exclusive to the weak-guidance approximation (WGA). The magnetic field
of the mode is obtained from Eq. (2.3) as

H̃j(r, ω) = ǫ0cn(ω)uz × Ẽj(r, ω) (2.26)

where the refractive indexn is approximated to be equal to that of the core ev-
erywhere (zeroth-order WGA) [26]. By normalizing the fieldsappropriately, the
orthonormality relation of Eq. (2.23) can be rewritten for two similarly polarized
modes in terms of their scalar electric-field amplitudes as

∫
Ẽ∗

j Ẽkd
2r⊥ = δjk. (2.27)

The overlap integral of Eq. (2.24) can correspondingly be expressed as

c̃j =

∫
Ẽ∗

j Ẽid
2r⊥. (2.28)
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Weakly guided modes are considered in Secs. 3.1 and 3.2. These modes are com-
puted by choosing the trial function forEz (see Section 2.1.2) to directly stand for
the scalar field amplitudẽEj , and consequently requiring the radial part and its first
derivative be continuous over the cylindrical material boundaries [26].

2.2 Free-space beams

2.2.1 Laguerre–Gaussian beams

The weak-guidance approximation of optical fibers is closely related to the paraxial
approximation of free-space propagation. In free space, the wave equation assumes
the form

∇2ψ(r, ω) + k2

0
ψ(r, ω) = 0 (2.29)

whereψ describes the amplitude of a scalar field. For propagation along thez-axis,
one can write

ψ(r) = u(r) exp(−ik0z). (2.30)

In the paraxial approximation, the second derivative ofu with respect toz is as-
sumed to be negligible, yielding the paraxial wave equation[32]

∇2

⊥u− 2ik0

∂u

∂z
= 0. (2.31)

Paraxial beams satisfying Eq. (2.31), as well as the weakly guided fiber modes, can
be characterized with a small-angle propagation with respect to the optical axis [1].

Among the solutions of the paraxial wave equation are the Hermite–Gaussian modes
of a spherical-mirror laser resonator [1]. Another family of solutions is that of the
Laguerre–Gaussian (LG) modes for which the spatial part is written in polar coor-
dinates(ρ, θ, z) as

u(r) = fl,q(ρ, z) exp(−ilθ). (2.32)

The first part reads explicitly as [1,20]

fl,q = Cl,q

(√
2ρ

w

)|l|

exp(−ρ2/w2)L|l|
q

(
2ρ2

w2

)

× exp{i[(2q + |l| + 1) arctan(z/zR) − k0ρ
2/2R]}, (2.33)
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when the following notation is used

Cl,q = (−1)q

(
2

πw2

)1/2[
q!

(|l| + q)!

]1/2

, (2.34)

w = w0(1 + z2/z2

R)1/2, (2.35)

R = z + z2

R/z, (2.36)

zR = w2

0
k0/2. (2.37)

Here,w0 denotes the beam-waist parameter,L
|l|
q is the associated Laguerre polyno-

mial, the parameterR defines the radius of curvature of the wavefront, and the term
(2q + |l| + 1) arctan(z/zR) is the Gouy phase. The indicesq andl determine the
radial and azimuthal orders of the mode, respectively, withthe lowest-order case
q = 0 andl = 0 corresponding to the ordinary on-axis Gaussian beam. In general,
the transverse intensity profiles of the higher-order LG beams with l = 0 (l 6= 0)
consist ofq (q + 1) rings surrounding the optical axis [33]. In addition, the helical
phasefront of the beams withl 6= 0 embody an optical vortex, and thus, they are
dark on the optical axis [34]. Experimentally, the higher-order LG beams could
be produced directly within a laser cavity, but in practice they are often generated
from the standard Hermite–Gaussian laser beams outside thecavity by using, e.g.,
cylindrical-lens converters [35]. Another popular conversion technique employs a
spatial light modulator to introduce the helical, azimuthal phase twist of Eq. (2.32)
into a Gaussian beam [33,36]. LG beams are considered in Sec.3.2 and in Ch. 5.

2.2.2 Optical angular momentum

The cycle-averaged linear-momentum density of an electromagnetic field can be
calculated from the expression [21]

p =
1

c2
〈S〉 (2.38)

where the cycle-averaged Poynting vector is given by

〈S〉 =
1

2
Re(E× H∗). (2.39)

In analogy to classical mechanics, the angular-momentum density of the field is
determined by the cross product [37]

j = r × p. (2.40)
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Higher-order helical beams (l 6= 0) of the form of Eq. (2.32) carry orbital angu-
lar momentum, which is manifested by a non-vanishingz-component of the cor-
responding angular-momentum density. Explicitly, thez-component for a linearly
polarized LG mode is obtained as [38]

jz = ǫ0ωl|fl,q|2. (2.41)

In addition to the above orbital contribution, one can associate the polarization state
of the beam with spin angular momentum. For example, if one denotes the left- and
right-handed circular polarization states withσz = ±1, the ratio of the total angular-
momentum flux and the energy flux (per unit length) can be obtained as [38]

Jz

cPz
=

∫
jzd

2r⊥

c
∫
pzd2r⊥

=
l + σz

ω
(2.42)

where the quantityPz is thez-component of the momentum and the integrations are
performed over the transverse plane.

Equation (2.42) expresses the total angular momentum flux interms of the orbital
and spin contributions. This very sum term turns out to be responsible for the spec-
tral shifts that occur when the optical field and an observer are in relative rotational
motion about the optical axis [39]. In Ch. 5, such rotationalshifts are considered,
for the first time, for optical fields which are only partiallycoherent.

2.2.3 Partially coherent beams

Thus far, completely coherent, monochromatic fields have been considered. In re-
ality, however, random fluctuations are always present in light [1]. The coherence
properties of a random, uniformly polarized, stationary optical beam can be de-
scribed by the mutual coherence function [40]

Γ(r, r′; τ) =
〈
ψ∗(r, t)ψ(r′, t′)

〉
. (2.43)

Here, (r, t) and (r′, t′) denote two space-time points, and the explicit introduction of
the variableτ = t− t′ indicates the stationarity of the field. Furthermore, the angle
brackets denote the ensemble average of all possible field realizations. The spectral
coherence properties are described by the cross-spectral density function which is
obtained by using the (generalized) Wiener-Khintchine theorem [40]

W (r, r′, ω) =
1

2π

∫ ∞

−∞

Γ(r, r′, τ) exp(iωτ)dτ. (2.44)
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A convenient tool for the investigations in the realm of optical coherence is the
coherent-mode representation of the cross-spectral density function [40]. Accord-
ingly, a complete set of basis functions, such as the free-space LG modes [41], can
be employed to write

W (r, r′, ω) =

∞∑

l=−∞

∞∑

q=0

λl,q(ω)ψ∗
l,q(r, ω)ψl,q(r

′, ω). (2.45)

In this summation, each term represents a fully coherent mode in the space-frequency
domain [40]. The coherent-mode representation is put to usein Ch. 5.
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Chapter 3

Guided modes in hollow-core and
annular-core optical fibers

In this chapter, mode-analysis techniques are applied to hollow-core and annular-
core fibers. The accuracy of the weak-guidance approximation is first assessed by
considering some low-order modes [Paper I]. Then, the approximation is employed
to investigate the use of hollow-core multimode fibers as evanescent-wave conveyor
tubes for laser-cooled atoms in two configurations; by selectively exciting tubular
fiber modes with Laguerre–Gaussian beams and by dithering a Gaussian beam at
the fiber input to average out the speckles due to multimode interference [Paper
II]. Finally, the Talbot effect related to annular-core fibers is analyzed by using the
full-vector mode description [Paper III].

3.1 Weakly guided modes vs. exact vector modes

The majority of optical fibers in use today, e.g., in the global telecommunication
network, are composed of pure and doped silica glass [1]. Thus, the fibers typically
exhibit only small refractive-index contrasts in their transverse profiles legitimat-
ing modal analysis in the weak-guidance approximation (WGA) [12]. The uniform
polarization state of the weakly guided modes is usually taken to be linear in the
transverse plane of the fiber. Since most of the laser beams are uniformly polar-
ized [42], the field patterns of such linearly polarized (LP)modes are commonly
encountered when light is coupled to fibers. Of course, the excited field will always
comprise a superposition of the actual (hybrid) vector modes [43]. Incidentally, the
WGA can be successfully used outside its apparent regime of validity, as in cor-
rectly yielding the propagation constants of all transverse electric (TE) modes [26].
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Figure 3.1: (a) Schematic cross-section of annular-core and hollow-core optical fibers
with a and b denoting the inner and outer radii of the core, respectively. The refractive
index of the core,n1, is higher than the indices of the inner and outer claddings,n0 andn2,
respectively. (b) Polarization patterns of the fundamental HE1,1 mode and the correspond-
ing linearly polarized LP0,1 mode. (c) Emergence of the second-order LP1,1 modes as a
superposition of the corresponding vector modes.

In addition to the refractive-index contrasts, the transverse fiber geometry may also
affect the accuracy of the WGA.

The cross-sectional fiber geometry of annular-core and hollow-core optical fibers
is schematically shown in Fig. 3.1(a). In an annular-core optical fiber (ACF), the
refractive index in the inner cladding equals that of the outer cladding (n0 = n2),
whereas in a hollow-core optical fiber (HOF), the inner cladding is missing (n0 =
1). The modal fields in these fibers are similar to the ones in a conventional step-
index fiber, apart from a reduced intensity in the region enclosed by the core [44,
45]. Accordingly, the fundamental HE1,1 mode is represented by the LP0,1 mode
in the WGA [26]. Both of these modes are two-fold degenerate,and their generic
polarization patterns are schematically depicted in Fig. 3.1(b). The LP1,1 mode,
on the other hand, corresponds to an equal-weight superposition of the odd (even)
HE2,1 mode and the TE0,1 (TM0,1) mode [26], as visualized in Fig. 3.1(c). By taking
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into account the possible combinations of the vector modes,the LP1,1 mode is seen
to be altogether four-fold degenerate. Moreover, the amplitude of this mode has a
sinusoidal azimuthal variation.

In a weakly guiding fiber with the propertyn1−n2 ≪ 1, the modes are often calcu-
lated by using the WGA. On the face of it, this would seem to be justified only for
ACFs, but the approach has proven to work well also for some HOFs [44, 45]. To
establish the range of geometry and material parameters forwhich the WGA will
yield accurate results, the overlap integral of Eq. (2.24) is brought into service. By
taking the magnetic field in this integral to be that of the LP mode [from Eq. (2.26)]
and the electric field to be the corresponding vector mode (orthe appropriate su-
perposition), one can quantify how well the two modal fields are matched. Since
only the electric-field components parallel to the polarization direction of the LP
mode remain in the integrand, one can equivalently considera projection integral
by writing

|W̃ |2 =

∣∣∣∣
∫

E∗ · Ẽd2r⊥

∣∣∣∣
2

≤ 1. (3.1)

Here, the upper bound of unity is due to the following normalizations

∫
|E|2d2r⊥ =

∫
|Ẽ|2d2r⊥ = 1, (3.2)

and it corresponds to the case where the two fields are exactlymatched. The value
of |W̃ |2 is reduced below unity whenever the electric-field patternsdiffer in am-
plitude and/or polarization. In fact, by including the non-vanishingz-component
of the exact vector field in the normalization integral, the case|W̃ |2 = 1 can be
approached only asymptotically.

In paper I, the above overlap-integral formalism is appliedto weakly guiding ACFs
and HOFs with the following rule-of-thumb findings: For ACFs, the WGA de-
scribes the low-order modes well for core thicknesses much above (or much below)
the optical wavelength. For HOFs, on the other hand, the coreneeds be thicker than
roughly half the outer radius of the core for the WGA to be valid. The quantity|W̃ |2
is in general closer to unity for the second-order modal fields than for the fundamen-
tal fields. Furthermore, the discrepancies between the approximate and exact fields
are emphasized if the transverse core dimensions are large or if one operates near
a modal cutoff. Naturally, the weaker the guidance in terms of the refractive-index
contrast, the more functional the approximation. Moreover, by letting the value of
n0 vary, the parameters for single-mode guidance can most accurately be obtained
in the WGA if the ratioa/b has a high value, i.e., if the core is thin.
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3.2 Spatially smooth fields within a multimode hollow-
core fiber

The electromagnetic fields of a HOF can be exploited in confining and guiding
small, polarizable particles in the empty pore by means of optical forces. For a uni-
formly polarized, spatially inhomogeneous field, the complex amplitude of Eq. (2.5)
can be separated into amplitude and phase contributions as [24]

E(r) = E0(r) exp[iφ(r)]uE (3.3)

whereE0 andφ are assumed to be real-valued functions anduE is the polarization
vector. The dipole moment induced on a dipole-like particlein the field is [32]

µ = αE (3.4)

whereα = α
′ + iα′′ is the complex polarizability. By using this notation, the

cycle-averaged force acting on the particle can be cast intothe form [24]

〈F〉 =
α
′

4
∇E2

0
+

α
′′

2
E2

0
∇φ. (3.5)

The first component in Eq. (3.5) corresponds to the gradient force which either
attracts the particle toward regions of high intensity (α

′ > 0) or repels the particle
from such regions (α′ < 0). The second force component is the scattering force
which originates from the momentum transfer from the field tothe particle.

The attractive gradient force can be employed in particle guiding by exciting the
leaky EH1,1 mode which has an on-axis intensity maximum in the pore of a HOF.
Consequently, the particles with sufficiently small transverse velocities are held
near the optical axis far away from the fiber wall. This mechanism has been used
to demonstrate, e.g., direct-write lithography [46] and the transfer of laser-cooled
atoms from one vacuum chamber to another [47]. However, the guiding distance
in this scheme is limited by the inherent decay of the mode amplitude. Also, when
dealing with cold atoms, the heating effect due to the scattering force can become
crucial [48]. To overcome these issues, the repulsive gradient force associated with
the evanescent wave of a core-guided optical field can instead be used. Since the
evanescent wave of such a field is strongly localized near thefiber wall, the atoms
will spend most of their time in the dark near the optical axis. In principle, the
tubular fundamental field of a single-mode HOF would lend itself perfectly to the
task, but in practice, multimode HOFs are resorted to owing primarily to their much
larger openings. The basic problem with the use of multimodeHOFs is the speckle
due to multimode interference [49]. As a consequence, therewill be dark and faint
spots on the fiber wall, which decimates the flux of guided atoms by way of their
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van der Waals interaction with the fiber [50]. In what follows, two methods for
obtaining a smooth evanescent-wave field on the inner surface of a weakly guid-
ing multimode HOF are analyzed [Paper II]. The example fiber parameters for the
calculations are chosen so that the WGA can be adopted.

The first method relies on the notion that a superposition of the even and odd variant
of a higher-order LPm,p mode with a relativeπ/2 phase difference will lead to an
azimuthally flat intensity distribution. This can be verified, e.g., by superposing
the even and odd LP1,1 modes of Fig. 3.1(c). The resulting modal field will then
have a helical azimuthal phase dependence of the formexp(−imθ) reminiscent of
the Laguerre–Gaussian mode in Eq. (2.32). If circularly polarized light is used,
such a helical field can be made to propagate in an invariant manner even when
the WGA is not valid [43, 51]. According to the overlap integral of Eq. (2.28),
a normal-incidence LG beam would exclusively couple to fibermodes that have
the same helical twist, i.e., to the modes for whichm = l. When individually
excited, the helical fiber mode will provide a spatially uniform evanescent-wave
field on the fiber wall. Additionally, the optical axis will remain dark outside the
fiber when beams withl 6= 0 are used, which should be an advantage for loading
and unloading of the atoms. An atom guiding scheme based on this approach is
sketched in Fig. 3.2(a).

If the HOF supports higher-radial-order LPm,p modes (withp > 1) for a given value
of the azimuthal indexm, the selection between them can be carried out by adjusting
the beam-waist parameterw0 of the LG beam. This is exemplified in Fig. 3.3(a)
which shows the highest relative intensities attainable onthe inner surface of a HOF
as a function of the azimuthal mode indexl (orm) of an incident LG beam carrying
unit power. The radial LG-beam order,q, is shown above each data point, and the
underscore marks the excitation of an LP mode with a higher radial number, i.e.,
with p = 2 for this particular fiber. In all other cases, the LPm,1 mode is the excited
one. Also plotted is the squared modulus of the coupling coefficient of Eq. (2.28),
i.e., the fraction of the incident power carried by the mode.From the figure, one
can note that the highest intensity values originate from the excitation of the LPm,2

modes, whereas the excitation efficiency can be very high fora higher-order LPm,1

mode.

The second method, sketched in Fig. 3.2(b), makes use of a rapid variation of the
incident angle of a Gaussian input beam in the time scale of the atomic motion [52].
At a given time instant, several fiber modes will be excited, which gives rise to a
multimode speckle. Dithering of the incident angle in time leads to a constantly
varying speckle pattern which, from the standpoint of cold,slowly moving atoms,
manifests itself as a smooth, time-averaged field. The principle is similar to that of
the time-averaged, orbiting-potential (TOP) method used in the first observation of
Bose–Einstein condensation [53], or to that of the rotating-beam ROBOT trap [54].
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Figure 3.2: Atom guiding through hollow-core optical fibers (HOFs). (a)Laguerre–
Gaussian (LG) beam excites a helical, linearly polarized (LP) fiber mode which provides a
spatially uniform evanescent wave on the fiber wall. (b) Similar conditions on the fiber wall
can be produced by dithering the incident angle of a Gaussianbeam at the fiber input, as
first suggested in Ref. [52].

The field on the fiber wall needs to be obtained by numerical means, since its di-
rect observation would be cumbersome. By denoting the angles with respect to
the optical axis byα andγ [perpendicular and parallel to the plane of Fig. 3.2(b),
respectively], one can construct the spatial speckle profile on the fiber wall as a
function of the input-beam angle by using Eq. (2.28). The maximum angle is taken
to be equal to the numerical aperture of the fiber. The sum of the calculated mul-
timode intensity profiles divided by their count results in aprofile that corresponds



– 21 –

0  

0.2

0.4

0.6

0.8

1  

0 1 2 3 4 5

0 

1 

2 

3 
0 

0  

0.2

0.4

0.6

0.8

1  

R
e

la
ti
v
e

 i
n

te
n

s
it
y R

e
la

tiv
e

 p
o

w
e

r

Azimuthal index

0 10 3020

Beam waist [µm]

0.2

0.4

0.6

0.8

1  

S
p

e
c
k
le

 c
o
n
tr

a
s
t

 α is dithered 

γ is dithered

No dithering

(a) (b)

Figure 3.3: (a) Highest attainable intensity on the fiber wall as a function of the azimuthal
mode index for LG beams with radial indicesq = 0, . . . , 3 (dots). The underscore indicates
the excitation of a higher-order LPm,2 mode. Also shown is the relative amount of power
in the mode (crosses). (b) Contrast of the speckle pattern onthe fiber wall when the input-
beam angle is dithered in two mutually orthogonal directions. For reference, the undithered
case is also shown. [Paper II]

to a time-average over all profiles. The granularity of this time-averaged intensity
profile on the fiber wall is characterized by its contrast defined as

Csp = σI/〈I〉 (3.6)

whereσI denotes the standard deviation in the pattern and〈I〉 is the average in-
tensity. By assuming that a Gaussian beam is incident on the center of the rim of
the fiber core, the contrast values given in Fig. 3.3(b) are obtained as a function of
the incident-beam waist. Also shown is the static case for a normal-incidence beam
without the dithering. After studying a number of multimodeHOFs with thicker
cores, and thus with more supported guided modes, it was observed that the dither-
ing of the angleα always yields the smoothest optical wave on the fiber wall.

3.3 Self-imaging in annular-core fibers

A laterally periodic solution to the paraxial free-space wave equation of Eq. (2.31)
will be periodic also in the propagation direction. This phenomenon is known as the
self-imaging effect, or the Talbot effect, and it can be encountered in an approxi-
mate form with cylindrical multimode waveguides. In particular, annular-core fibers
(ACFs) naturally provide periodicity in the azimuthal direction. Thus, one often ap-
proximates the field in such a waveguide as being a wrapped-around equivalent of
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two modes (three modes form = 1) with almost degenerate propagation constants (trian-
gles). Dashed lines are least-squares fits withσβ denoting their standard deviations. [Paper
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a one-dimensional, laterally periodic field. Based on this analogy, an ACF with a
thin core appears to be the best choice for the self-imaging applications [14–16].
However, as indicated in Sec. 3.1, the scalar, weak-guidance approximation behind
this reasoning tends to break down in particular for such waveguides.

To investigate the applicability of the ACFs for self-imaging, the vector modes of
the fiber are grouped according to their WGA counterparts which, for the low-order
modes, are indicated in Figs. 3.1(b) and (c). Figure 3.4 illustrates how the propaga-
tion constants of the vector modes then place themselves as afunction ofm2 in two
weakly guiding, single-radial-mode example ACFs. The propagation constants of
the LPm,1 modes of such ACFs approximately obey the quadratic dependence [15]

β̃ = β̃0 − β̃1m
2 (3.7)

whereβ̃0 andβ̃1 are positive constants. If the relation given in Eq. (3.7) was strictly
obeyed, a superposition of the modal fields at the planez = 0 would be perfectly
imaged to the plane located at the Talbot distance, given by

zT = 2π/β̃1, (3.8)
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with the phase factor of each mode being equal toexp(−iβ̃0zT ). Thus, by deter-
mining how well the vector modes obey this same quadratic dependence, one can
evaluate the self-imaging capability of an ACF. For this purpose, a straight line is
fitted [from Eq. (3.7)] to the propagation-constant data, asillustrated by the dashed
lines in Fig. 3.4. The slope of the line will then yield the Talbot distance, as in
Eq. (3.8), while the standard deviation of the data points,σβ , will be used to quan-
tify the general self-imaging capability from the planez = 0 to the planez = zT .

The above fitting approach is applied to weakly guiding ACFs in Paper III. The re-
sults indicate that, as a trend, the general self-imaging potential weakens in terms of
the fitting deviation when the core is made thicker. This potential is also weakened
when the radius of the core is made larger for a fixed value of the core thickness
in order to increase the number of modes available in the imaging. In particular, a
mode just above its cutoff strongly deteriorates the fit, as evidenced by the lower
data set in Fig. 3.4. The example cases considered in Paper III make use of the
overlap integral of Eq. (3.1) to compare the original vectorfield and its image.
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Chapter 4

Microstructured optical fibers with
coated inclusions

The technology for manufacturing microstructured opticalfibers with an array of
holes in their transverse profiles is nowadays well established [55, 56]. When
filled with liquids or gases, the fibers can be employed in various sensing con-
figurations [57]. Furthermore, the use of coated, solid-state inclusions within the
fiber holes has aroused interest, as this opens up perspectives for compact, fiber-
integrated optoelectronic devices [19] and sensors [58–60].

In this chapter, two numerical studies related to the research of coated microstruc-
tured optical fibers are summarized. First, the effect of a dielectric, high-index
coating on the transmission band of an air-guiding, photonic-bandgap fiber is char-
acterized. Second, a novel design for a surface-plasmon-resonance sensor for aque-
ous analytes is proposed [Paper IV]. The sensor design is based on a three-hole
microstructured optical fiber with metal-coated hole surfaces.

4.1 Photonic-bandgap fibers with dielectric high-index
inclusions

The light-guiding mechanism of a photonic-bandgap fiber (PBF) is based on the
photonic-bandgap effect caused by a spatially periodic cladding structure [61]. Since
the total internal reflection is not employed, even an empty region surrounding the
optical axis can function as the fiber core. However, only thewavelengths that fall
within the full, transverse bandgap of the fiber cladding canefficiently be guided. A
typical PBF is made of silica glass with the cladding holes arranged in a triangular
formation in the cross-sectional plane of the fiber [8]. The spectral width of the
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Figure 4.1: Bandgap-edge wavelengths as a function of the coating thickness for three
values of the coating refractive index. Inset: Cross-section of the original fiber cladding and
one with coated inclusions.

transmission bandgap can be increased by increasing the air-filling fraction in the
cladding [62]. With high enough air-filling fractions, the holes assume a strongly
hexagonal form in the triangular lattice. In what follows, the effect of uniform,
dielectric, high-index coated inclusions on the (main) photonic bandgap of such a
fiber is characterized. The fiber is assumed to be made of silica glass with a refrac-
tive index ofnc = 1.45 and an air-filling fraction off = 0.95.

The photonic bands of the cladding are calculated by using a freely available im-
plementation of the plane-wave expansion method [63, 64] outlined in Sec. 2.1.2.
By scanning through theΓ, M, andK points of the first irreducible Brillouin zone
associated with the triangular lattice [28], one obtains the photonic band structure
for a fixed value of the propagation constantβ. From the band structure, the fre-
quencies that lie within a full, transverse photonic bandgap are then retrieved. This
procedure is repeated for each value ofβ. In order to guide light along the fiber
core by exploiting the bandgap effect, the dispersion curveof the core material has
to intersect with the obtained bandgaps in theβω-plane [2]. Figure 4.1 shows the
wavelengths at the intersection points, i.e., at the actualbandgap edges for air guid-
ance as a function of the coating thickness [65]. The dielectric profile of the fiber
cladding is depicted in the inset withΛ denoting the hole-to-hole distance. Three
pairs of curves are shown for different values of the refractive indexn of the coat-
ing, including for reference the case where both the coatingand the fiber material
are taken to be silica (n = nc) [62].
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From the figure, one can note that the bandgap shifts to longerwavelengths and
narrows when the coating is made thicker. These features aremore pronounced
with the higher-index the coating materials. Typical values of Λ are on the order
of a couple of microns, and thus, even a few nm layer on the holesurfaces can
perceivably alter the spectral position (and width) of the original bandgap.

4.2 Surface-plasmon-resonance sensor based on mi-
crostructured fiber with metal inclusions

In recent experimental demonstrations, the micron-size holes of a microstructured
optical fiber (MOF) have successfully been coated with gold [19] and silver [66,67].
When the right conditions are met, the interfaces between the metallic and di-
electric domains in the fiber support the propagation of surface-plasmon polari-
tons [68]. These electromagnetic surface waves are associated with collective elec-
tronic oscillations [69], and they have two important characteristics that are partic-
ularly useful for sensing applications. First, the plasmonis strongly localized near
the interface [70], which contributes, e.g., to surface-enhanced Raman scattering
(SERS) [71, 72]. Second, the wavelength for which the plasmon excitation is at its
strongest, i.e., the resonance wavelength, will sensitively depend on the dielectric
in contact with the metal [73,74].

By taking a MOF with metal-coated pore surfaces, one can construct a highly com-
pact, fiber-integrated surface-plasmon-resonance sensorby infiltrating a liquid ana-
lyte into the empty pores. In such configurations, light propagating in the fiber core
excites a surface-plasmon polariton at the metal-analyte interface. For a given metal
structure, the plasmon-resonance characteristics are dictated by the refractive index
of the analyte. Several sensor designs based on these concepts have been proposed
so far [58–60]. However, all of them require selective coating and filling of tiny,
micron-size cladding holes. Also, the loss level of these devices could not be tuned
without affecting the spectral signature of the plasmon resonance.

In this thesis, a novel sensor design is put forward to overcome these drawbacks
[Paper IV]. The starting point here is a three-hole MOF, suchas the one shown in
Fig. 4.2(a). This template fiber can be converted into a sensor device by first coat-
ing the hole surfaces with an auxiliary low-index dielectric layer on top of which a
thin gold layer is deposited. The cross-section of the resulting structure is schemat-
ically depicted in Fig. 4.2(b). The parameterss (ns), h (nh), andd (nd) denote the
thicknesses (refractive indices) of the auxiliary dielectric layer, the core strut, and
the gold layer, respectively. The analyte filling the pores is assumed to be water-
based with a refractive index ofna ≈ 1.33. Furthermore, the parameterr denotes
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electric field in the vicinity of the gold layer. Red verticallines mark the locations of the
gold-layer interfaces. [Paper IV]

the radius of curvature from pointP which locally dictates the growth direction of
the layers [19]. In the proposed approach, all three fiber holes can be coated and
later filled with the analyte simultaneously. The hole sizescan be taken as large
as practically possible to facilitate the coating and filling processes. Recently, strut
lengths on the order of tens of microns have been reported [76]. Most importantly,
the thickness parameters of the auxiliary dielectric can be used to exclusively tune
the loss level of the sensor by controlling the overlap between the core-confined
mode and the gold layer.

The modal fields of the structure are calculated by using the FEM discussed in
Sec. 2.1.2. A commercial software is employed in the calculations [77]. Among
the obtained solutions, the spatially Gaussian ones are sought, since at each wave-
length an incident Gaussian beam would most efficiently couple to such modes.
The Gaussian mode of the device is doubly degenerate within the accuracy of the
computations, and its spatial characteristics are illustrated in Figs. 4.2(c)-(e). Fig-
ures 4.2(c) and (d) show thez-component of the time-averaged Poynting vector,
and Fig. 4.2(e) illustrates the local behavior of the field amplitude near the gold
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layer. The spatially decaying character of a plasmon is apparent in Fig. 4.2(e), and
the propagation losses of the mode are thus attributed to theexcitation of a surface-
plasmon polariton.

The decay of the optical power of the Gaussian mode is governed by the imaginary
part of the propagation constant through the relation [22]

αL = 2Im(β). (4.1)

By considering the loss as a function of the optical wavelength for two different ana-
lytes, the sensitivity of the sensor fiber can be assessed. According to a conservative
estimate, refractive-index changes on the order of1×10−4 can be detected with the
device. Fortunately, this figure is obtained when the refractive-index contrast be-
tween the auxiliary layer and the fiber core is made small, which should enable
single-core-mode operation with fibers having a sufficiently small core. Instead of
gold, copper could in principle be used as it exhibits very similar plasmon-resonance
characteristics.
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Chapter 5

Rotational frequency shifts in
partially coherent optical fields

In addition to linear momentum, light can also carry opticalangular momentum
[78]. In analogy to atomic physics, this is often separated into spin and orbital
angular-momentum contributions which are associated withthe polarization state
and the phasefront of a light beam, respectively [78]. A circularly polarized beam
propagating along thez-axis carries spin angular momentum ofσz~ per photon
with σz = ±1 denoting the two orthogonal states of circular polarization and~

being the Planck constant divided by2π. Beams with helical phasefronts of the
form exp(−ilθ), such as the LG beams of Eq. (2.32), additionally carry orbital
angular momentum ofl~ per photon [1, 20]. The mechanical equivalence of the
spin and orbital parts has experimentally been establishedby transferring optical
angular momentum to a weakly absorbing particle trapped with optical tweezers
[79]. The tweezers comprise a tightly focused beam whose ability to capture and
trap the particle can be understood by means of the attractive gradient force [80]. As
demonstrated in this micromanipulation experiment, it is the total optical angular-
momentum content of the beam per photon,(l + σz)~, that is responsible for the
torsional action on the particle.

Another phenomenon intimately tied to the total optical angular-momentum content
of a light beam is the rotational frequency shift. This shiftcan be observed in the
direction of the rotation axis, and thus, it is distinct fromthe translational Doppler
effect. In quantitative terms, the angular frequency of a helical beam is shifted by
the amount(l+σz)Ω whereΩ is the angular frequency of rotation (about the optical
z-axis) between the field and the observer [39]. Since the LG beams comprise
a complete set of basis functions, any beam can be expanded interms of these
functions. Indeed, the shifts have been used to determine the relative weights of
the helicity components of a light beam [81], also at the single-photon level [82].
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The shifts have also been used in creating moving interference patterns for optical
micromanipulation [83]. In a similar vein, the guided atomswithin a hollow-core
optical fiber considered in Sec. 3.2 experience a shifted optical frequency due to
their azimuthal motion [84]. In this thesis, the rotationalshifts are for the first time
considered in the context of partially coherent fields [Paper V].

In the theory of optical coherence, one formally deals with an ensemble of field
realizations [1,40]. A realization of a uniformly polarized field propagating toward
the positivez-direction can be expanded in terms of the LG modes. Here, theam-
plitudes of the basis modes are taken to be randomly fluctuating functions of time
with zero mean. The rotational motion between the field and the observer about the
z-axis can be treated with a simple coordinate transformation [85]. In effect, the
azimuthal coordinate for each basis mode becomes a functionof time according to

θ(t) → θ − Ωt. (5.1)

By making this substitution to the field realizations, and writing the expression for
the mutual coherence function in the space-time domain [Eq.(2.43)], one can make
the following general observations: The angular frequencyof each basis mode will
be shifted by the amount(l + σz)Ω as expected. As a consequence, even a field
which is stationary forΩ = 0 can become nonstationary forΩ 6= 0. This behavior
will occur whenever the modes with different azimuthal indicesl, and thus with
differently shifted optical frequencies, are at least partially correlated.

The above formalism is exemplified in Paper V by considering asuperposition of
completely uncorrelated LG basis modes. The resulting fieldwill then be stationary
also for the caseΩ 6= 0, and one can proceed as in Sec. 2.2.3 to calculate the
cross-spectral density function from the coherence function through Eq. (2.44). For
the field at rest, i.e., forΩ = 0, Gaussian Schell-model spatial correlations and a
Lorentzian spectrum centered at the angular frequencyω0 are assumed. With these
assumptions, the cross-spectral density function for the caseΩ 6= 0 can be derived
in the form of a coherent-mode representation. From this expression, the spectral
density is explicitly obtained as

S(r, ω; Ω) =

(
2

πw2

G

)
exp[−2η2(1 + ξ2)]

×
∞∑

l=−∞

I|l|(2ξ
2η2)g[ω − ω0 − (l + σz)Ω]. (5.2)

Here,wG is the beam-waist parameter,η = r/wG is the normalized radial coor-
dinate,I|l| is the modified Bessel function of the first kind of order|l|, andg is a
Lorentzian spectral profile centered atω0 + (l + σz)Ω. The parameterξ describes
the global spatial coherence properties of the field; for a completely coherent field
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dashed line. All the curves are normalized to have the peak value of unity. [Paper V]

ξ = 0 and for a completely incoherent fieldξ → ∞. Thus, the more incoherent
the field, the more terms in the summation of Eq. (5.2), and consequently, the more
diverse the spectral effects due to the rotation. This same qualitative argument ap-
plies to observation points far from the optical axis, as theparameterη will equally
affect the summation.

Figure 5.1 illustrates the effect of rotation on the spectrum for two argument values
of the termsI|l|(2ξ2η2) in Eq. (5.2). In both of the plots, the overall spectral width
is seen to increase along with the value ofΩ. Also, with high enough rotation
frequencies, the peaks of the individual Lorentzians appear separately. For a fixed
value ofη, one can consider the differences between Figs. 5.1(a) and (b) to manifest
changes in the state of spatial coherence through the parameter ξ. Vice versa, for a
fixed value ofξ, these differences manifest changes in the observation distanceη.
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Chapter 6

Summary and discussion

Various specialty optical fibers are widely used in many branches of science and
technology. Novel fiber-optical components are often designed with numerical
tools, because ample computational resources are nowadaysreadily available. In
this thesis, analytical and numerical mode-analysis techniques are applied to layer-
structured optical fibers and partially coherent optical fields. More explicitly, these
techniques are employed to study the accuracy of the scalar-field analysis of a class
of specialty fibers, to advance fiber-optical atom-guiding schemes and the develop-
ment of sensor fibers, and to investigate rotation-induced spectral effects in partially
coherent fields.

The thesis presents guidelines for accurate modal analysisof the low-order modes
in hollow-core and annular-core optical fibers in terms of weakly guided, scalar
fields. It turns out that the scalar-field description is especially inaccurate when
the thickness of the core is on the order of a few optical wavelengths. This finding
suggests that the self-imaging capability of annular-corefibers, which is deduced by
considering the scalar fields of the fiber, can in fact be much weaker than previously
thought [14–16]. A rigorous, full-vector investigation ofthe self-imaging effect
included in this thesis supports this conclusion. Furthermore, the analysis indicates
that it is altogether difficult to find a decent regime for general-purpose (annular)
self-imaging with such fibers.

In this thesis, two methods for obtaining a spatially smoothatom-guiding field on
the inner surface of a hollow-core fiber are analyzed by making use of the weak-
guidance approach. The first method is based on the selectiveexcitation of tubular
fiber modes with angular-momentum-carrying beams. In the second method [52],
the incident angle of a Gaussian beam is rapidly dithered in time yielding a smooth,
time-averaged atom-guiding field. Besides fiber-optical atom guiding [49] and trap-
ping [86], such smooth time-average fields have recently been applied, e.g., in the
delivery of high-peak-power nanosecond pulses for fluid flowmeasurements [87].



– 36 –

In this thesis, the spectral transmission characteristicsof photonic-bandgap and
index-guiding fibers with coated inclusions are specified. Dielectric inclusions
are considered with the bandgap fiber, whereas the index-guiding, microstructured
fiber is assumed to additionally contain metal inclusions topermit the excitation
of surface-plasmon-polariton resonances. Such resonances can be employed in the
construction of compact, fiber-integrated (bio)sensor devices for which a novel de-
sign is proposed in this thesis. The design makes use of a three-hole microstructured
fiber with uniform gold and low-refractive-index dielectric inclusions. Besides
uniform metal layers, it is possible to fabricate micrometer-scale metal structures
within the holes of a microstructured fiber [19]. In additionto miniaturized in-fiber
devices, these structures are potentially useful in futurefiber-integrated plasmonic
applications [88].

The thesis also includes an investigation of the rotationalfrequency shifts in par-
tially coherent fields. The field realizations are expanded in terms of angular-
momentum-carrying modes which contribute to the overall spectral change due to
the rotation. Such changes are not only of fundamental interest but can also be bene-
ficial to remote-sensing and gyroscopic technologies [89].The angular-momentum-
carrying, vortical modes themselves have found numerous applications ranging
from optical spanning to quantum entanglement [90, 91]. Recently, helical-core
fibers allowing the propagation of a single helical mode havebeen introduced [92].

Besides performing modal analyses for given fiber profiles, one can also find the in-
verse process meaningful, i.e., the determination of a refractive-index profile which
would yield a desired modal field. This would be especially useful in tailoring the
output field of a fiber for applications, e.g., in particle trapping and guiding, ma-
terials processing, and lighting. Genetic algorithms can prove to be helpful in the
design process [93].
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Abstracts of publications I–V

I. We study the applicability of the weakly guiding approximation (WGA) to
the modal analysis of an M-type optical fiber in which a ring-shaped core lies
between two uniform cladding layers. Besides being dependent on the refrac-
tive indices, the accuracy of the approximation is shown to be substantially af-
fected by the transverse dimensions of the core. The accuracy is characterized
by calculating an overlap integral between the exact and WGA-approximated
modal fields. Fibers that have an inner cladding similar to the outer cladding,
or similar to vacuum, are considered in detail. The feasibility of the WGA in
determining the fiber parameters for single-mode guidance is also discussed.

II. We analyze two methods for obtaining a smooth evanescent-wave intensity
profile on the inner surface of a multimode hollow optical fiber to be used
as a waveguide for neutral atoms. The first method is based on the selective
excitation of fiber modes with a laser beam possessing orbital angular mo-
mentum, of which Laguerre–Gaussian beams are considered asan example.
The second method makes use of a rapid variation of the speckle pattern of
the fiber’s evanescent-wave in the timescale of the atomic motion. The varia-
tion is provided by dithering the angle of incidence of a Gaussian laser beam
at the fiber entrance. The optimal beam waist and direction ofdithering are
determined.

III. We investigate the occurrence of self-images, or Talbot images, in a spatially
multimode field that propagates along an optical fiber whose core has an
annular-shaped cross section. By use of full-vectorial modal analysis, we
study the effect of the transverse fiber dimensions on the self-imaging prop-
erties. According to our analysis, good self-images can be expected when the
fiber core is thin and the modes are far from their cutoffs. However, as the
core diameter is made larger to increase the number of modes available in the
imaging, the general self-imaging properties tend to deteriorate.

IV. We propose a novel surface-plasmon-resonance sensor design based on coat-
ing the holes of a three-hole microstructured optical fiber with a low-index
dielectric layer on top of which a gold layer is deposited. The use of all three
fiber holes and their relatively large size should facilitate the fabrication of the
inclusions and the infiltration of the analyte. Our numerical results indicate
that the optical loss of the Gaussian guided mode can be made very small
by tuning the thickness of the dielectric layer and that the refractive-index
resolution for aqueous analytes is1 × 10−4.

V. We study the frequency shifts taking place when a random, stationary opti-
cal field rotates with respect to an observer. The field is expanded in terms



– 46 –

of fully coherent Laguerre–Gaussian basis modes, for whichthe rotational
frequency shifts have been studied previously. We demonstrate the formal-
ism by considering the spectrum of a Gaussian Schell-model field, and show
that for a spatially highly incoherent field, significant spectral changes can be
expected.
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