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ABSTRACT

This paper presents an analytical procedure to simulate vibrations in

gear transmission systems. This procedure couples the dynamics of the rotor-

bearing gear system with the vibration in the gearbox structure. The modal

synthesis method is used in solving the overall dynamics of the system, and a

variable time-stepping integration scheme is used in evaluating the global

transient vibration of the system. Locally each gear stage is modelled as a

multimass rotor-bearing system using a discrete model. The modal

characteristics are calculated using the matrix-transfer technique. The

gearbox structure is represented by a finite element model, and modal

parameters are solved by suing NASTRAN. The rotor-gear stages are coupled

through nonlinear compliance in the gear mesh while the gearbox structure is

coupled through the bearing supports of the rotor system. Transient and

steady state vibrations of the coupled system are examined in both time and

frequency domains. A typical three-geared system is used as an example for

demonstration of the developed procedure.

NOMENCLATURE

Ai(t)

Ati( t )

Si(t)

[Cbx] [Cby] [Cbz]

Modal function of the i th mode in x-direction

Modal function of the i th mode in 8-direction

Modal function of the i th mode in y-direction

Gearbox damping matrices



[Cx_], [Cxy][cyx], ICy]

[cT]

F x, FBy

Fx(t ), Fy(t)

FT(t)

FGx(t), FQy(t)

FGt (t)

[G v ]

[GA]

[I]

[J]

[K]

[Kbx] [Kby] [Kbz]

Kdx ' Kdy

Ktik

K
s

[Kxx], [Kxy ][Kyx], [Kyy]

[KT]

IS]

IN b ]

Rci

T
F

X, Y

Xb,Y b , Z b

Xbs' Ybs'

Xci ' Ycl

XF' YF

Bearing direct and cross-coupling damping matrices

Torsional damping matrix

Bearing excitation forces

External excitation forces

External excitation moment

Gear mesh force in x- and y-directions

Gear mesh torque

Gyroscopic-angular rotation matrix

Gyroscopic-angular acceleration matrix

Identity matrix

Rotational mass moment of inertia matrix

Average stiffness matrix

Gearbox stiffness matrix

Compensation matrices in x- and y-direction

Gear mesh stiffness between i th and k th rotor

Shaft stiffness matrix

Bearing direct and cross-coupling stiffness matrix

Torsional stiffness matrix

Mass-inertia matrix of rotor

Mass-inertia matrix of gearbox

Radius of gear in the i TM rotor

Gear generated torque

Generalized motion in x- and y-directions

Gearbox motion in x-, y- and z-directions

Gearbox motion at bearing supports

Gear displacements in x- and y-directions of

the ith rotor

Gear forces in x- and y-directions
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Xs' Ys'

Gk i

8c±

[A2], [At_]

[_]k' [_t]k

_kJl

Motion of rotor at bearing support

Angle of tooth mesh between k th and ith rotor

Rotational displacement of the ith gear

Lateral and torsional eigenvalue diagonal matrices

Lateral and torsional orthonormal eigenvector

matrices of the kth rotor

.th
3 orthonormal mode of k th stage at ith node

INTRODUCTION

Recently there has been an increase in the use of gear transmissions in

both defense and commercial applications. The ever increasing speed and

torque requirements of newer transmission systems, often result in excessive

noise and vibration at both the gear stages and the gearbox structure. Today

there is a wealth of literature concerning noise and vibration reduction

through gear tooth modification and design. However, the study of the

dynamics and acoustics of the overall gear transmission system is somewhat

limited.

August (1986) studied gear system vibrations for a planetary gear system.

Boyd and Pike (1987) and Choy (1988b) used the work done by Cornell (1981) to

study the dynamics of various gear transmission systems. Mitchell (1985) and

David (1987, 1988) simulated the dynamics of multistage gear systems using the

matrix transfer method. Choy et al. (1989, 1990) calculated the dynamics of

the multistage gear systems with effects of base motion using the modal

method. Ozguven and Houser (1988) and Kahraman et al. (1990) used a finite

element model to predict the dynamics of multistage gear systems. In term of

gearbox vibration analysis, some work has been reported by Lim (1990) using

finite element analysis. Very little work, however, has been cited in the

literature concerning gearbox coupled vibration in gear transmission systems.
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The work presented in this paper is the development and application of a

combined approach of using the modal synthesis and finite element method in

analyzing the dynamics of multistage gear systems coupled with the gearbox

structure. Modal equations of motion are developed for each rotor-bearing-

gear stage, using the matrix transfer method, to evaluate the modal

parameters. The modal characteristics of the gearbox structure are evaluated

using a finite element model on NASTRAN. The modal equations for each rotor

stage and the gearbox structure are coupled through bearing supports and gear

meshings. The modal equations are solved simultaneously with the appropriate

initial conditions. The modal accelerations are integrated using a variable

time-stepping integration scheme to obtain the transient vibration of the

system. A typical three stage gear system is used as an example for this

analysis. Results are presented in both time and frequency domain and in both

modal and generalized coordinates to facilitate a complete representation of

the dynamic characteristics of the system.

Development of Equations of Motion

The equations of motion for a single stage multi-mass rotor-bearing-gear

system with the coupling effects of gear-box vibrations and the rotor inertia-

gyroscopic effects can be written in matrix form for the ith stage (Choy,

1987; 1989) for the X-Z plane as:

[M]i{_}i + [Gv]i{_}i + [Cxx]i {_ -_b}1 + [Cxy]i{9 -9b}i

+ [GA]I{Y}± + [Kxx + K,]I{X} i - [Kxx]i{Xb.}i

+ [Kxy]i{X -Yb,}i " {Fx(t)} i + {F_x(t) i}
(i)



and in the Y-Z plane as"

[M]i{9}± - [Gv]i{_}i + [Cyx]i{_ -Xb}i + [Cyy]i{9 -Yb} i

- [GA]I{X}i + [K_ + Ks]i{Y}i - [Kyy]i{Ybs} i

+ [Kyx]i{y -Ybs}i . {Fy(t)} i + {FQy(t)} i (2)

Here F and F are force excitations from the effects of mass imbalance
x y

and shaft residual bow in both X- and Y-directions. FGx and FGy are the X

and Y gear mesh forces induced from the gear teeth interaction with other

coupled gear stages. The bearing forces are evaluated through the relative

motion between the rotor {X}, {Y} and the gearbox {Xb}, {Yb} at the bearing

locations (Choy, 1987). The mass-inertia and gyroscopic effects are

incorporated in the mass matrix [M] and the gyroscopic matrices [Gv] and [GA].

The coupled torsional equations of motion for the single rotor-bearing-gear

system can be written as:

[j]i{_}i + [CT]i{_} i + [KT ]i{8} ± _ {FT(t)}± + {FQt(t)} i (3)

In Eq. 3, {FT(t)} represents the externally applied torque and {FQt(t)}

represents the gear mesh induced moment. Note that Eqs. (i) to (3) repeat for

each single gear/rotor stage. The gear mesh forces couple the force equations

of each stage to each other as well as the torsional equations to the lateral

equations (Choy, 1989; Cornell, 1981; and David, 1987; 1988). The coupling

relationships between the torsional and the lateral vibrations and the

dynamics of each individual gear/rotor stage are derived in the next section.

In addition, there are equations of motion for the gearbox which couple the



various rotor stages through the bearing supports.

be written as:

X-equation

[Mb]{_b} + [Cbx]{_b } + [Cxx]{_b - _s } + [Cxy]{gb - _,} + [Kbx] {Xb}

- [K×x]{X b -Xs} + [Kxy]{Y b -Ys} -0

Y-equat ion

[Mb]{9 b} + [Cby]{_ b} + [Cyx]{_ b -_ } + [Cyy]{9 b -_ } + [Kby]{Y b}

- [Kyy]{Y b -Ys} + [Kyx]{X b -X } -0

and Z-equat ion

The gearbox equations can

(4)

(5)

[Mb]{_.b} + [Cbz]{_.b} + [Kbz]{Zb} -Fbz(t ) (6)

Fbz(t) is an excitation function due to external forces in the axialwhere

direction. Since the bearing is assumed to be uncoupled in the Z-direction,

Eq. (6) can be solved independently without considering shaft motion.

Coupling of Gear Meshes

The torsional and lateral vibrations of a single individual rotor and the

dynamic relationships between each gear stage are coupled through the

nonlinear interactions in the gear mesh. Gear mesh forces and moments are

evaluated as functions of relative motion and rotational between two meshing

gears and the corresponding gear mesh stiffnesses. These gear mesh

stiffnesses vary in a repeating nonlinear pattern with each tooth pass

engagement period (August, 1986 and Cornell, 1981) and can be represented by a

high order polynomial (cornell, 1981 and Boyd, 1987). A sixth order

polynomial curve is used in this study to simulate the stiffness changes for

contacting gear pairs (zero stiffness are input for noncontacting pairs). The

repeatability of such nonlinear mesh stiffnesses can also act as a source of

steady state type of excitation to the gear system. With the coordinate



system as shown in Fig. i, the following gear meshcoupling equations can be

established by equating forces and moments(Choy, 1989). For the kth stage

gear of the system, summingforces in the X-direction results in:

n

FGx k --

i=l,i #k

Ktk i[ -Rci@ci-RckSck + (Xcl - Xck)COS akl

+ (Ycl - Yck) sin _ki]COS (_kl

Summing forces in the Y-direction results in:

n

FGy k =

i=l,i #k

Ktki[-RciSci-Rck@ck + (Xcl -Xck )c°s _kl

+ (Ycl - Yck ) sin _kl] sin _ki

(7)

(8)

Summing moments in the Z-direction results in:

n

FGyk = _ Rck{Ktki[ ( -RciBci-RckBck ) + (Xcl -Xck)COS _ki
i=l,i _k

+ (Yci - Yck ) sin _kl] } (9)

where n is the number of stages in the system.

Modal Analysis

To reduce the computational effort, the number of degrees-of-freedom of

the system are reduced through modal transformation. Orthonormal modes for

each individual rotor-bearing stage are obtained by solving the uncoupled

system homogeneous characteristic equations. Using the modal expansion

approach (Choy, 1987; 1988a; and 1989), the motion of the system can be

m

{x} _ _ Ai{ol}, {Xb} --_ Abi{Obxi}
i=l i=l

m m

{Y} = _ Bi{_i}' {Yb } = _ Bbi{Obyl}
i=l i=l

expressed as:

m m

{8} -- _ Ati{Oti } , {Zb} = _ Dbi{ezi}

i=l i=l

(i0)



where m is the number of modes used to define each motion.

orthogonality conditions of the modes can be expressed as:

where

[#]T[K] [#] -- [A 2]

K = (Kxx + Kyy)/2 + K s

[#b]T[Kb ] [#b] = [A_]

The

(Ii)

(12)

2
[#t ]T[KT] [#t] =" [At] (13)

[$]T[M] [_] [#b IT= [Mb][#b] = [I] (14)

Using the modal expansion and the orthogonality conditions, with the

bearing forces due to the base motion expressed in the right hand side of the

equation, the modal equations of motion for the rotor bearing system

(choy, 1989) can be written as:

X-Z equation

{_} + [#]T[Gv][#]{_ } + [#]T[Cxx][_]{A} + [#]T[Cxy][#]{_}

+ [#]T[GA][#]{B} + [A2]{A} + [#]T[Kdx][#]{A}

+ [#]T [K×y][#]{B} = [_]T {F×(t) + Fsx(t) + FBx(T)} (15)

where

[Kdx ] -- [Kxx ] + [Ks] - [K]

and,

(16)

FBx (t) = [Cxx]{_b} + [Cxy]{gb} + [Kxx]{Xb} + [Kxy]{Yb } (17)



which can also be expanded into modal parameters as

FBx(t) = [Cxx][#b×]{Ab} + [Cxy][#by]{_b }

+ [K×x][#bx]{Ab} + [Kxy][#by]{Bb} (18)

Y-Z equation

{_} - [#]T[Gv][#]{A} + [#]t[C_][#]{A} + [#]T[Cn](#]{_}

-[#]T[GA][#]{A } + [AWl{B} + [#]T [Kdy] [#] {B}

+ [#]T[Kyx][#]{A } = [#]T{Fy(t) + FQy(t) + FBy(t)} (19)

where

[Kdy ] -- [Kyy] + [Ks] - [K] (20)

FBy(t) - [Cyx]{X b} + [Cyy]{X b} + [Kyx]{X b} + [Kn] {X b}

which can also be expanded into modal parameters as

(21)

FBy(t ) . [Cyx][#bx]{A} + [Cyy][#by]{_ } + [Kyx][#bx]{A} + [Kyy] [#by] {B} (22)

and the 8-equation can be expressed as

2 ]T{At} + [#t]_[Ct)[#t]{At} + [At]{At} = [#t {Ft(t) + Fst(t)} (23)

The gear mesh forces and moments can also be expressed in the modal form,

for the k tb stage with the gear location at the ith node, as:

[#]k{Fs×} - _ ekjl Ktki[-Re±Scl-RckOck + (Xci - Xck ) COS Gki

+ (Ycl - Yck) sin Gkl] COS Gkl I (24)

%
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k{Fcy} _ _ okjl Ktki[-RciSci-RckSck + (Xci - Xck ) COS _ki

+ (Yci - Yck ) sin _ki] sin _k± I

J

(25)

[_]k{FQt} - _ okjl Rck{Ktki[(-RciSci-RckSck) + (Xcl -Xck)

+ COS _kl + (Yc± - Yck ) sin _ki] }
(26)

where k is the stage number, j is the mode number, and 1 is the station

location of the gear mesh.

A set of modal equations of motion can also be written for the gearbox

as:

X-equation

[_bx ]T[Mb][_bx]{_b } + [#bx ]T[cbx][_bx]{Ab} + [#bx ]T[Kbx] [#bx]{Ab}

+ [_bx]T{[Kxx]{Xb - X } + [Cxx]{)_b - _,}

+ [Kxy]{Y b - Y,} + [Cxy]{9 b - 9s} } = 0
(27)

For proportional damping in the gearbox model, the equation can further

be reduced to:

[i]{Ab } + [Cx]{Ab} + [A2b]{Ab} + [@bx]T _ T{FBx(t)} - [ bx ] {[Cx][#]{A}

+ [Cxy][_]{_ } + [Kxx][_]{A } + [Kxy][#]{B}} = 0 (28)

i0



Similarly, the Y-equation can be written as

A2 T T{[I]{_b} + [Cby]{_b} + [ b]{Bb } + [#by ] {FBy(t)} - [#by] [Cyx][_]{A}

+ [Cn][#]{_ } + [Kyx][_]{A } + [Kn] [#] {B}} -0 (29)

and the Z-equation as

[I]{_ b} + [Cbz]{_ b} + [A]{D b} [#bz IT- {Fbz(t)} (30)

Solution Procedure

In order to obtain a solution for the overall dynamics of the gear

transmission system, a three phase solution procedure is used, namely,

(i) (the evaluation of modal characteristics of the rotor-bearing systems and

the gearbox structure, (2) transient vibration solution of the overall

dynamics in modal coordinates, and (3) the transformation of force and

vibration data from modal into generalized coordinates. Discussions of the

three solution phases are presented in following paragraphs.

The natural frequencies and mode shapes required in the transformation of

the equations of motion for the rotor-bearing system (Eqs. (i) to (3)) into

the modal equations (Eqs. (15), (19), and (23)) are evaluated using the matrix

transfer method (Choy, 1989 and 1990) on a discretized lumped mass model.

Using an average stiffness value for the bearing supports, the undamped modes

are calculated using a marching search technique for the assigned frequency

range. The natural frequencies and mode shapes for the gearbox structure are

obtained by the finite element analysis using NASTRAN. The modal data from

the gearbox analysis are used to transform the gearbox equations of motion

(Eqs. (4) to (6)) into their modal coordinates (Eqs. (28) to (30)).

The second phase of the solution procedure involves the solution of the

coupled modal equations of motion between the rotor stages and the gearbox

structure. The coupling effects of the gear mesh and the bearing supports are

ii



also expressed in modal coordinates such that the global equations are solved

simultaneously in modal form. Using a set of initial conditions for both

displacement and velocity of the global system, calculated from the steady

state conditions at the rotor-bearing systems and zero vibration at the

gearbox, the modal accelerations A, B, At, Ab, Bb, and Db of the system can

be evaluated (Eqs. (15), (19), (23), and (28) to (30)). A variable time

stepping integration scheme(the Newmark-BetaMethod) is used to integrate the

modal acceleration to evaluate the modal velocities and displacements at the

next time step. A regular time interval of 200 points per shaft revolution is

used in this study with a refined region of smaller steps at the gear mesh

transition period for single and multiple teeth contact.

The modal acceleration, velocity, and displacement calculated from the

transient integration schemeare transformed back into the generalized

coordinates (Eq. (i0)). The nonlinear bearing forces and gear mesh forces can

be evaluated from the velocity and displacement differentials between the

rotor stages and the gearbox structure. Results from this solution procedure

are demonstrated in the following section using a prototypical gear

transmission system.

Discussion of Results

To demonstrate the application of the discussed analytical approach, a

three-gear transmission system given in Fig. 2 is used as an example. Note

that the gearbox is assumed to have uniform thickness throughout the enclosed

walls and is fixed to the ground at the four lower corners. Figure 3 shows

the arrangement and orientation of the gear stages inside the gearbox

structure. While all three gears have an identical 36-tooth gear and a mesh

contact ratio of 1.6, the driver (stage i) is longer and larger in diameter

than the two other stages, which are identical in geometry. Stage 1 is

supported by two bearings located at the end plates while gear stages 2 and 3

12



are supported by bearings located at both end plates and at the middle of the

gearbox, as shownin Fig. 3. An operating speed of 3000 rpm is used for all

three gears.

In order to calculate the global dynamics of the gearbox system, the

modal characteristics for both the gearbox structure and the rotor-bearing-

gear stages are evaluated. The finite element approach (NASTRAN)is used to

model the gearbox structure using a combination of plate elements. Table I

presents the results of the first nine natural frequencies of the gearbox

structure with their corresponding three-dimensional modeshapes given in

Figs. 4 to 6. The dynamics of each individual rotor-bearing-gear stage are

modelled using the matrix-transfer method. Using an averaged bearing

stiffness, as discussed in the previous sections, the lateral natural

frequencies and mode shapes of each rotor stages are evaluated. A similar

procedure is repeated to evaluate the torsional vibrations of the rotor

stages. Table II presents the results of both torsional and lateral natural

frequencies for all three rotor stages. Some of the lateral and torsional

mode shapes for the rotor stages are given in Figs. 7(b), 8(b) and 9(b).

Using mass imbalance in all three rotor stages as excitation input

and a nonlinear gear mesh compliance between the gear stages, the global

transient dynamics of the system are evaluated using zero initial conditions.

Figures i0 to 13 present the gearbox vibrations in terms of modal excitations

of the first 8 natural frequencies. These modal excitations (Choy, 1987;

1988a; and 1989) represent the excitability of the particular mode and are

expressed in the frequency domain using an FFT procedure to transform the

modal time variables into the frequency domain. Note that the major component

excited in each mode is at its own natural frequency. The highest component

of excitation is in the x-direction. A moderate excitation is seen in the

y-direction, while a very small magnitude of excitation exists in the

13



z-direction. A closer examination showsthat the two highest x components

occur at the second and fifth mode (462 and 575 Hz) while the highest in the

y-direction occurs at the third mode (509 Hz). Figure 14 presents the total

vibration at the upper corner of the gearbox (node 82) in both time and

frequency domains. Note that three dominant componentsexcited in the

x-direction are located at frequencies of 462, 509, and 575 Hz with the

highest two located at 462 and 575 Hz. The Y-direction has only one major

componenta 509 Hz while no significant vibration is detected in the

z-direction. This further confirms the use of modal excitation parameters

in representing the dynamic behaviors of the global system.

Figure 15 shows the orbiting motion of the gear stages during the initial

transient period. Note that the vibration of the system eventually settles

into a steady state motion. The smaller first stage orbit is due to the large

stiffness in the rotor-bearing system. The gear mesh forces between gears in

stages 1-2 and 1-3 in both time and frequency domains are given in Fig. 16.

Three major frequency componentsexist in the gear mesh forces at 0, 50, and

1800 Hz. They represent the static gear load at 0 Hz, the vibratory frequency

at rotational speed of 50 Hz, and the tooth pass frequency at 1800 Hz. The

existence of sidebands at 1800 Hz is mainly because of the shifts in the

toothpassing frequency due to the vibration of the rotor-gear system. A

further amplification of such frequency componentscan be seen in Figs. 7(a),

8(a), and 9(a). The modal excitation of the first lateral modein Fig. 7(a)

has its largest componentat 50 Hz due to mass imbalance at rotational speed.

The modal componentsof the first torsional modein Fig. 8(a) show that the

gear load at zero frequency and the tooth pass frequency vibration are excited

in stages 2 and 3. Figure 9(a) shows that the zero gear load frequency is

excited in stage 1 at the second mode. This again further confirms the use

14



of the modal synthesis approach in analyzing dynamic behaviors in gear

transmission systems.

SUMMARY

This paper presents a vibration analysis of a gear transmission system in

which the dynamics of the gearbox structure is coupled with the vibration of

the rotor-bearing-gear stages. The analysis combines the modal

characteristics of the gear stages developed through the matrix transfer

method with the modal parameters of the gearbox evaluated by a finite element

model. The major content of this work can be summarizedas follows:

i. A comprehensive procedure is developed to combine the dynamics of the

rotor-gear system with vibrations of the gearbox structure to determine the

global system response.

2. The modal method is used to transform the equations of motion into

modal coordinates before the synthesis of the global systems of equations of

motion to reduce the degrees of freedom of the system.

3. The use of modal excitation functions in the frequency domain provide

good insights of the dynamic behavior of the gear transmission system. Such

knowledge is crucial for designing transmissions with improved performance and

durability.

4. The sensitivity of the gearbox vibration, due to rotor mass imbalance

and gear mesh nonlinearity, can be evaluated using the developed methodology.

5. The initial transient dynamic analysis approach developed in this

study can also be applied to simulate conditions in which a sudden excitation

is applied to the gear transmission system.
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TABLEI. - GEARBOX

NATURAL

FREQUENCIES

Mode

1

2

3

4

5

6

7

8

9

Hz

412

462

5O9

540

575

697

852

893

911

TABLE II. - ROTOR-GEAR STAGE NATURAL FREQUENCIES

Lateral mode, Torsional mode, Axial mode,

Hz Hz Hz

Stage 1

Stage 2

Stage 3

131

297

1047

123

187

390

123

187

390

661

2086

4197

186

866

1686

186

866

1686

3 931

5 208

ii 724

i 918

4 860

8 186

1 918

4 860

8 186
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