
IEEE JOURNAL OF QUANTUM ELECTRONICS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. QE-22, NO. 3, MARCH 1986 463 

Modal Analysis of Semiconductor  Lasers with 
Nonplanar  Mirrors 
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Ahstruct-We preseni a formalism for analyzing laser resonators 
which  possdss nonplanar  mirrors and  iateral  waveguiding [e.g.,  an 
unstable resonator semiconductor  laser (URSL)].  The electric field is 
expdnded  iii lateral  modes  of  the complex-iridex  waveguide  and is re- 
quired to rbproduce itself after, one  roundtrip of the  cavity. We show 
how the waveguide modes,  their  gain  and loss, and  hence  the criterion 
for truncation of the infinite. set of modes  can  be  derived  from  the 
Green’s  function of the, he-dimensional  eigenvalue  equation  for  the 
waiveguide. Examples are presented  for  three  cases of interest,-a  purely 

gain-guided  URSL,  an  ihdex-guided URSL,  and  a  gain-guided tilted- 
mirror resonator. We compare theoretical  calculations to  previous ex- 
periments. 

I. INTRODUCTION 

0 VER  the past 2O,years,  semiconductor lasers have 
evolved  into  a reliable source of coherent,  near-IR 

light.  Their  ,small  size  and low  power  requirement  have 
made  them the subject of  intense study for use in com- 
munications  systems.  However,  the small size of semi- 
conductor  lasers  limits the available output power  since 
the high intensities at  the output faces leads  to  cata- 
strophic facet damage  and  laser  failure  at  higher current 
levels. 

This  problem can  be  alleviated by iacreasing  the  size 
of the emitting area.  One means of accomplishing  this is 
to increase the transverse  dimension of the  laser  (e.g.,  a 
large optical cavity (LOC) structure [l]). However,  the 
transverse dimension  can  only  be increased up to  about 1 
pm,  at which  point,  progressively, additional transverse 
modes  appear resulting in a  loss of coherence. 

Another  means  of increasing the emitting area  is  to  en- 
large the lateral  dimension of the  laser.  However,  as the 
width  exceeds  about 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApin, the  phenomenon of filamen- 
tation or  regenerative self-focusing appears.  The posi- 
tions of the individual filaments are unstable and shift 
about  under  current  modulation.  This  produces unpre- 
dictable kinks in the light-current curve  and  reduces the 
coherence of tHe laser  light. 

To  date,  there  have been  two different approaches to 
the  problem of increasing the width  (and  consequently the 
power) of semiconductor  lasers.  One  has  been to fabricate 

Manuscript  received  July 30, 1985;  revised  October 7, 1985.  This  work 
was  supported by grants from Rockwell  International,  the  Air  Force Office 
of Scientific  Research,  and  the Office of Naval  Research. The work of R. 
Lang  and J .  Salzman  was  supported by the  National  Science  Foundatioh 
and  a  Bantrell  Post-Doctoral  Fellowship. 

The  authors  are  with  the  Department  of  Applied  Physics,  California In- 
stitute of Technology,  Pasadena,  CA  91125. 

IEEE Log Number  8407059. 

phase-locked  arrays of lasers  which  are individually too 
narrow  for filamentation to  appear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 ] .  Such  lasers  have 
produced the highest CW  power reported to  date [3]; 
however,  their  design  remains  plagued by problems of in- 
complete  phase-locking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] and  the  appearance of an  an- 
tisymmetric far field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] .  

The second  approach has been  to  fabricate  broad-area 
lasers  with  nonplanar  mirrors.  Although  the  advantages 
of high-loss resonators for  lasing  media with high gain 
have  been  recognized for  years, it is only recently that 
there  have  been  attempts  to  apply  such resonators to  semi- 
conductor  lasers [6]-[8]. Unstable resonators, resonators 
which possess a magnification greater than 1.0, possess 
large  mode  volumes [9], enabling them  to effectively uti- 
lize  all of the lasing volume.  They  can  have  high discrim- 
ination against higher  order  modes  and  are thus less sen- 
sitive to material imperfections,  and  because of their 
magnifying abilities they tend  to suppress filamentation 
181. 

The properties of unstable resonators, in particular, 
have  been described extensively in the  literature.  How- 
ever,  the  application of such theory to semiconductor la- 
sers  encounters several problems  which  stem  from  the 
unique  character of semiconductor  lasers. Most theories 
[9]-[ 121, [20] treat the resonator as consisting of two mir- 
rors bounding  a  homogeneous  medium; yet gain  guiding 
plays a  substantial  role  in  semiconductor  lasers. Sec- 
ondly,  the finite size  of  the mirrors introduces effects due 
to  edge diffraction that are  lost in theories which  assume 
infinite mirrors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI, [21]. The two-dimensional nature of 
the  semiconductor laser suggests many  asymmetric  con- 
figurations which  would  be  impossible in a  three-dimen- 
sional  laser,  and  consequently,  have not been  analyzed. 
Also, the lossy material surrounding the pumped region 
absorbs the diffracted wave,  which suggests that a real 
index  waveguide in the lateral direction could increase the 
quantum efficiency of  a  URSL [12]. Finally,  there  are 
many  geometries  other than unstable resonators (e.g.,  a 
tilted-mirror resonator [13] or  a hybrid  URSL/Fabry- 
Perot resonator [6]) which  show  promise of high  power, 
yet have not been  analyzed. 

The foregoing  considerations  show  the  need  for  a 
method of analyzing broad-area  semiconductor lasers with 
nonplanar mirrors. We present in this paper  a general so- 
lution  to this problem.  In  Section 11, we outline the mir- 
ror-coupled mode  formalism.  In  Section 111, we  derive  the 
complex  waveguide  modes  to be used as  a basis set  and 
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justify  the  truncation of the  set  to  a finite size.  In Section 
IV, we calculate the coupling coefficients which charac- 
terize  the  mirrors  and show how the  nonlinear eigenvalue 
equation can be simplified  to  a  linear  eigenvalue  prob- 
lem. In Section V, we  present results for  three specific 
cases:  a gain-guided URSL,  an index-guided URSL, and 
a  tilted-mirror  resonator. We conclude in Section VI by 
summarizing the  important results of the  analysis. 

11. OUTLINE OF THE FORMALISM 

The  device  we  are  considering  is  shown schematically 
in Fig. 1. It consists of a  symmetric  lateral waveguide 
with (complex)  indexes of refraction n1 (cladding) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno 
(core),  terminated by nonplanar  mirrors R1 and R2. We 
assume  that  all  transverse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x axis)  variation has been re- 
moved  using  an effective index  approximation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141. The 
electric field can  be  written in terms of the  complete set 
of modes of the  lateral  waveguide  as 

~ , ( y ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ)  = anEn(y) e-jbd (1) 

where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a,  } and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, } are the complex  mode ampli- 
tudes  and  propagation  constants,  respectively,  of  the  (also 
complex)  modes {E ,  } of the  lateral  waveguide.  The sum 
in (1) is assumed  to  include  the  integration  over  contin- 
uum modes  (radiation  modes), which must be included 
for  completeness. We can  represent  the field E,(y, z )  by 
a  column  vector A” with components {a ,  } ; then the result 
of a  propagation  through a distance L within the wave- 
guide  can be expressed by left multiplying by a propaga- 
tion matrix 

& = e-jpL (2) 
I 

where  the n ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm component of B is a,, 0,. 
We model each  mirror by a complex reflectivity R(y) ,  

so that the field immediately after reflection is R( y )  Ey ( y ,  
z = L).  Since  the  set of {E, (y) }  is complete,  we can ex- 
pand the field after reflection in  terms of the {E,  } ; in par- 
ticular,  a  mode E,, ( y )  after reflection can be written 

R(Y) E J Y )  = C r n m E m ( Y )  (3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m 

where {rnm } are  the  elements  of  a  mirror coupling matrix 
R given by 

rnm E (EA(Y)>  R(Y) En(Y)). (4) 

{EL } are  the  eigenmodes of the  adjoint  operator and ( , ) 
signifies the  appropriate  inner  product. 

The  eigenmodes of the  resonator  are found by requiring 
that  the  lasing field reproduce itself after  one  roundtrip, 
i.e., that 

R2F(L) R 1  &) A = A. (5)  

This is, in general,  a  nonlinear  eigenvalue  problem.  The 
free  parameters [ w ,  the lasing frequency,  and n ,  the 
threshold carrier  density  (or  equivalently threshold gain)] 
are  imbedded within the matrix F(L) via  the  dependence 
of the  propagation  constants 0, upon w and n ,  and to  a 

Fig. 1 .  Schematic of a broad-area laser with nonplanar mirrors and a  lat- 
eral waveguide. 

lesser  extent,  within  the reflectivity matrices due  to  the 
dependence of the modes themselves upon w and n .  As it 
stands,  the  solution  to ( 5 )  is not immediately forthcom- 
ing. Besides the  nonlinearity,  the matrices are infinite, and 
in places,  continuous. In  the next two  sections, we will 
introduce  and  justify  the  approximations necessary to re- 
duce  the  problem  of  solving (5) to  a manageable task. 

111. LATERAL  WAVEGUIDE MODES 

Our first task  is  to  truncate the set  of  lateral waveguide 
modes to  some  manageable  number  (according to some 
rational criterion)  and  to deal with the  troublesome con- 
tinuum  modes.  The modes of a symmetric real index 
waveguide  are well known [15]; however,  some corppli- 
cations  occur  when we open up the field to include a  com- 
plex index of refraction (i.e.,  gaidloss). There  is also the 
question of whether to include  “leaky” modes (which di- 
verge as y -+ k m) in  our  basis.  Furthermore,  since  we 
are  dealing with a  complex  potential,  the problem is non- 
self-adjoint,  and the orthogonality condition between 
modes is different from  that of real index-guided modes. 
We  shall deal with all of these issues in  one  fell  swoop 
by deriving  the complex waveguide modes from the  orig- 
inal  equation. In the  process,  a  simple picture of the  an- 
alytic structure of the  Green’s function for the lateral mode 
eigenvalue  equation will show which modes to keep and 
which we can safely discard. 

We  begin with the Helmholtz equation  for TE waves in 
the  structure  shown  in  Fig. 1. 

where w is the oscillation  frequency, c is the speed of 
light,  and 

IYI 5 d 
n(y> = t: I Y I  > d. 

(7) 

We  choose  our  time  factor  as eJwr and  search for solutions 
of the form 

E,(y, z )  = ,-ioz 433, l = Y/d, (8) 

and  since we are looking for  positive  z-traveling  waves, 
we  stipulate 

Re (P) 1 0. (9) 
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We define 

u(33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
cutoff modes 

radiation modes 

index-gulded  modes ~ 

, i 

to  arrive at the  nondimensional  equation 

[$ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAucn]  u(33 + w!3 = 0. (1 1) 

The  problem  is fully specified when  we  include  bound- 
ary conditions.  It is convenient to work out even  and  odd 
fields separately (it is clear that any field can  be decom- 
posed  into  an  even part and  an  odd  part); so we can solve 
(1 1) on  the interval ( E (0, 03) with the boundary condi- 
tions 

u’(0) = 0, u bounded at r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA03 (12) 

for  even  modes  and 

u(0) = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu bounded at { = 03 (13) 

for odd  modes. 
A well-known result of spectral theory [ 161 is that the 

appropriate  spectral representation for  an  operator L of the 
equation 

Lu + xu = 0 (14) 

can be determined by integrating the Green’s function for 
the  operator  on  a  great  circle in the complex X plane. In 
this process, nonanalyticities give rise to  the spectrum; 
poles generate  a  discrete  spectrum,  and  branch  cuts give 
a  continuous  spectrum.  The  Green’s  function,  of  course, 
is the solution to 

[L + XI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc({, 9 ;  X) = m- - 4. (15) 

For  the  even  modes, the Green’s function is easily veri- 
fied  by direct substitution to be 

G ( i - 2  9;  X) 

- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuL ({< ) uR ((> ) 
Go sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJx+u, - j J x + u ,  cos f i  

with 

<< = min K ,  9)  

r> = max (3 ;  17) 

. -  
I 

Fig. 2.  Analytic  structure in the  complex X plane of the Green’s function 
for the  even  waveguide  modes of a  waveguide of width 20 pm;  core: n 
= 3.50,  gain = 50  cm-l, cladding: n = 3.40, loss = 50 cm-I. *’s are 
poles  (corresponding  to  discrete  modes),  while  the  cross-hatched  line 
indicates a branch cut  (continuum  modes). 

(16) 

Anticipating the great circle  integral,  we  examine the an- 
alytic structure of G in the complex X plane. Clearly, there 
are poles wherever 

. J X S . U O s i n G o - j j J X S v l c o s G = o  

(17) 

which will give  rise  to  discrete  modes.  In  addition,  there 
is a  branch  cut  emanating  from X = - u l .  (The quantity 

appears  only in even  powers;  hence,  there is no 
branch  cut.) The direction of the branch  cut  can  be  in- 
ferred from  the  boundedness of u ;  this,  plus  the  last  line 
of (16), imply 

Im Jx+u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 0, so -2n I arg ( X  + u l )  I 0. 

(18) 

This  structure is illustrated in Fig. 2. Each  nonanaly- 
ticity corresponds  to  a  mode of the  waveguide  with  a 
propagation constant /3 given by @ = d - l G ,  Re ,6 1 
0. Near  the negative real axis,  a positive imaginary part 
of X yields a  negative  imaginary part for @, implying  a 
lossy mode.  From  this  picture,  we  can  compare  the  losses 
of all of the waveguide  modes using the  qualitative rule 
up = loss,  down = gain. To aid in the interpretation of 
the different modes,  modes in different regions of the plane 
have  been labeled in accordance  with  common  usage. 

Radiation  modes  (corresponding to the  branch  cut) 
present a  special  problem  to  a  numerical solution of (5) 
because they are  continuous.  They  can  be dealt with by 
the following simple  expedient: 

We  shall  ignore all continuum  modes. (19) 
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The question is,  are  we  justified in doing so? The reso- 
nator  modes  we are interested in are those with the  lowest 
loss;  consequently,  our  intuition  suggests  that  we should 
use low-loss  waveguide modes as a basis set. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA closer 
examination shows that  over  the  length of the  laser,  the 
continuum  modes  are strongly attenuated compared to  the 
lower  loss  discrete  modes;  consequently, they make neg- 
ligible  contribution to the  resonator  mode  after  propaga- 
tion and can, in  fact, be ignored.  Furthermore,  any  dis- 
crete  modes  lying  above  the branch cut  have  even  higher 
loss than the  continuum  modes, so we  gain nothing by 
including  them  in  the basis set.  Finally, although the 
‘gain-guided” modes are beyond what is traditionally 
thought  of  as cutoff  (-X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo) ,  their  loss is compa- 
rable to  the  index-guided modes (if any exist) and should 
be included. 

The validity of the  above  argument relies on  the  vertical 
separation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu I  in the X-plane, that is, upon 
the high gain of the  core  and/or  the high loss of the  clad- 
ding.  This  pictorial  representation indicates the validity 
of the approximation-for a  low-gain  medium  (e.g.,  a  gas 
laser) or purely real index  guiding, both uo and u1 lie  on 
the  real  axis.  There is no gain  separation between contin- 
uum  and  discrete modes and  the theory breaks  down. For 
semiconductor  lasers,  however, with gains on the  order 
of 50 cm-’  or  greater, the  gain  separation is large enough 
that neglecting continuum modes is a  good  approxima- 
tion.  (It should be noted that  for  high-loss  resonators,  the 
gain  is  necessarily much larger than for Fabry-Perot res- 
onators, which strengthens  the  approximation.) 

To  summarize, we will use only  those  discrete  modes 
which lie below the branch cut  in  Fig. 2. Carrying out  the 
great  circle  integration  yields 

where the { X, } satisfv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Jx,+v, cos -0 

+ j m  sin = 0 (23) 

and  the {u, ] satisfy  the  same orthogonality condition. 
(Obviously,  any  even  mode is orthogonal to any odd 
mode.) A comparison of (20) and (23) to the standard the- 
ory of real  dielectric  waveguides reveals that they are  pre- 
cisely the  dispersion  relations  for real index  waveguides, 
extended  into  the  complex  plane. 

111. MIRROR COUPLING AND DIAGONALIZATION 

Referring  back  to  Fig. 1, we  see  that  the  mirror reflec- 
tivity R ( y )  is the reflectivity seen  at  a fixed reference 
plane.  The  common  thin-lens approximation [ 171 is to 
model a  nonplanar reflector as  a complex phase shift of 
-2jOAZ( y) where p is the material propagation constant 
and AZ(y) is the  distance  from  the  mirror to the reference 
plane. The dielectric reflectivity and/or scattering can  be 
included by an  additional multiplying factor r ( y ) .  A sin- 
gle  waveguide  mode u,({) upon reflection can be reex- 
pressed as  a  sum of waveguide modes: 

Multiplying by urn({) and  integrating yields 

- exp [-2jJu<3-, AUWI u,(s”)) (25) 

where  the  relation y = {d has been used. Within the  var- 
ious regions  of  the  waveguide, u, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, consist of linear 
exponentials;  most  mirrors of interest  are piecewise linear 
or (to  a good approximation)  quadratic;  consequently,  all 
of the mirror coupling coefficients are, at worst, sums of 
complex  error  functions  for which simple approximations 
are readily available [ 181. For  example,  for  a curved mir- 
ror of radius -R  with unity reflectivity which extends only 
to  the  edge  of  the  waveguide,  we find with the  orthogonality  condition 

and the { X, 1 satisfy 

Jx,+u, sin 

- j . /x,+v, cos Jx,+u, = 0, 

Im X, I Im - u l r  -27r 5 arg (X, + u l )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 0. (22) 

A similar  procedure  for  the  odd  modes  yields 
where ti = 1 if the ith mode is odd and 0 if it is even. (A 
more accurate  model would include  the  spatial  and  an- 
gular  variation of the reflectivity within the  integral.  We 
have  assumed constant reflectivity throughout this  work.) 

We are left with the  task of simplifying  the frequency 
and  gain  dependence of the  matrices. We perform a per- 
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turbation expansion  around  a fixed operating point 

n - + E + A n ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw - + O + A w  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(27) 

and define 

APn PO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- P n  (28) 

so that Aw and An become the new free parameters. Typ- 
ically, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW is  the  center of the gain spectrum  and E is  the 
approximate threshold carrier density. To lowest  order, 
we can  ignore  the  appearance of Aw and An in the reflec- 
tivity matrices, but we  must  be  more careful in the prop- 
agation matrix.  We  expand  the diagonal elements of the 
matrix BL in a  Taylor series as 

&(w, n) L = &(W, E )  L + - AWL + - AnL 8/30 a00 
aw an 

8 APn + -  AWL + - AnL + - . (29) aw an 

The  last  two  terms  of (29) are typically much less than 1 
and can be dropped  entirely.  This  assumption is tanta- 
mount  to  assuming that all of the longitudinal modes of 
the resonator are  degenerate.  The  second  and third terms 
are  common  to all elements of BL and may be pulled out 
as  a  scalar  times  the identity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf. The result is that the prop- 
agation matrix  can be written as 

- 

With this substitution, (5) can  be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w- (w,  - n; L) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR , F ( W ,  E; L) - yf] A” = 6 (31) 

where 

Equation (31) is now a  linear  eigenvalue  problem  which 
can  be solved for y by setting the determinant of the quan- 
tity in the square brackets equal to 0. 

This  approximation is equivalent to that made by the 
Fox-Li iteration technique [20] ; they both rely on the lon- 
gitudinal cavity modes’  degeneracy.  From  the  form of 
(3 l), we see that I y I represents the fraction of energy left 
in the resonator after  one roundtrip. In conventional un- 
stable resonator theory, I y I -2 is the magnification M.  For 
typical semiconductor  lasers,  the  size of the matrix is 
around 100 X 100, which  can  be  handled by most  canned 
diagonalization routines.  Often, only the few  lowest  loss 
modes  are  desired,  and  one  can  use  an  approximate tech- 
nique (e.g., the  Prony  method [19]) to find them  without 
actually diagonalizing the  entire matrix. In many cases (as 
we will show in the next section), the lowest loss eigen- 
values vary  widely in magnitude,  a property which  in- 
creases the  accuracy of such  approximate  techniques.  The 
calculations presented in  the  remainder of this paper  were 

/ 

Fig. 3.  Near  field of a purely  gain-guided URSL of width 80 pm,  length 
200 pm, and two  symmetric mirrors of radius 250 pm.  (a)  Theoretical. 
(b) Experimental. 

performed  on  a VAX 11/780 using root-finding and  ma- 
trix routines from  the IMSL subroutine  library. 

V. EXAMPLES 

A. Gain-Guided Unstable Resonator Semiconductor 
Laser 

Recently,  we reported the  operation of an unstable res- 
onator  semiconductor  laser  with  pure  gain guiding [8]. 
The  near field as calculated using our model  is  shown in 
Fig. 3(a), while an experimental plot is shown in Fig. 
3(b).  The  experimental  and theoretical plots are  both sin- 
gle  valued (nodeless) over  the  same  width  (which  is  to  be 
expected,  the  width  being the gain  stripe).  The  large mod- 
ulation visible  on  the  experimental plot we  attribute  to 
imperfections in the output mirror  which scatters light and 
causes diffraction fringes.  The roundtrip gain  (normalized 
to  that of plane  wave  propagation in the core material) 
was calculated to  be IyI2 = 0.286, M = 3.5. The  geo- 
metric  model of unstable resonators [9] for  a  symmetric, 
two-mirror  resonator predicts 

For  the  laser of Fig. 3 , M = 3.3 according to the geo- 
metrical model  (which, of course, neglects diffraction and 
loss in the cladding).  One interesting feature of unstable 
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resonators is the  large difference in  roundtrip losses be- 
tween  the  lowest  loss  and  next lossy resonator  lateral 
mode.  For  the  laser of Fig. 3, the next lossy  mode has 
Iyl2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.112. In  the  absence of curved mirrors,  the  lateral 
waveguide modes are also the  resonator  modes, and an 
examination of the  pole plot for  the  laser  of  Fig.  3 shows 
that  there  are  well  over 50 lateral  waveguide modes with 
losses  within  a few percent of each  other.  The  importance 
of large  gain  separation  between  the  lowest  loss resonator 
modes becomes  clear when one  takes into account small 
perturbations from the ideal waveguide (for  example, re- 
sulting  from  defects  or nonlinearities which appear at high 
pump  currents).  Consider  a  set of resonator modes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ei ( y ,  
z ) }  with eigenvalues {yi } . Any imperfection in the  wave- 
guide will cause  some small scattering between the modes; 
the  scattering can be characterized by matrix elements 
{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK $  } (calculated in the  same way as  the set of { rv } were). 
For small  scattering,  we can use first-order perturbation 
theory 1221 to  calculate  the effects on the  modes: 

e!') = ejo) + C ~ e?'). (33) 
j + i y ;  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. 

K i j  

J 

As long  as K~ << yi - yk, the  lasing mode in the  presence 
of the  perturbation will closely resemble the calculated 
mode in the  absence of the  perturbation. On the  other 
hand, if the  coupling  approaches  the  order of magnitude 
of the  separation  between  the gains of the ith and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj th 
modes,  the modes will become mixed by the perturbation 
(also,  the  perturbation theory breaks  down).  Conse- 
quently,  there  is  poor mode selection in flat-mirror broad 
lasers,  and  small  perturbations in the  optical  cavity  due to 
nonlinearities which cause  the  laser  to jump among mix- 
tures of the nearly degenerate  lateral modes. The  strong 
coupling imposed by the curved mirrors of a URSL, how- 
ever, breaks this degeneracy;  the  lowest  order mode is 
strongly preferred and is relatively insensitive to small 
perturbations to the  cavity. This explains the stability of 
the single lateral  resonator  mode  that was observed up to 
four times threshold. 

Another  feature of interest  is  the variation of mirror loss 
per  bounce with numerical aperture.  Fig.  4  shows  the  loss 
per bounce as  a function of waveguide width with all other 
parameters held fixed. As  we vary the  width, we are in- 
creasing the  equivalent  Fresnel  number.  The periodic 
mode  crossings  observed by Fox and Li [20] in open- 
walled unstable  resonator  structures  are  apparent. 

B. Unstable  Resonator  with  Lateral  Waveguiding 

One of the  drawbacks  to  URSL's is that the  lossy ma- 
terial in the  cladding  absorbs  the diffraction losses of the 
resonator  (which, in many other  systems,  are  useful  out- 
put) and  degrades  the  external  quantum efficiency. In fact, 
by extension of existing  formulas,  one can show that the 
external  quantum efficiency is given by [SI, [231 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.O I I I 

Fig. 4. Amplitude loss per bounce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) versus width for two  lowest loss 
modes of a symmetric  gain-guided URSL of length 200 prn, mirror ra- 
dius -250 pm. y gives the  roundtrip  amplitude loss, y *  gives  the round- 
trip  energy loss. Calculations  performed at 0.5 pm intervals. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Near field of an index-guided URSL (same  dimensions as Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) 
with a real index step of 0.03. (a)  Theoretical. (b) Experimental. 

where a is the  loss in the unpumped medium, R is the 
mirror  reflectivity,  and vi is  the internal quantum effi- 
ciency. (In [SI, a  factor M is missing from the numerator 
of the  equivalent  expression.)  One suggested method for 
increasing  the  quantum efficiency of a URSL is to add a 
real  index  step in the  lateral direction to provide optical 
confinement [12].  Fig.  5(a) and (b) shows the calculated 
and  measured near fields,  respectively, of such a  struc- 
ture. As in the  simple  URSL,  one  gets  a near field  with 
an approximately constant  average  power density across 
the  gain  stripe; only in this case,  there  is  high-frequency, 
high-modulation-depth spatial modulation on the near field 
due to the  interference of the reflections off the confining 
walls. The spatial  frequencies  evident in the theoretical 
plot  are  greater  due to the  limited resolution of the  exper- 
imental viewing system.  This  structure  combines  the ad- 
vantages of a Fabry-Perot broad area  laser and a purely 
gain-guided URSL,  namely,  the high quantum efficiency 
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guiding ontiguiding -- 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  Roundtrip  losses  for  the  two  lowest  order  modes as  a function of 
real  index step. An is the  difference in index  between the cladding and 
core so that  the  left  portion of the  graph  corresponds  to  a  “guiding” 
waveguide  and  the  right  portion  corresponds to an  “antiguiding”  wave- 
guide.  The  dotted  line  indicates  the  value  of & one would  calculate 
using  the  geometric  theory  of  unstable  resonators. 

of the former  and the stable  near field of the  latter.  The 
results  suggest  that  a  larger  index  step is more desirable 
from  the  point of view of lowering  losses,  and in Fig. 6 
we  have plotted the  losses of the  two  lowest  loss  modes 
as  a function of index  step.  Although  the losses continue 
to improve  with  larger  index  step,  the gain separation be- 
tween  the  two  lowest  loss  modes  decreases  at  the  same 
time  (also, the high spatial frequency ripples evident in 
Fig, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 become  larger  and larger, which increases the side- 
lobes in the  far field). Thus,  there  is an optimum  index 
step which brings about  low losses while  maintaining  high 
gain separation between  modes. 

C. Tilted-Mirror Resonators 
Not all high-loss resonators possess circular mirrors. 

For  example,  two  misaligned planar mirrors make  up  a 
tilted-mirror  resonator.  This  geometry  is interesting from 
the geometrical optics picture because, unlike classical 
unstable and  stable  resonators,  there is no ray within the 
resonator which  reproduces  itself.  This property suggests 
that incipient filaments within the  resonator will also  be 
unable  to  reproduce  themselves. (It also suggests that the 
losses will be rather high.)  Recently,  we  demonstrated 
operation of a  tilted-mirror  semiconductor  laser [13]; the 
lowest  loss  mode  calculated  using  the foregoing analysis 
(with Al (y )  = y tan 8, with 8 the tilt angle  at  one mirror) 
and an experimental  near field measurement  of  the  device 
are reproduced in  Fig. 7(a) and (b), respectively. In per- 
forming the  calculation, using a  uniform gain distribution 
under  the  stripe contact yields two nearly degenerate res- 
onator  modes.  However,  we  observed in the subthreshold 
near field  of a 0” laser  that  there  was slightly higher gain 
at the edges of the  stripe  which  favored the theoretical 
mode  shown in Fig.  7. One of the disadvantages of the 
tilted-mirror design is that the losses  are  quite  high  (since 
the only part of the resonator mode that reproduces itself 
comes  from diffraction). Loss as  a function of tilt angle 
is given in Fig. 8.  The  decrease in loss  at  large  angle is 
interesting since  it suggests a region of low loss around 

Fig. 7. Near  field of a  tilted-mirror  laser  of  width 100 pm, length 300 pm, 
tilt angle 10”. (a)  Theoretical. (b) Experimental. 

h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 -1.0~ m - 

1 I 

0 (degrees) 

Fig. 8. Roundtrip  energy  loss  as  a  function of tilt  angle  for  a  tilted-mirror 
resonator  of  same  dimensions  as  Fig. 7. 

13-14”  (unfortunately, the devices fabricated in  [13] 
neatly bracketed this region-in fact,  the losses at 0”, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ” ,  
lo” ,  and 15” all  lie neatly on  a straight line).  Such  a  “loss 
window’’  was recently observed in calculations of tilt ef- 
fects in C02 waveguide  lasers [24]. 

VI. CONCLUSIONS 

We  have  performed an  analysis of semiconductor  lasers 
with  nonplanar mirrors that includes the effects of lateral 
gainlindex  guiding.  We  developed  a  criterion  for trunca- 
tion of the infinite set of waveguide  modes  based  on  the 
analytic structure of the  Green’s  function for the wave- 
guide  problem. Then, using a thin-lens approximation, the 
mirrors were  shown  to  couple  the  waveguide  modes. We 
then reduced the nonlinear equation for  frequency  and gain 
to  a  linear  eigenvalue  problem  where  the  magnitude of the 
eigenvalues gave  the cold-cavity losses.  We applied the 
analysis to  three  cases of  interest-a gain-guided  URSL, 
an index-guided URSL, and  a  gain-guided  tilted-mirror 
resonator. The  calculated  near fields agreed  with those of 
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measured  devices.  We  also  showed that UkSL’s.possess 
high  gain separation between  the  lowest  loss  modes. The 
addition of a lateral index  waveguide  can  reduce the losses 
while  maintaining gain separation and resistance to fila- 
mentation  at the expense of degrading  the  smoothness of 
the near field. Tilted-mirror resonators were  shown to 
possess well-defined modes,  and the variation of loss with 
tilt angle  was presented. 
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