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Abstract Modal analysis has been used to identify natural frequencies, damp-

ing characteristics and mode shapes of wind turbine blades.

Different experimental procedures have been considered and the most appropri-

ate of these has been selected. Although the comparison is based on measurements

on a LM19 m blade, the recommendations given are believed to be valid for other

types of wind turbine blades as well.

The reliability of the selected experimental analysis has been quantified by es-

timating the unsystematic variations in the experimental findings. Satisfactory

results have been obtained for natural frequencies, damping characteristics and

for the dominating deflection direction of the investigated mode shapes. For non-

dominating deflection directions of the investigated mode shapes, however, the

observed experimental uncertainty may be considerable – especially for the tor-

sional deflection.

The experimental analysis of the LM19 m blade has been compared with results

from a FE-modeling of the same blade. For some of the higher modes substantial

discrepancies between the natural frequencies originating from the FE-modeling

and the modal analysis, respectively, are observed. Comparing the mode shapes

(normalized with respect to the tip deflection in the dominating deflection di-

rection) good agreement has been demonstrated for the dominating deflection

direction. For the non-dominating deflection directions, the qualitative features

(i.e. the shape) of measured and computed modes shapes are in good agreement,

whereas they quantitatively may display considerable deviations.

Finally, suggestions of potential future improvements of the experimental pro-

cedure are discussed.
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1 Introduction

As part of the certification procedure, all wind turbine blade prototypes are sub-

jected to an experimental test procedure in order to ensure that the produced wind

turbine blade fulfill the actual design requirements. In addition to experimental

tests of load carrying capacity under extreme loading, and tests of the fatigue

resistance, it is common practice to supplement with tests of the basic dynamic

properties of the blades, such as natural frequencies and damping properties, as

these are essential for the dynamic behaviour and structural integrity of the entire

wind turbine. Usually, these dynamic characteristics are determined for the lowest

3-4 flexural bending modes and for the first torsional mode.

However, detailed knowledge to natural frequencies and structural damping

characteristics does not by itself guarantee/ensure an optimal dynamic behaviour

of the wind turbine when subjected to aerodynamic forces arising from the im-

posed wind field. In resent years, stability problems in wind turbine structures

have obtained increasing attention due to the trend towards larger and more flexi-

ble structures. A well known example of a stability problem, that eventually might

lead to failure of the whole structure, is the occurrence of dynamic unstable edge-

wise vibrations. For aerodynamic loading in general1, and for dynamic stability

problems in particular, the deflection patterns of the wind turbine blades are of

vital importance. For a wind turbine blade, the deflections of interest are lateral

translations (flapwise, edgewise) and cord rotation (about the blades longitudinal

axis).

For reasons of simplicity it is common practice to model wind turbine com-

ponents as beam structures in aeroelastic computations. Warping is usually ne-

glected, justified by the fact that the main components are structures with closed

cross sections, whereas the structural couplings between flexural bending in the

two principal directions and structural couplings between torsion and flexural

bending are usually included, as such structural couplings may significantly af-

fect the aerodynamic load characteristics of a wind turbine blade. Although, in

principle included in the traditional Euler or Timoshenko beam modeling of wind

turbine blades, the correct specification of such structural couplings is a delicate

matter.

For the verification of structural models, it is therefore of interest to extend the

traditional dynamic test procedures with new experimental methods suitable for

determination of structurally coupled mode shapes. The present report describes

a test procedure that, in addition to determination of natural frequencies and

structural damping characteristics, also provide such information.

Modal analysis is by far the most common method used to characterize the

dynamics of mechanical systems, and it produces very illustrative and easy in-

terpretable results. The selected experimental procedure is based on the impact

modal testing technique.

The specific experimental procedure is designed as to (simultaneously) resolve

flapwise translation, edgewise translation and cord rotation in a selected number

of cross sections. These deformations are determined with respect to a predefined

reference axis based on three measured translational accelerations in each cross

section. The positions and directions of action of the three accelerometers are

chosen appropriately.

An interest for internal blade structural mechanics, as well as for experimen-

tal modal analysis, has existed since the early prototypes of large wind turbines.

1The aerodynamic loading (and damping) is intimately associated with the angle of attack
of the incoming flow on the turbine blade – a fact that makes the structural coupling between
blade flexture and torsion a matter of utmost importance.
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The 38 m, filament-wound glass/epoxy blade, designed for the research prototype

WTS-3 (Maglarp, Sweden), was subjected to an extensive dynamic test program

before delivery. The blade was designed and manufactured by Hamilton Standard,

and the tests were conducted in 1981. A ”full” experimental modal analysis was

performed [7] using a hydraulic shaker (white noise, two directions at one blade

station) and several accelerometers, measuring one edgewise and two flapwise ac-

clerations, at each of about 20 blade stations. The evaluated frequency response

functions were then subsequently compared with the corresponding results from

a 3D shell element FE-model. The dynamic characteristics corresponding to the

seven lowest natural frequencies were analysed.

Modal analysis has also been used to identify approximate mode shapes, asso-

ciated with the the dominating deflection direction only (i.e. mode shapes exclud-

ing structural coupling between torsion, flapwise and edgewise deformations), of

medium size wind turbine blades (LM17 m and LM19 m) [8]. The approximate

modes, related to the three lowest natural frequencies, were successfully identified

based on the transfer function between a sinusoidal forcing applied in the blade

tip and an accelerometer response recorded successively in up to 68 blade stations.

Compared to the previous work, the present experimental investigation aims at

comparing different experimental modal analysis techniques and subsequently to

identify the most appropriate of these considering expenses, time consumption,

uncertainty and resolution.

The report is structured as follows: Chapter 2 gives the theoretical background

for the modal analysis method. In Chapter 3 follows then a description of the ex-

perimental considerations and cognitions, which are eventually summarized in a

recommended experimental procedure. The results obtained, applying the recom-

mended experimental procedure on a LM 19 m blade, are presented and discussed

in Chapter 4. Finally, a conclusion on the findings from the study, together with

recommendations for potential future refinements of the technique, are contained

in Chapter 5.
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2 Theory of modal analysis

This chapter deals with the theory of the modal analysis procedure used in the

following experiments with wind turbine blades. The aim is to give an overview of

this theory and to explain some of the experimental tasks related to the theory.

Two different issues are discussed. First, the choice of three degrees of freedom

in each cross-section to describe the motion of the blade. Second, the extraction

of mode shapes, natural frequencies, and damping from measurements of transfer

characteristics of the blade.

2.1 Discrete blade motion

In an experiment it is not possible to measure the motion of all material points

of the wind turbine blade. Instead the motion is discretized. A finite number of

degrees of freedom (DOFs) are used to describe the blade motion.

The mode shapes of a blade are assumed to be described by three functions of

the radius: flapwise and edgewise deflections, and torsion of the chord about the

pitch-axis (the axis from root to tip about which the collective pitch of the blade

is set). Each cross-section is assumed to undergo rigid body motion in a plane

perpendicular to the pitch-axis. To describe this rigid body motion only three

DOFs are necessary.

Figure 1 illustrates how a configuration of three DOFs could be chosen: Two

flapwise DOFs to describe flapwise deflection and torsion (denoted uy and θ), and

one edgewise DOF to describe the edgewise deflection (denoted ux). A rotational

DOF to describe torsion is not available in the following experiments and therefore

not considered here.

A DOF is characterized by a direction and a position. The directions and po-

sitions of the three DOFs in a cross-section is important to the description of its

rigid body motion. For some configurations of DOFs the determination of ux, uy,

and θ may be very sensitive to errors in the positions and directions of the DOFs.

The rigid body motion can be derived as functions of the three amplitudes of the

DOFs in the following form (see Appendix A)

u = Ax , (1)

where u = {ux, uy, θ}T is the motion of the cross-section, x = {xi, xi+1, xi+2}T

x

y
z

x

y
DOF no. +2i

DOF no. i

DOF no. +1i

pitch-axis

Figure 1. The degrees of freedom for a wind turbine blade.

Risø–R–1181(EN) 7



is the corresponding amplitudes in the three DOFs of the cross-section, and A is

a three by three matrix given by the positions and directions of the three DOFs.

Relation (1) is derived for any configuration of DOFs by assuming that the rotation

of the cross-section due to torsion is small (θ ≪ 1).

When choosing a configuration of DOFs, it is necessary to ensure minimal sen-

sitivities of the motion u with respect to errors. Small sensitivities to errors in the

measured amplitudes x requires small elements of A. Small sensitivities to errors

in the configuration of DOFs requires small derivatives of elements in A with re-

spect to the positions and directions of the DOFs. More specific considerations

regarding the proper choice of DOFs are given in Appendix A.

Using relation (1) a mode shape of the blade can be estimated in a number of

cross-sections, presuming the correspondingmodal amplitudes have been measured

in the three DOFs of each cross-section. How to obtain these modal amplitudes

from an experiment is the topic of the next section.

2.2 Extraction of modal properties

The extraction of modal properties used in the following experiment is based on a

formulation of the blade dynamics in the frequency domain. A frequency domain

formulation has some advantages which are useful in the modal analysis. This

section contains some mathematics which explains these advantages, and which

helps with the introduction of the experimental procedure and the modal analysis.

Modal properties from an eigenvalue problem

The natural frequencies and logarithmic decrements are the eigenvalues, and mode

shapes are the eigenvectors of an eigenvalue problem. To introduce this mathe-

matical concept the linear equation of free motion for the blade is considered. The

motion of the blade is described by L DOFs as shown in Figure 1. The deflection in

DOF i is denoted xi, and the vector x describes the discretized motion of the blade.

Assuming small deflections and moderate rotation of the blade cross-sections, the

linear equation of motion can be written as:

Mẍ+Cẋ+Sx = 0 , (2)

where (˙) ≡ d/dt, and the matrices M, C and S are the mass, damping and

stiffness matrices. Inserting the solution x = v eλt into equation (2) yields
(

λ2M + λC + S
)

v = 0 , (3)

which is an eigenvalue problem. The solution to this problem is the eigenvalues

λk and the corresponding eigenvectors vk for k = 1, 2, . . . , L. The eigenvalues of

a damped blade are complex λk = σk + iωk. The relationships between natural

frequencies fk, logarithmic decrements δk and the eigenvalues are

fk = 2πωk and δk = −σk/fk . (4)

Instead of logarithmic decrements δk as a measure of damping, the term damping

factors are sometimes used for the quantity σk. The eigenvector vk contain the

modal amplitudes vk,i in all DOFs for mode number k. Using relation (1), the

flapwise– and edgewise deflections, and the torsion of the mode shape can be

computed for each cross-section from the modal amplitudes vk,i, vk,i+1, and vk,i+2.

The modal amplitudes for a damped blade are complex. The imaginary parts

describe phase shifts between the motions at different points on the blade. For

a lightly damped blade these phase shifts are small and are generally neglected.

When the imaginary parts of the modal amplitudes are neglected the resulting
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mode shapes are termed normal mode shapes, otherwise they are termed the com-

plex mode shapes of a damped blade. Normal mode shapes are characterized by

having fixed nodes whereas the nodes of complex mode shapes are traveling.

The above eigenvalue problem shows that the problem of determining natural

frequencies, logarithmic decrements, and mode shapes of a blade could be solved

if one had a way to measure the mass, damping, and stiffness matrices. Such mea-

surements are however not possible. Instead one can measure transfer functions

in the frequency domain which hold enough information to extract the modal

properties.

Definition of transfer functions

A transfer function describes in the frequency domain what the response is in one

DOF due to a unity forcing in another DOF. It is defined as:

Hij(ω) ≡ Xi(ω)/Fj(ω) , (5)

where ω is the frequency of excitation, Xi(ω) is the Fourier transform of the re-

sponse xi(t) in DOF i, and Fj(ω) is the Fourier transform of a force fj(t) acting

in DOF number j. By measuring the response xi and the forcing fj, and perform-

ing the Fourier transformations, the transfer function Hij can be calculated from

definition (5). This transfer function is one of L× L transfer functions which can

be measured for the blade with L DOFs. The complete set of functions is referred

to as the transfer matrix H.

From transfer functions to modal properties

An estimation of all mode shapes can be obtained from only one row or one

column of the transfer matrix H. A row of transfer functions can be obtained

from an experiment by measuring the response in all DOFs, while the point of

excitation is fixed to one DOF. To obtain a column of H, the response is measured

in one DOF while the point of excitation is moved between all DOFs. Either one

of these procedures can be used to obtain all mode shapes.

To understand this basis principle of modal analysis consider the linear equation

of motion (2) for the blade with external excitation

Mẍ+Cẋ+Sx = f(t) , (6)

where the vector f is a forcing vector containing the external forces fj(t) which

may be acting in the DOFs j = 1, 2, . . . , L. To solve this equation, it is assumed

for now that the eigenvectors vk are known. The orthogonality of eigenvectors

yields that any solution to equation (6) can be written as the modal expansion

x(t) =

L
∑

k=1

vk qk(t) , (7)

where qk are the time-dependent generalized coordinates. Inserting (7) into the

equation of motion (6), multiplying by vT
k from the left, and using the orthogo-

nality of eigenvectors2, equations (6) reduces to

q̈k−2σk q̇k+(ω2
k+σ2

k) qk = vT
k f , k = 1, 2, . . . , L . (8)

This equation of motion shows that the generalized coordinates qk are uncoupled,

i.e., the modes of the blade are uncoupled.

2The eigenvectors satisfy the orthogonality conditions vT

k
Mvl = vT

k
Cvl = vT

k
Svl = 0

for λk �= λl. With the normalization of the eigenvectors vT

k
Mvk ≡ 1, it can be shown that

uT

k
Cvk = −2σk and vT

k
Svk = ω2

k
+ σ2

k
. Note that the orthogonality condition does not apply

in the case of multiple eigenvalues. In such case, special modal analysis techniques are needed
for decoupling of modes.
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The decoupling of modes yields that transfer functions can be written as a

sum of modal transfer functions. Using definition (5), and Fourier transforming

expansion (7) and equations (8), the transfer matrix can be derived as

H(ω) =

N
∑

k=1

Hk(ω) =

N
∑

k=1

vkv
T
k

(iω − σk − iωk) (iω − σk + iωk)
. (9)

This relation is the basis of modal analysis. It relates the measurable transfer

functions to the modal properties ωk, σk, and vk. Each mode k contributes with

a modal transfer matrix Hk to the complete transfer matrix. Hence, a measured

transfer function can be approximated by a sum of modal transfer functions:

Hij(ω) ≈
N

∑

k=1

Hk,ij(ω) , (10)

where the modal transfer functions Hk,ij(ω) by decomposition can be written as

Hk,ij(ω) =
rk,ij

iω − pk
+

r̄k,ij

iω − p̄k
, (11)

where the bar denotes the complex conjugate, pk = σk + iωk is called the pole

of mode k, and rk,ij = vk,ivk,j is called the residue of mode k at DOF i with

reference to DOF j. Thus, a pole is a complex quantity describing the natural

frequency and damping of the mode. A residue is a complex quantity describing

the product of two complex modal amplitudes. The modal properties are extracted

from measured transfer functions by curve fitting functions derived from (10) and

(11) with poles and residues as fitting parameters. There are different curve fitting

techniques, however, a few basic concepts are common for all these techniques.

Basic concepts of curve fitting

Figure 2 shows an example of a theoretical transfer function (10) with three modal

peaks corresponding to modes at 1, 2, and 4 Hz which are all damped with a loga-

rithmic decrement of 1 % (−σk/fk = 0.01). Also plotted are the individual modal

transfer functions (11) from which the complete transfer function is computed.

Comparing the complete and modal functions, an important feature of modal

decoupling for lightly damped structures is seen: In the vicinity of a modal peak the

complete (measured) transfer function is approximately given by the correspond-

ing modal transfer function. This feature enables curve fitting of modal transfer

functions to individual modal peaks in the measured transfer function (called

SDOF fits) if the peaks are “sufficiently” separated.

What frequency separation is sufficient depends on the level of damping because

a higher damped mode will have a wider modal peak. If two or more modal peaks

influences each other due to high damping or low frequency separation, a curve

fit over all these modal peaks can improve the result. This so-called MDOF fit

involves a sum of modal transfer functions which number equals the number of

close modal peaks.

The SDOF and MDOF curve fits yield estimations of the poles pk and residues

rk,ij for all modes in the considered frequency band. If all transfer functions in

the transfer matrix were measured, the complete residue matrix can be estimated.

However, the residue matrix is symmetric because rk,ij = vk,ivk,j . This is another

important feature of modal decoupling. Only a row (i fixed) or a column (j fixed) of

the residue matrix needs to be estimated in order to estimate the modal amplitudes

vk,i in all DOFs. A row is obtained by measuring the response in one DOF i while

individually forcing the structure in all DOFs. A row is obtained by measuring

the response in all DOFs while forcing the structure in one DOF j.

10 Risø–R–1181(EN)



Figure 2. Example of the modal decoupling in a transfer function.

Another basic concept of curve fitting in modal analysis is the use of local and

global curve fits. Note that the denominator of the modal transfer functions (11)

are independent of the index i and j. This means that the poles of a row or column

of transfer functions are identical for each mode. A global curve fit uses this feature

by first estimating the poles of each mode from all transfer functions. In the second

step the residues in each DOF of each mode are estimated from individual curve

fits to each transfer function using that the poles are given from the first step.

This procedure decreases the error on the poles and residues compared to a local

curve fit where the both poles and residues are estimated by individual SDOF or

MDOF fits to each transfer function.

These concepts of SDOF/MDOF and local/global curve fits are general methods

in modal analysis. The actual curve fitting routines will be discussed in Section 3.4

dealing with the modal analysis of measured transfer functions.

Accuracy of the estimated modal properties

The accuracy of the estimated natural frequencies, damping, and mode shapes

depends basically on three things: Accuracy of the measured transfer functions,

linearity of the blade dynamics, and accuracy of the DOF characteristics.

Measurement errors on the transfer functions directly influences the curve fits

which are used to estimate the modal properties. Measurement errors can have

many sources in experimental modal analysis. Some of them can be cause by

external mechanical noise, internal electrical noise, false calibration of transducers,

etc.. Also insufficient frequency resolution of the transfer functions decreases the

accuracy of the curve fits.

The non-linearities in the blade dynamics will distort the transfer functions

yielding that the theoretical basis for the curve fits may become invalid. Such

non-linearities could arise from large deflections of the blade, or for example from

a loose tip brake that slides in its support during the measurements.

Even though the modal amplitudes are estimated with high accuracy, the esti-

mated mode shapes may be inaccurate due to poor measurement of the directions

and positions of the DOFs.

All these sources of error are considered in the experiment procedure presented

in the next chapter. Methods to estimate the accuracy of the natural frequencies,

damping, and mode shapes are also discussed.

Risø–R–1181(EN) 11



3 Experimental method

The present chapter deals with considerations related to the practical implemen-

tation of the modal analysis procedure (as described in the previous chapter)

in dynamic testing of wind turbine blades. First different possible experimental

strategies are discussed, then the experiences gained from the performed experi-

mental program are outlined which subsequently leads to formulation of a recom-

mended practice, and finally the extraction of the modal characteristics from the

measured quantities are described.

3.1 Modal analysis techniques

Modal analysis provides information on the dynamic characteristics of structural

elements at resonances, and thus aids in understanding of the detailed dynamic

behaviour of these. A basic feature with the technique is the presumption of lin-

earity of the mechanical system, as described in Chapter 2. A quantitative test on

linearity can be performed, based on a measured complex frequency response func-

tion (resulting from a sinusoidal excitation), by applying the Hilbert Transform

as described in [5]. Other indications of possible non-linearities may be obtained

from evaluation of suitable coherence functions as is described in more details in

the following.

Having decided to base the experimental testing of wind turbine blade dynamics

on modal analysis, two basic questions arises: 1) how to excite the wind turbine

blade, and 2) how to ensure acceleration responses that can resolve the required

types of deflection patterns in selected cross-sections.

Excitation techniques

The different excitation techniques fall in two basic classes – transient excitation

(free vibration) and continuous excitation (forced vibration).

Continuous excitation is typically performed with electromagnetic or hydraulic

based exciters able to produce f. ex. swept-sine excitation, white noise excitation,

pseudo-random excitation or periodic-random excitation. Usually, the excitation

is subjected in only one point, however, for large or highly damped structures it

might be advantageous to apply more exciters simultaneously.

The transient type of excitation is usually associated with either an impulse

force loading or an instantaneous release from an initial deflection of the structure

(known as the snap back principle).

Required recordings

Independent of the selected excitation method, it is in practice usually necessary

to treat the selected blade cross-sections successively, in order to obtain a suit-

able spatial resolution of the eigenvectors describing the mode shapes for a large

structure as a wind turbine blade. However, in principle, if unlimited resources

were available for equipment, all the required response signals could be measured

simultaneously.

In its simplest form, a modal analysis requires recordings only of the structural

response. In this situation a reference response signal is required to relate suc-

cessively recorded cross-sectional responses mutually and thereby determine the

resonance deformation pattern. However, applying this experimental procedure

excludes the results from being subsequently used in a system analysis providing

(absolute) information on the structure stiffness and mass properties. The crucial

12 Risø–R–1181(EN)



point is here, that only information on the relative proportion between stiffness–

and mass properties is obtained.

If, in addition to the structural response, also the force excitation (magnitude

and direction) is recorded, then the system parameters (stiffness– and mass prop-

erties) can be identified in addition to information on natural frequencies and

deflection/damping properties at resonances.

Analysis methods

The analysis method, used to extract the required results from the measured data,

can be performed either in the time domain or in the frequency domain. The

time domain method is based on a least square optimization of modal ampli-

tudes, modal damping and modal phases, given a selected (but arbitrary) number

of resonances. The frequency domain analysis is based on the concept of trans-

fer functions as described in Chapter 2 (when the excitation force is recorded –

otherwise it is based on the spectral energy contained in the resonance peaks).

Investigated experimental procedures

In the present experimental campaign, the main effort has been put on a tradi-

tional approach applying transient force excitation in combination with frequency

domain analysis based on transfer functions. The motivation for this choice is

elaborated on in Appendix E. The experiences gained from the impact excitation

approach, during the experimental campaign, are reported in Section 3.2 which

directly leads to a detailed description of a recommended experimental practice

in Section 3.3 and an associated analysis method in Section 3.4. Alternative ex-

perimental strategies and analysis methods, investigated during the course of the

project, are briefly described in Appendix E.

3.2 Experimental cognitions

All the experimental tests have been performed on a LM 19.1 m wind turbine

blade mounted in a horizontal position by clamping the root blade flange to a

rigid test stand. The blade is not a standard product, but a LM19 version with

increased edgewise structural damping characteristics (cf. the logarithmic decre-

ments presented in Section 4.2). In order to avoid large initial deformations, that

could potentially complicate the practical determination of a suitable geometric

reference axis, and in addition to obtain a realistic static load picture for a blade

mounted on a real wind turbine, the investigated blade structure has been mounted

with the tip chord in a vertical position. Further, to prepare for a possible appli-

cation of ”skew” exciting forces (forces with an angle of the magnitude of 45 deg

with the chord that is able to excite flapwise as well as edgewise dominated blade

modes simultaneously) the blade is, for practical reasons, mounted with the robust

leading edge (free of edges contrary to the tailing edge) pointing downwards.

Excitation

The transient force excitation is established by means of a hammer device of

sufficient mass and velocity that impacts the turbine blade once, giving it an

initial velocity and acceleration 3. The structure is at rest before the excitation.

After the hammer impact, the (external) force is zero again, and in this situation

3Note, that the force excitation should be applied only at locations that is not nodes of
relevant mode shapes.
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equation (6) reduces to an initial value problem with only homogeneous solutions.

The turbine blade thus oscillates with a superposition of its discrete eigensolutions.

Ideally, considering the excitation force mathematically to be described by a

Dirac function, δ(·), the hammer excitation enables all frequencies to be excited

simultaneously with an equal amount of energy (a flat input spectrum). With the

notation introduced in Chapter 2, this can be seen from

f(t) ≡ f0δ(t− t0) , (12)

whereby the Fourier transform of the external forcing is formulated as

F(ω) ≡ f0 . (13)

In practice, however, the concept of a Dirac function is only a (useful) theoretical

abstraction, and the hammer hit will have a final duration in time, with the

consequence that an upper cut-off frequency is introduced in the Fourier spectrum

of the excitation force. This fact is utilized actively in the present experimental

procedure, by applying the hammer head as a mechanical filter, and thus making

the appropriate choice of the hammer head an important parameter for this type

of transient excitation.

For wind turbine blades only a limited frequency band is of relevance – typically

the frequency range between 0.5 Hz and 30 Hz. In this situation the hammer head

can be tuned/tailored to concentrate the total excitation energy, supplied by the

hammer hit, in this frequency band. Introduction of a cut-off frequency in the

excitation spectrum in this way has appropriate implications for the required

signal– and sampling4 resolution.

The implications for the signal resolution are closely related to the signal/noise

ratio associated with the relevant frequency range. If undesirable high frequency

modes were excited, high signal levels of accelerations in a frequency band, that

are without practical relevance, would be present in the response signal. As the

magnitude of the acceleration response equals the deflection amplitude weighted

with the associated natural frequency squared (harmonic oscillation), the sensi-

tivity of the amplifiers would have to be adjusted to these short-term peeks, thus

giving rise to unacceptable amplitude resolution of the important low-frequency

part of the response. This would in turn reduce the signal/noise ratio in the rele-

vant frequency range. By introducing the mechanical filter these short-term peaks

are avoided, and, in addition, the magnitudes of the excitation– as well as of the

response signal, in the important frequency range, are enhanced. Assuming the

share of the noise, originating from the electronic measuring equipment, to be the

dominant noise contribution, and further assuming this contribution to be inde-

pendent of the signal level, the signal/noise ratio will be improved, in the relevant

frequency range, as a consequence of application of the mechanical filter.

The implications for the sampling resolution are related to a possible distortion

of FFT generated spectra caused by aliasing [11]. As we aim at performing the

signal analysis in the frequency domain, it is of vital importance to ensure a

correct representation of the FFT transformed excitation– and response signals.

By introducing an appropriate mechanical filter, aliasing is avoided by selecting a

sampling rate with a Nyquist frequency, that exceeds the introduced filter cut-off

frequency.

The cut-off frequency, introduced by the mechanical filter, is closely related to

the duration of the contact between blade and hammer head in a stroke. The

contact duration in turn depends on impact velocity, rebound velocity, elastic

(and plastic) properties of the structure/hammer, tip radius and hammer mass.

4Time resolution of the excitation signal as well as of the response signal.
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Figure 3 illustrates the fundamental effect on the excitation force characteristics

caused by applying two different stiffnesses of the hammer head. The results are

based on a simple mathematical model, in which the LM 19 m blade is represented

by a beam model with 9 degrees of freedom. No damping of the structure is taken

into account in the modelling.

Even though the general hammer motion is approximately the same for both ex-

periments (and thus the momentum exchanged) there are significant differences.

The impact duration is significantly longer using the soft hammer head, corre-

sponding to the fall off in the spectrum of the excitation force and the reduced

content of high frequency component in the response.

Depending on the dynamic characteristics of the blade, the hammer head that

suits the actual experiment best must be selected. This is basically a trial and

error process that may be facilitated/supported by experience and by numerical

investigations. Note, that the choice of a suitable hammer head will usually (in

addition to the general dynamic characteristics of the blade) also depend on the

particular cross-section to be investigated.

Response

The response signals consist of accelerations measured in an arbitrary number

of cross-sections along the pitch axis. Each cross section is instrumented with

two (spatially displaced) uniaxial accelerometers recording the accelerations in

the flapwise direction, and one uniaxial accelerometer recording the acceleration

in the edgewise direction, respectively. As described in Section 2.1, each cross

section is assumed to deflect as a rigid body (in a plane perpendicular to the
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Figure 3. Numerical model of hammer excitation of the blade applying two different

stiffnesses of the hammer head.
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pitch axis). With this assumption, supplemented by an assumption of small de-

flections, a unique relationship exists between the accelerometer recordings and

the modal displacements of the cross-section expressed in terms of flapwise de-

flection, edgewise deflection and torsion around the pitch axis, respectively. This

relationship can be utilized in sensitivity considerations aiming at determining

the most suitable definition of the DOF’s within a cross-section. Using resolution

of the torsional deflection (which appears to the most critical of the investigated

deflection types) as the decisive factor, two simple guidelines can be derived (cf.

Appendix B):

• The distance between the two accelerometers recording the flapwise acceler-

ations should be as large as (practical) possible; and

• The angle between their measuring axis should be as close as possible to zero

degrees.

Reference axis

In order to link measured modal deflections in one cross-section to modal deflec-

tions in other cross-sections, a reference axis for the blade must be defined. The

reference axis ensures that the deflections computed for each cross-section, ac-

cording to the algorithm described in Appendix A, all refer to the same Cartesian

co-ordinate system. In the present experimental campaigns, the reference axis has

conveniently been chosen as the symmetry axis from the cylindrical blade root

cross-sections extended to the blade tip. The practical aspects related to estab-

lishment of the reference axis are further described in Section 3.3.

Error sources

When resting on impact testing and extracting the modal characteristics in the

frequency domain, measurement of the transfer function, as defined in Section 2.2,

become of vital importance (cf. Section 3.4). Consequently, besides the accuracy

of geometric quantities, such as measuring/excitation location and direction, the

accuracy of the measured transfer function, reflecting the accuracy of the sensors

and the recording system, is important. These two classes of error sources are

addressed in the following.

Uncertainties in DOF characteristics

To reduce the uncertainties, originating from erroneous definition of the geom-

etry (i.e. bad specification of forcing/recording location or direction), different

approaches have been considered.

Two approaches has been examined for the alignment of the response recording:

1) mounting of the accelerometers directly on the surface of the wind turbine blade,

and 2) mounting of the accelerometers on a special designed support structure

attached to the blade.

Basically, the applied support structure consists of a saddle connected to a beam

on which the accelerometers are mounted. The saddle is connected to the beam by

a hinge that allows for rotation around an axis perpendicular to the beam axis. The

saddle is equipped with three adjustable legs, and it is easily fixed to a particular

blade cross-section by tightening a belt. The mounting beam is equipped with

levelers that facilitate the adjustment of the recording directions by adjusting the

hinge rotation and the length of the saddle legs. The applied support structure is

shown in Figure 4 below.
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Figure 4. Support structure for response measurements.

Concerning determination of the DOF locations, relative to some global blade

coordinate system, the two recording methods are considered to result in uncer-

tainties of the same order. However, the determination of the DOF locations is

somewhat simpler with the accelerometers attached directly to the blade surface,

where it suffices to measure simple relative coordinates (e.g. relative to blade root,

leading edge, trailing edge etc.), and then subsequent transform these to the abso-

lute coordinates, based a detailed drawing of the actual blade. The complicating

factor, when using the support structure, is that the position of the support struc-

ture, relative to a cross-section, can not be easily measured. This problem can,

however, be solved by aligning a reference laser beam along the blade at a conve-

nient distance from the blade surface (cf. Section 3.3). Aligning the accelerometers

in the vertical direction, the point of intersection, between the laser beam and a

screen mounted on the support structure, provides the necessary information for

assessing the DOF positions in the global coordinate system.

Concerning determination of the DOF directions, the recording method, based

on the support structure, is superior, as it turned out to be difficult to control

the measuring directions of the accelerometers, when these were mounted directly

on the blade surface. An error introduced in the measurement direction in turn

introduces a considerable error in primary the blade torsion deflection component

(c.f Appendix B). For this reason, it was decided to base the final blade testing

on the recording approach based the measurement bridge, where much better

resolution of the torsion response was obtained.

The sensitivity of the (torsional) mode shapes, on errors in location and di-

rections of DOF’s, can be reduced by appropriate definitions of the DOF’s. In

Appendix B it has been shown that an optimal DOF configuration (assuming

three DOF’s in each blade measurement section) requires the distance between

the two flapwise DOF’s to be as large as possible, and the directions of these to

be identical.

Analogous to misalignment of the recording equipment, errors are introduced

in the blade mode deflections, if the specified direction of the applied forcing is

contaminated with uncertainties. In order to avoid (minimize) such errors, three

different techniques for generation of impact loading were examined: a pendulum,

a hand-actuated hammer, and a special guided hammer (the ”seesaw” – depicted

in Figure 6).

The pendulum used here was a piece of heavy spar, mounted and supported
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through a chain attached to each end. This pendulum is characterized by rather

good control of force level and direction, but it takes a very stable support struc-

ture to carry it (e.g. an industrial truck), and the use is restricted to horizontal

excitation. For these reasons this type of hammer exciter was excluded in the

further analyses.

The classical hand-actuated hammer was used only for exciting a small test

blade. Due to the difficulties controlling the direction as well as the force level,

this method was found unattractive.

The ”seesaw” was in this case a welded, sledge-like piece of steel, carried and

suspended by a standard workshop lift. This hammer is characterized by a good

control of the force direction, however, with some difficulties in controlling the force

level since this hammer is operated manually. It could be conveniently moved to

different positions along the blade, to be operated for excitation in horizontal–

as well as in vertical direction. In conclusion, this hammer was considered as the

most appropriate for transient excitation of the wind turbine blade.

In addition to errors in the specified direction of the forcing and recording,

possible errors in the specified location of these quantities also affect the result of

a modal analysis. It is therefore essential that the measuring– and forcing locations

are carefully determined.

Uncertainties related to the measured transfer function

The basic requirements for establishing the transfer function are that the input–

and response signals are Fourier transformable, and that the input signal is non-

zero at all frequencies of interest. These requirements are easily fulfilled. The

next consideration is how to compute the transfer function. The straight forward

method is of course to compute the transfer function directly as the ratio between

the Fourier transforms of the response and input, as expressed in the definition

given in equation (5).

However, due to the inevitable presence of extraneous noise in the measured

signals, this procedure will result in estimates of the transfer function encumbered

with significant statistical uncertainty being partly based on only single (raw)

estimates of the Fourier transforms of the noise contributions. A more suitable

approach, involving a signal averaging procedure, is to determine the transfer

function as the ratio between the cross-spectrum (between the observed input–

and the observed response signal) and the power spectrum of the observed force

signal. It can be shown that this choice of transfer function estimate, for signals

containing external noise contributions, is an optimum choice in the sense that

the estimate, in an average sense, is the best possible (cf. Appendix C).

We now interpretate the observed force signal, as well as the observed response

signal, as superpositions of a physical signal and an inevitable noise contribution.

Assuming that the noise, superimposed on the physical response signal, is uncor-

related with the physical input signal, and that the noise, superimposed on the

physical input signal, is uncorrelated with the physical input signal as well as

with the ideal response signal, the optimum transfer function estimate, Ĥij(ω), is

determined from (cf. Appendix C):

Ĥij(ω) =
SF tXt

ij (ω)

SF tF t

ij (ω)
=

Hij(ω)

1 +
SNf Nf

ij
(ω)

SF F
ij

(ω)

, (14)

where Hij(ω) is the transfer function associated with the physical force– and

response signals, SF tXt

ij (ω) is the cross-spectrum between the observed forcing and

the observed response, SF tF t

ij (ω) is the power spectrum of the observed forcing,
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SFF
ij (ω) is the power spectrum of the physical forcing, and SNf Nf

ij (ω) is the power

spectrum of the noise superimposed on the force signal. The lower indices, i and

j, indicate that the quantities are related to an experiment where the forcing is

acting in DOF number j, and the response is measured in DOF number i.

Compared to a ”traditional” estimate of the transfer function, computed accord-

ing to the definition given in equation (5), the present optimum transfer function

estimate excludes the influence from the inevitable noise in the response signal.

The price we payed, to avoid the influence from the response noise, is that the

optimum transfer function estimate is a biased estimate of the ideal transfer func-

tion. Equation (14) shows that the bias depends on the input signal/noise ratio

only, and it tends consistently to zero when the input noise contribution approach

zero.

In addition to the bias on the estimated transfer function, caused by natural

variability of the input signal noise, the estimated transfer function is also affected

by statistical uncertainty in the estimates of the (expected) cross– and autospectra.

The statistical uncertainty on the spectral estimates is inversely proportional to

the number of averages used in the estimate (cf. Appendix D), and usually quite

few averages suffice (say, of the order of 5).

Finally, possible non-linearities in the investigated physical system will intro-

duce variability in the estimated transfer function. The application of a transfer

function in modal analysis presumes a linear constant parameter physical sys-

tem, and in case this presumption is violated, the effect on the estimated transfer

function will be similar to the effect caused by conventional signal noise. Possible

non-linearities related to a wind turbine blade could be sliding between tip brake

and the remaining part of the blade, non-linear damping characteristics or load-

sensitive stiffness (unlikely for the load levels applied in the present experiments).

Possible non-linearities (or errors), associated with the recording technique, could

occur if the used measuring bridge is not completely fixed to the blade structure.

Error measures

A handy measure of the quality of the estimated transfer function (and thus

the associated measurements) is the coherence function (cf. Appendix C). Having

estimated the transfer function in terms of spectral quantities, as described above

in equation (14), the coherence function is easily derived. The coherence function

between the observed input– and the observed response signals, γF tXt

ij

2
(ω), is

defined as :

γF tXt

ij

2
(ω) ≡

|SF tXt

ij (ω)|2

SXtXt

ij (ω)SF tF t

ij (ω)
, (15)

where SXtXt

ij (ω) is the power spectrum of the observed response signal.

For perfect correlation (under a linearity assumption) between observed input–

and response signals, the coherence function can be shown to equal one5 (cf.

Appendix C). The coherence function thus indicates the amount of noise and

non-linear effects present in the investigated system. In addition, it indicates the

amount of statistical uncertainty in the spectral estimates, on which the estimate

of the transfer function is based. The coherence function is consequently perfectly

suited as an ”on-line” decision tool6 for assessing the number of averages required

for obtaining satisfactory spectral estimates.

5Except at resonance and antiresonance frequencies.
6The idea is to follow the convergence of the coherence function as function of the number of

applied averages.
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Measuring the degree of correlation between the observed input– and response

signals, the coherence function is intimately related to the quality of the estimated

transfer function. It is therefore to be expected that the statistical error on the

transfer function estimate depends on the coherence function. This error, as ex-

pressed in terms of the standard deviation on the estimated transfer function,

σĤij
(ω), can be quantified explicitly as [9]

σĤij
(ω) =

(

1− γF tXt

ij

2
(ω)

)1/2

|γF tXt

ij (ω)|
√
N

, (16)

where N denotes the number of samples to be averaged in the estimate of the

transfer function. In accordance with the above considerations, σĤij
(ω) is seen to

depend strongly on the coherence function. Also consistent with our expectations

is that the standard deviation on the estimated transfer function is seen to tend to

zero forN approaching infinity, or for the coherence function approaching one (cor-

responding to a perfectly linear system without extraneous noise contributions).

Note, that scatter on the transfer function in general might depend somewhat on

the frequency.

Noise sources

As stated above, signal conditioning is an important parameter for achieving a

satisfactory estimate of the system transfer function. One of the crucial recog-

nitions, with the present type of blade tests, is that the response signal often

combines low signal levels with low frequencies. This puts severe requirements

on the response sensors. The experimental campaign has shown that the initially

used B&K Delta Tron accelerometers (cf. Appendix F) performed unsatisfactory,

and these were consequently replaced by conventional accelerometer types with

an associated charge amplifier (cf. the setup described in Section 3.3).

However, the signal/noise ratio does not only relate to the electronic features

of the recording equipment. Part of the noise in impact testing is due to multiple

rebounds which vary randomly between tests. Reduction of such error sources

depends on the skills of the experimenter, and the possibility for on-line filtering by

continuously monitoring of the quality of the excitation. Analyses [2] have shown,

that provided the force excitation do not vary between tests, the signal/noise ratio

obtained from impact testing is comparable with the one obtained using harmonic

excitation.

Roving recording or roving forcing

Due to the symmetry of the FRF matrix, expressing the dynamic relationship

between excitation (direction, magnitude) at a given location and the structural

response in one of the defined DOF’s, the experiment can be performed either

with fixed excitation location and roving response recording, corresponding to the

chosen discretization of the blade motion (cf. Chapter 2), or vice versa. Note, that

in case of roving excitation, the mechanical filter, to be used, usually will depend

on the position of the point of excitation. From a theoretical point of view no

recommendations can be derived. However, practical aspects related to conduction

of the experiments may decide which strategy is the most convenient. In case of

hammer impact with the recording equipment mounted on measuring bridges, the

experimental work involved in the execution of the two strategies is very similar. A

small investigation of the coherence functions related to excitations/recordings in

three cross-sections (positioned in the blade root, the middle of the blade, and at
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the blade tip, respectively) was slightly in favour of the roving recording concept,

as the best coherences were obtained in the outher part of the blade using this

concept.

Misinterpretation of results

It should be noted, that even in case all the above sketched technical requirements

for minimization of possible error sources are meet, one might end up with a

misleading interpretation of the achieved results, if the analysed physical system

diverts from the ”ideal” physical system.

In the case of blade testing, such misinterpretations could occur if f. ex. the test

stand does not have sufficiently stiffness, or if the measuring bridge is not properly

designed, such that undesirable flexibilities from the bridge is introduced into the

(compound) structural system7(or, alternatively, if the used measuring bridge is

not completely fixed to the blade structure).

In the following section the experience gained through the measuring campaign,

and briefly described above, is summarized in a recommended experimental prac-

tice for wind turbine blade testing.

3.3 Recommended experimental procedure

Based on the experiences gained during the experimental campaign, as described

in Section 3.2, a recommended practice for wind turbine blade testing has emerged.

Although the experience relates to the tested LM 19 m blade, the learnings

achieved are believed to be of a more general nature and as such also applicable to

other wind turbine blades8. The recommended experimental setup is summarized

in Figure 5 below.

4 channel
Amplifier

Accelerometers

Support

Hammer

Force
transducer

(BK 4370)

(BK 8201)

(NEXUS 2692) (BK 2816)

(Pentium)

Aquisition
Frontend

PC

Figure 5. Schematic illustration of the experimental setup.

7Of course the introduction of a measuring bridge will inevitably modify the compound
structural system. However, by designing the bridge sufficiently stiff and light, this effect can
usually be neglected in the frequency range of interest.

8At least applicable for other blades with comparable characteristics.
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Mounting of the blade in a test stand

The blade is mounted in a horizontal position with the root flange clamped to a

rigid test stand. To ensure that the correct physical system is investigated (i.e.

the boundary conditions of the physical blade is as theoretically specified), it is

important either to ensure that the test stand is perfectly rigid or, alternatively,

to measure the flexibility of the stand. As motivated in Section 3.2, the blade

is mounted with the tip chord in a vertical position and with the leading edge

pointing downwards.

Transient loading

The transient loading is established by means of a special designed guided hammer,

shown in Figure 6, that ensures sufficient accuracy in the location and direction of

the applied forcing.

Force transducer

Blade

Accelerometers

Hammer

Figure 6. Experimental setup with the excitation hammer in the foreground.

Note, that the location of the forcing must not coincide with nodes of modes

of interest, and that the direction of the applied forcing should be adjusted to

the mode shapes of relevance for the investigation9. Usually, two (independent)

experimental campaigns are required to resolve all mode shapes of interest. One

campaign is devoted to resolve the flapwise– and the torsional mode shapes, and

another campaign is performed to obtain the edgewise modal properties.

When applying the forcing, care should be taken to achieve impulse loadings of

(approximately) the same magnitude, for repeated strokes related to a particular

cross-section, in order to improve the signal/noise ratio [2]. For the same reason,

9In principle, due to structural coupling between torsional, flapwise and edgewise deflection,
the excitation can be applied in an arbitrary direction. However, these couplings are usually
relative week with the consequence that the signal/noise ratio for recordings of the deflection
in the direction perpendicular to the forcing direction become poor. Thus, in practice, the most
reliable results are obtained by applying the excitation in the flapwise as well as the edgewise
direction, and subsequently only derive a particular modal shape from the excitation applied in
the dominating modal deflection direction.
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care should also be taken to obtain loadings of a suitable magnitude. In order not

to lose the time advantage of the impulse technique, compared to other excitation

methods, only a few repeated strokes are usually performed (in the present ex-

perimental campaign between 3 and 5). Therefore, in addition to averaging, time

sample windows are used to further improve the signal/noise ratio.

However, the selection of a suitable time window is not straight forward. To

minimize the distortion of the frequency domain representation of the forcing,

caused by applying a time sample window, requires minimization of the width of

the main lope of the window transform. However, reducing the width of the main

lope of the window transform implies decrease in the effect of the noise reduction

obtained, as both the width of the main lope and the amount of noise reduction

are inversely proportional to the width of the window in the time domain [2]. A

well performing compromise is usually achieved by applying a time sample window

with unity amplitude for the duration of the pulse combined with a cosine taper

with a duration of 1/16 of the total sampling period decreasing from unity to zero.

Multiple rebounds should be avoided as the resulting load frequency spectrum

will have zeros due to the periodic nature of such input signals. As a consequence,

very low levels of force will be imposed at certain frequencies, giving rise to a

poor signal/noise ratio at these frequencies. In practice, the applied hammer was

equipped with a counteracting spring that facilitated a single-loop force history, by

providing a favourable ratio between the hammer velocity and the hammer force

counter acting the hammer movement just before impact. It is advised to quantify

the quality of the imposed loading by on-line recording of the coherence function.

In case of badly conditioned signals, the associated result should be rejected.

Imposing the loading as described above is a delicate matter, and it may well

require some practice to achieve the necessary skills.

The hammer loading is recorded by means of a B&K force transducer type 8201

(cf. Appendix F) mounted on the hammer head, and with a mechanical ”rubber

filter” mounted on top (cf. Section 3.2). The characteristics of the mechanical

filter (the hammer head hardness) must be adjusted based on a trial and error

procedure, until the wanted input frequency characteristics (i.e. duration of the

applied force excitation pulse) is achieved. In order to assure a suitable level of

the forcing, over the frequency range of interest, the first zero crossing of Fourier

transform of the loading must be well above the maximum natural frequency of

interest. The optimum hammer head hardness will usually depend on the blade

position, at which the impulse forcing is applied, due to the varying elastic stiffness

of the blade structure with the position. The signal from the force transducer is,

through a B&K 2635 charge amplifier, led to the B&K PULSE system.

Data aquisition system

In the present configuration, the PULSE system basically consists of the B&K

Multichannel Aquisition front-end unit (Type 2816) integrated with the PULSE

software (B&K Noise and Vibration Analysis Type 7700) running on a pentium

Personal Computer equipped with two dedicated DSP bords (Type ZD 0812)

that perform the realtime FFT and control the communication between the front-

end and the PC. The setup is illustrated in Figure 5. The front-end unit was

equipped with a B&K Signal Analyzer Interface Module (Type 7521), three 4-

channel B&K Input Modules (Type 3022) and a B&K generator module (Type

3107). The Signal Analyzer Interface Module provides the sampling clock and

transmits data to the TAXI interface. The Input Modules support measurements

on four channels up to 25 kHz. The Generator Module is a single channel generator

with a frequency range of 0 to 102.4 kHz (this module is only used to control of

the random excitation using an electromagnetic exciter – cf. Appendix E). Further
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details on the hardware can be found in Appendix F.

Spatial discretization

Depending on the mode shapes of relevance, a suitable spatial discretization along

the blade axis is selected by focusing the response recordings on a limited number

of blade cross-sections (cf. Section 2.1). In general, the selection of convenient

measuring cross sections must take into account not to locate these at nodes of any

of the relevant mode shapes. In the present experimental campaign a maximum of

20 cross sections were selected. For practical reasons, the cross section, at which

the forcing is applied, has been selected not to coincide with any of the cross

sections where response recordings are performed. The forcing is used as reference

to link together the responses from the various cross-sections, and therefore a

response recording at the cross-section where the force is applied is not required.

Put in an other way, this means that the diagonal elements of the system transfer

matrix, H, defined in Section 2.2 is not needed.

Recording of the response

For each cross-section three DOF’s are recorded – two aligned in the flapwise

direction and one directed along the edgewise direction. The associated three

accelerometers are mounted on a support structure as illustrated in Figure 4. The

use of a support structure has the following advantages compared to mounting

the accelerometers directly on the blade surface:

• Improved accuracy in the DOF direction specification; and

• The establishment of new measuring cross-sections are somewhat facilitated.

The disadvantages are:

• That the transformation of the measured DOF locations, to the required

global coordinate system, is more complicated and requires establishment of

a laser beam reference axis in space; and

• That the weight of the support structure might affect the structural be-

haviour.

The accelerometers mounted on the support structure were uni-axial B&K ac-

celerometers type 4370. These were connected to the B&K PULSE system [3]

through a B&K NEXUS Charge Conditioning Amplifier (Type 2692). Detailed

information on the specifications of the equipment can be found in Appendix F.

Besides amplifying the response, the B&K NEXUS Charge Conditioning Amplifier

is tailored with dedicated high– and low-pass filters used to eliminate undesirable

high frequencies and thereby also aliasing.

Determination of DOF in a global coordinate system

A laser beam is established along the blade, at a convenient distance from the blade

surface. If the orientation of the laser beam, relative to e.g. the blade root cen-

terline and the (un-deflected) blade tip, is accurately measured, then the required

reference axis in space is established, allowing the use of support structures in the

recording. Provided that the support structure, and thus the accelerometers, are

aligned in the vertical direction, the coordinates of the accelerometers, relative to

the reference axis, are easily measured by attaching a light-weight screen to the

support structure, and read the laser beam intersection point at this screen. The

24 Risø–R–1181(EN)



transformation of the DOF position as well as the DOF direction to a selected

global coordinated system is thus straight forward.

Now, the self-weight of the blade will introduce a (modest) initial deflection

of the blade when clamped to the test stand as described previously. As a con-

sequence, the observed DOF coordinates (in the global coordinate system) will

wrongly include this initial blade deflection. The relation, connecting the response

observations in given cross section with the rigid body displacements of the same

cross sections (cf. equation (A.4)), assumes that the observed DOF coordinates

refer to an un-deflected blade configuration. As a consequence, an error in the

mode shape determination is introduced, unless we correct the observed DOF co-

ordinates for the initial blade deflection. In the present campaign, the correction

was performed based on measured values of the initial blade deflection, assuming

the un-deformed pitch axis to pass through the centre of the root section and the

mid point of the tip chord. The initial deflection is negligible in the root part of

the blade, and it is usually only of importance for response recordings close to the

tip.

Noise reduction

The resulting response signal is, as were the case for the force signal, also superim-

posed with a noise contribution. To minimize the effect of this noise contribution,

it is advantageous to let the total sample time approximately correspond to the

length of the response signal. In case the duration of the sample signal is much

shorter than the total sample time, the noise may constitute a significant part

of the total energy contained in the signal, thus resulting in a poor signal/noise

ratio. In case the duration of the response signal is considerable longer than the

total sample time, a rectangular time window is implicitly applied, implying the

usual distortion of the transformed response signal. To reduce the effect of inexpe-

diently sample lengths, an exponential window is usually multiplied on the time

response signal. Note, however, that the use of exponential windowing has the

effect, that it increases the apparent damping on the natural frequencies, which

must subsequently be corrected for10.

Calibration and adjustment of input ranges

Immediately before starting the measuring campaign, the accelerometers are cal-

ibrated using the B&K dedicated calibration equipment (Type 4294). The B&K

calibrator offers a calibration of the sensors using a fixed frequency (159.2 Hz)

and a reference level of 10 m/s2. However, when performing experimental modal

analysis of very large blades (i.e. 40 m and above), the first flap frequency is likely

drop even below 1 Hz. If the aim is to cover the range of the first flap frequency

up to the first torsional frequency, this will mean something like 0.5 Hz to 15 Hz.

Most accelerometers on the market are primarily designed for considerably higher

frequencies, and in this situation one should therefore throughly investigate the

performance of the choosen sensors in the 1 Hz region. One way to do this is

through direct comparison (f.ex. parallel mounting on an electromechanical ex-

citer, producing a sine motion) with a DC accelerometer having well documented

performance at low frequencies. An even better approach is to use a high preci-

sion crankshaft calibrator to perform absolute calibration over the full range of

interest.

A calibration of the force transducer is not required, partly because the drift

of this instrument is considered negligible, partly because the force signal is used

10The added damping is very precisely known, and the correction is therefore very reliable.
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only as a reference, such that the absolute value of this signal is not essential for

the subsequent data analysis.

Finally, besides calibration, the introductory measuring phase also include ad-

justment of the input ranges of involved signal conditioning– and analysis equip-

ment, to achieve the optimum signal/noise ratio without overloading [12].

3.4 Modal analysis

To estimate the mode shapes, natural frequencies, and damping from the measured

transfer functions, a modal analysis software calledME’scopeModal [14] is utilized.

This software is basically a specialized tool for curve fitting the theoretical transfer

functions derived in Chapter 2 to the measured transfer functions. The modal

analysis of the measurements is divided into four steps:

1. Export of transfer functions from Pulse to ME’scopeModal

2. Extraction of modal parameters by curve fitting

3. Calculation of mode shapes from estimated residues

4. Estimation of accuracy of modal parameters

Each of these steps are described in more details below.

Export of transfer functions from Pulse to ME’scopeModal

All transfer functions measured at the three DOFs in each cross-section are trans-

ferred from the Pulse system to ME’scopeModal using the Universal File Format

[14]. It is important to have a file ordering scheme that identifies each transfer

function to its DOF. The functions can thereby be numbered accordingly when

they are imported into ME’scopeModal.

Figure 7 shows a screenshot of ME’scopeModal after fifteen measured transfer

functions are imported. A list of all functions are shown in the right of the picture

while the magnitude of three functions are plotted to the left. These three transfer

functions are measured in the first selected cross-section of the blade. They are

therefore the first three functions in the list. The next three transfer functions in

the list are measured in cross-section number two and so on.

The blade in the example of Figure 7 has seven modes in the frequency range

from 0–25 Hz. This can be seen by the seven modal resonance peaks. The magni-

tude and form of these peaks are described by the corresponding modal parameters

which are now to be estimated from global curve fits.

Figure 7. Measured transfer functions imported into ME’scopeModal.
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Extraction of modal parameters by curve fitting

For curve fitting to the measured transfer functions ME’scopeMODAL uses a

Rational Fraction Polynomial (RFP) curve fitter (see e.g. [15], or [16] for a review

of several curve fitting techniques). The RFP curve fitter is a global curve fitter

capable of doing SDOF and MDOF fits (cf. Section 2.2). The name of this fitter

refers to the fit function which is a rational fraction of polynomials.

The RFP fit function arises from the theoretical transfer function (10) by col-

lecting the fractional modal transfer function in the sum (10) to a single rational

fraction of polynomials. It can be shown that the denominator of the RFP fit

function is the characteristic polynomial which roots are the poles of the modes

involved in the fit. The poles can therefore be obtained from the estimated co-

efficients of the denominator, similarly, the residues can be obtained from the

estimated coefficients of the numerator.

The RFP fitter minimizes the absolute difference between the RFP fit function

and the measured transfer function. This minimization problem can be shown to

be linear [15], and the solution to this linear problem are the coefficients of the

numerator and denominator, i.e., the poles and residues. An important feature of

the RFP fitter is that the linear minimization problem has a form which enables

estimation of the poles independently of the residues. Because all poles of a mode

(natural frequency and damping factors) are theoretically identical for all transfer

functions a global curve fit with a RFP fitter to several measured transfer functions

can be used increase the statistical accuracy of the poles. A higher accuracy of

the poles also increases the accuracy of the estimated residues.

To work with the RFP curve fitter in ME’scopeMODAL three steps must be

performed by the user. First, choose the frequency bands where modes are suf-

ficiently separated which enables SDOF fits, and choose the bands where modes

are close which therefore requires MDOF fits. Second, the RFP fitter is used to

estimate the poles of the modes in the chosen bands, and finally the residues of

all modes in each DOF are estimated from the global RFP fit.

Figure 8 shows a screenshot of ME’scopeMODAL during a global RFP fit to

the fifteen measured transfer functions in the example from Figure 7. In the right

side of the picture is shown a MDOF fit on the two first modes and a SDOF to

the third mode. In the left side is shown a list of the fifteen transfer functions.

In this list each transfer functions can be checked to show the RFP fitter which

functions to include in the global fit.

Figure 9 shows the ME’scopeMODAL’s list of the estimated poles and residues

obtained by the global RFP fit. The natural frequencies fk and damping factors

−σk of the three first modes are listed in Hz, together with the damping ratios

Figure 8. Global curve fitting to the measured transfer functions with ME’scope-

Modal.
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Figure 9. Estimated modal parameters resulting from the global curve fits shown

in Figure 8.

−σk/ωk. The complex residues of all fifteen DOF are given by a magnitude and

argument for each mode. These estimated residues are used in the next step to

computed estimations of the mode shapes.

Calculation of mode shapes from estimated residues

The estimated residues are used to calculate the rigid body motion (flapwise and

edgewise deflection, and torsion) of each cross-section for each modes. Residues

rk,ij are defined as the product of the modal amplitudes vk,i and vk,j in DOF i and

j. Because the excitation point is fixed, i.e., j is the same for all rk,ij , the modal

amplitudes in the DOFs are proportional to the estimated residues. The rigid body

motion of each cross-section can therefore be estimated from the corresponding

three residues based on the relationship between modal amplitudes and rigid body

motion given by equation (1).

The residues, or modal amplitudes, shown in Figure 9 are complex which con-

forms that the mode shapes of the damped blade are complex (cf. Section 2.2).

For a undamped blade all residues of the corresponding normal mode shapes are

real quantities showing that all points on the blade are in phase. Wind turbine

blades are lightly to moderately damped, and it is therefore assumed that any

phase lags in the complex mode shapes are small and can be neglected. The rigid

body motion in each cross-section for each mode are therefore calculated from

equation (1) by using the real value of the modal amplitudes only:

vk,i ≈ |rk,ij | cos (arg (rk,ij)) for i = 1, 2, . . . , L (17)

where L is the number of DOFs (three times the number of cross-sections). The

reason for this simplification is also that theoretical computations of mode shapes

often neglect structural damping. A comparison of theoretical and experimental

complex mode shapes is therefore seldom possible, although they can easily be

estimated from the measured complex modal amplitudes using equation (1).

The argument of the estimated residues in Figure 9 are within 20◦ of 0◦ (in

phase) or 180◦ (in anti-phase). This shows that for this example the relative dif-

ferences between the normal mode shapes and complex mode shapes are less than

6 %. Note that these differences are not considered as measurement errors, however

they will show as systematic differences when comparing theoretical and estimated

mode shapes. Measurement errors are estimated in the next step.

Estimation of accuracy for modal parameters

ME’scopeMODAL does not provide any tool for estimating the accuracy of the

RFP curve fitting parameters, for example by estimating the confidence limits
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of the frequencies, damping factors, and residues. Thus other more approximate

procedures for estimating the accuracy of the modal parameters have been chosen.

Standard deviations of the estimated natural frequencies and damping factors

are calculated from L individual estimates. These estimates are obtained by using

ME’scopeMODAL to perform L local curve fits to each measured transfer func-

tions. The standard deviations based on this procedure are conservative estimates

of the accuracy of the natural frequencies and damping factors obtained from the

global RFP curve fits because local curve fits are less accurate than global fits.

To estimate the accuracy of the mode shapes it is necessary to estimate the

error on the modal amplitudes (residues) and on the DOF geometry (positions

and directions of the three DOFs) as it is described in Appendix B. The accuracy

of the modal amplitudes cannot be estimated by calculating standard deviations

based on multiple local curve fits because each transfer function only describe one

residue for each mode. Instead it is assumed that the relative error of each residue

rk,ij can be approximated by the relative standard deviation of the measured

transfer function Hij in the vicinity of the corresponding modal peak k. The

relative standard deviation of the points in a transfer function is estimated from

the corresponding coherence functions γij using relation (16). Thus, by taking an

average of the coherence function in a frequency range enclosing each modal peak

of each transfer function, local estimates of the error on the modal amplitudes can

be obtained. The errors on the positions and directions of the DOFs on the blade

must be estimated by considering the accuracy of the setup and measurement of

the geometry (Section 3.3). After the errors on the modal amplitudes and DOF

geometry are estimated, the variance (squared standard deviation) of the mode

shape can be calculated from expression (B.4) in Appendix B.
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4 Results

The performed modal analysis gives estimates of all natural frequencies, logarith-

mic decrements and mode shapes, for the investigated blade up to, and including,

the first torsional natural frequency. The results are based on measurements per-

formed in 11 cross sections along the blade, and error estimates are evaluated for

all the estimated quantities. The estimated natural frequencies and mode shapes

have subsequently been compared with the corresponding natural frequencies and

mode shapes, obtained from a FE model of the investigated blade, in order to

evaluate the state-of-the-art blade modeling capacity (and in addition to gain in-

spiration for further improvements). The basic features of the FE model is briefly

described in Appendix G.

4.1 Natural frequencies

The natural frequencies, obtained from the modal analysis, are presented in Ta-

ble 1 together with estimated uncertainties, expressed in terms of standard de-

viations. Natural frequencies are determined from three acceleration recordings

in each cross section. The values for the natural frequencies, given in the table,

are the average– and standard deviation values11, respectively, computed based

on all available recordings as described in Section 3.4. In addition, the table also

contains the natural frequencies obtained from the FE-modeling.

Mode Estimated freq. [Hz] Std. dev. [Hz] Computed freq. [Hz]

1. flap 1.636 0.0005 1.645

1. edge 2.944 0.006 2.980

2. flap 4.914 0.02 5.258

3. flap 9.734 0.04 10.68

2. edge 10.62 0.05 11.34

4. flap 16.23 0.08 17.02

1. torsion 23.16 0.3 14.64

Table 1. Estimated– and computed natural frequencies.

The standard deviation on the estimated natural frequencies are, as expected,

small. The relative uncertainties, as measured by the coefficient of variation, are

of the magnitude 0.5 % for the bending modes and of the magnitude 1.5 % for

the torsional mode.

The deviation between experimental results and the results from the FE mod-

eling is seen to increase with increasing frequency. The relative deviation is of the

magnitude 0.5% for the lowest bending mode increasing to of the magnitude 9%

for the higher bending modes. For the torsional mode, however, the relative de-

viation is of the magnitude 60%, indicating a difficulty in modeling the torsional

stiffness in the ANSYS model.

4.2 Damping characteristics

The damping characteristics derived from the modal analysis, as expressed by the

logarithmic decrement, are presented in Table 2.

11Note, that if the temperature changes during the experimental process, this might effect the
estimated standard deviations.
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Mode Estimated log. decrement [%] Std. dev. [%]

1. flap 1.78 0.08

1. edge 3.60 0.01

2. flap 2.02 0.01

3. flap 2.47 0.03

2. edge 5.57 0.04

4. flap 3.23 0.03

1. torsion 5.81 0.06

Table 2. Estimated damping characteristics expressed as logarithmic decrement.

The damping is as expected, for a given type of mode (flap dominated, edge

dominated or torsion dominated), increasing with increasing natural frequency.

As previously mentioned, the investigated blade has been designed with an es-

pecially high edgewise damping, which is also reflected in the measured damping

characteristics.

Determination of the damping properties is usually considered to be somewhat

uncertain, which relates to the fact that the damping characteristics are small

quantities. For the present results, however, the relative uncertainty (measured

in terms of the coefficient of variation) is only of the magnitude 1%, except for

the first flapwise mode, where the estimated coefficient of variation turned out

to be of the magnitude 5%. The damping depends on temperature, and therefore

the apparent uncertainty will increase if the temperature is changing during the

measuring campaign.

4.3 Mode shapes

The mode shape results, associated with the lowest 7 blade natural frequencies,

are illustrated in Figure 10 – 16. For each particular mode, the modal deflection

has been resolved in a flapwise, an edgewise and a torsional deflection, according

to the definitions given in Chapter 2. For each deflection component, the discrete

results obtained from the modal analysis have been compared to the eigenforms

obtained from the FE-modeling. In order to facilitate the comparison, the cross

section rotation, associated with the FE-modeling, is defined as the rotation of a

line connecting the leading edge with the tailing edge for a given cross section.

In analogy, the bending deflection is defined as the deflection of a radial spline,

along which the longitudinal web is attached to the blade surface. Note, that

this definition is not necessary kinematic consistent and analog to the definition

presented in Appendix A for the modal analysis.

A mode shape is uniquely determined apart from an amplitude. For the present

illustration it was, arbitrary, chosen to normalize the dominating tip deflection

component in each mode to 1 m in case of a displacement and to 10 deg in case of

a torsion. The torsion, however, is not well determined in the tip section. Due to the

very short cord length associated with this particular cross section, it was necessary

to apply a different support structure here compared to the other cross sections.

Caused partly by smaller dimensions of this more primitive measuring bridge,

partly by difficulties with fixing even this measuring bridge to the tip cross section,

the torsion resolution in the tip turned out to be unsatisfactory. Consequently, for

the normalization, the tip torsion has been evaluated by extrapolation of the

nearby cross-section torsional values.
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Figure 10. First flapwise blade mode resolved into the cross section motions

(ux, uy, θ).
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Figure 11. First edgewise blade mode resolved into the cross section motions

(ux, uy, θ).
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Figure 12. Second flapwise blade mode resolved into the cross section motions

(ux, uy, θ).
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Figure 13. Third flapwise blade mode resolved into the cross section motions

(ux, uy, θ).
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Figure 14. Second edgewise blade mode resolved into the cross section motions

(ux, uy, θ).
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Figure 15. Forth flapwise blade mode resolved into the cross section motions

(ux, uy, θ).
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Figure 16. First torsional blade mode resolved into the cross section motions

(ux, uy, θ).
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In general, the mode shapes extracted from the modal analysis display the ex-

pected smooth behaviour without notable scatter except for the torsion of the tip

cross section. The reason for the unsatisfactory representation at the tip is com-

mented on above. For all the investigated mode shapes, the dominating deflection

component resembles the same general features, comparing the results from the

modal analysis with the corresponding results from the FEM analysis. However,

the agreement is better for the deflection components associated with low nat-

ural frequencies than for deflection components associated with higher natural

frequencies. The same tendency was also observed in the estimation of natural

frequencies.

Discussion

The test stand has a certain (small) flexibility. This flexibility is neglected in the

FE modeling of the LM 19 m blade as described in Appendix G. The effect from

this deviation in the boundary conditions at the blade root between experiment

and FE-model, respectively, can be identified from the present results. The mode

shape gradient in the root part tend to be larger for the experimental results

than for the FEM results. The neglection of the elasticity of the tip brake mech-

anism in the FE modeling, however, does not seem to cause differencies between

experimental- and FEM results – hence it follows that this flexibility does not

affect the mode shapes.

The structural coupling, between the dominating deflection and the two re-

maining (secondary) deflection components, is identified for all the analysed mode

shapes both experimentally and numerically. The coupling between bending de-

flection and torsion requires special attention due to the direct implications for

the aerodynamic loading. This coupling is of course especially important for the

mode shapes associated with the lower and most important natural frequencies.

For these modes, a tip deflection of 1 m corresponds to a torsion of the magnitude

0.5 deg due to the structural coupling.

Aeroelastic calculations are traditionally based on a Timoshenko beam model-

ing of the wind turbine blade. Although the bending torsion couplings usually are

included in the beam representation, the correct specification of these structural

couplings is a delicate matter. The magnitude of the observed bending/torsion

coupling effects suggests, that these may significantly affect the aerodynamic load

characteristics of a wind turbine blade. This emphasizes the need for careful spec-

ification of such coupling effects in aeroelastic computations. Also the structural

coupling between the two bending components is essential for correct modeling of

aerodynamic damping [13]. This coupling is often included in the aeroelastic model

by introducing a structural pitch. The relevant structural pitch for the LM 19 m

blade can easily be derived from the present results.

In general, the deviation between experimental and modeled secondary deflec-

tion components is larger than the difference between the corresponding primary

deflection components, reflecting that these deflections are difficult to resolve ex-

perimentally (small signal levels) as well as numerically (lack of sufficiently detailed

information on the material properties). As with the primary deflections, there is a

tendency towards increasing deviation between experiment and numerical results

with increasing frequency. Except for the two modes associated with the highest

natural frequencies, the numerical model is seen to over estimate the structural

couplings.
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5 Conclusion

The present investigation has demonstrated that essential dynamic properties of

wind turbine blades, like natural frequencies, damping characteristics and mode

shapes, can be experimentally determined by use of the modal analysis technique.

Different experimental procedures have been considered and the most appropriate

of these has been selected. Although the comparison is based only on measure-

ments on a LM 19 m blade, the recommendations given are believed to be valid

for other types (sizes, designs, ...) of wind turbine blades as well.

The reliability of the selected experimental analysis has been investigated by

estimating the unsystematic variations in the experimental findings. The unsys-

tematic deviations have been quantified in terms of standard deviations and co-

efficients of variations. In general, the estimated standard deviations on natural

frequencies and damping characteristics indicate a high degree of reliability. For

the modal shapes, however, the accuracy vary with the mode number. For the

dominating deflection direction, associated with a particular natural frequency,

the uncertainty is very modest. For the two ”secondary” deflection directions the

standard deviations on the cross sectional deflections are somewhat larger – espe-

cially for the torsional deflection.

In addition to the unsystematic variations, systematic errors caused by the

experimental technique (e.g. elasticity of the blade support, heavy sensor setup

mounted on the blade, or errors in the measurement of the applied reference axis)

as well as the signal processing (windowing etc.) may occur. No attempt has been

made to quantify such errors.

The detailed analysis of the LM 19 m blade has been compared with results

from a FE-model of the same blade. For some of the higher modes substantial

discrepancies between the natural frequencies originating from the FE-modeling

and the modal analysis, respectively, are observed. This is especially pronounced

for the torsion mode indicating a defective modeling of the torsional stiffness.

Turning to the modal shapes, the agreement between experimental results and

the present FE-model is generally good concerning the dominating deflection,

indicating that the relative stiffness distributions applied in the FE-model are

satisfactory. However, large discrepancies are seen in the ”secondary” deflection

directions which may be due to both the relative high experimental uncertainty

in the determination of those, and to an insufficient representation of structural

couplings in the FE-model.

The performed comparison between experimental– and FEM results emphasizes

the need for this kind of experimental results to refine the modeling technique.

Also the observed uncertainty in some of the experimental results calls for im-

provements of the experimental technique.

The main disadvantage of the proposed impact test is that the force excitation

level is not invariant from one test to another. As a consequence the global response

of the global structure, including linear as well as non-linear components, change in

an unpredictable manner. Non-linear components of the structural response might

be important and can potentially create errors which are difficult to quantify. The

last disadvantage is the possible variation of the force direction from one test to

another (which, however, is reduced using the guided hammer) introducing errors

in the evaluation of the structure egenvectors.

In order to overcome the above mentioned problems with manually operated im-

pactors, electromechanical slave hammers can be used [2]. The hammer works with

the principle of an electromagnet, where two coils are independently pushing and

pulling a piston. The coils are connected to power circuits that produce rectangu-

lar signal of current, with predefined levels, duration, and time delay. This means
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desirable possibilities to control velocity and retardation just before the impact, in

order to avoid multiple rebounds. A ”cleaner” impact together with the ability of

producing replicated impacts with repetitive characteristics, can here significantly

improve the force/response correlation compared to the manually operated ham-

mer, especially in the lower frequency range. An additional feature, that comes

with the control, is the possibility to simultaneously operate several impactors,

resulting in multipoint excitation (polyreference method). The idea of a repetitive

slave hammer can also be realized using pneumatic, or hydraulic actuators (see

for example [10]).

In addition to potential future modifications of the exciter system, larger wind

turbine blades, with their very low natural frequencies, may require use of DC-

accelerometers (or other types of low frequency sensitive accelerometers) instead

of the piezoelectric accelerometers used in the present investigation, in order to

improve the quality of the estimated transfer functions and thus the quality of the

modal analysis.
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A Discrete blade motion

In this appendix it is shown how to calculate the rigid body translation and

rotation of a cross-section based on three amplitudes of vibration measured in three

degrees of freedom (DOFs). The configuration of DOFs influences the accuracy

of the mode shape estimations. This influence is discussed based on a sensitivity

analysis of the derived expressions.

Figure 17 shows a cross-section with three “transducers” measuring the trans-

lation in three DOFs given by their directions (αi, αi+1, αi+2) and positions

(ri, ri+1, ri+2) with respect to the pitch-axis (cf. Figure 1). When the cross-section

is undergoing a rigid body motion given by translations ux and uy, and a rotation

θ about the pitch-axis, the displacement vector wi for measurement point i is:

wi =

{

ux

uy

}

+(T − I) ri , (A.1)

where I is a two by two identity matrix, and T is a transformation matrix:

T =

[

cos θ − sin θ

sin θ cos θ

]

. (A.2)

The measured amplitude in DOF number i is xi, which can also be considered as

the projection of vector wi onto the direction of the DOF αi. Assuming that the

rotation of the cross-section due to torsion is small (θ ≪ 1), a linear relationship

between the rigid body motion and the amplitude xi is obtained

xi = ux cosαi+uy sinαi+(rx
i sinαi − ry

i cosαi) θ . (A.3)

Similarly, the measured amplitudes in all three DOFs yields a set of three equations

which by inverting can be written as






ux

uy

θ







= A







xi

xi+1

xi+2







, (A.4)

where the matrix A is given by

A =





cosαi sinαi rx
i sinαi − ry

i cosαi

cosαi+1 sinαi+1 rx
i+1 sinαi+1 − ry

i+1 cosαi+1

cosαi+2 sinαi+2 rx
i+2 sinαi+2 − ry

i+2 cosαi+2





−1

. (A.5)

Note, that the rigid body motion of the cross-section is not described by rela-

tion (A.4) for all configurations of DOFs because the matrix A may not exist.

Other percussions must also be considered (cf. Appendix B).

y

x

�

� i

xi

xi+1
xi+2 ri

wi

Tri

ux

yu }{

Figure 17. Rigid body motion (ux, uy, θ) of a cross-section given by three degrees

of freedom (xi, xi+1, xi+2).
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B Errors on mode shapes

In this appendix it is shown how to derive the standard deviations on mode shapes

due to error on estimated modal amplitudes and on the configuration of DOFs.

From this derivation it is then shown how to optimize the configuration of DOFs

for minimum error.

B.1 Expression for the error on mode shapes

To derive an expression of the error on a mode shape vector u = {ux, uy, θ}T of

each cross-section, it is assumed that the error on the estimated modal ampli-

tudes and geometry of the DOF configuration are small. Defining a book-keeping

parameter for small quantities as ǫ ≪ 1 this assumption can be written as

x = x̄+ǫ∆x , ri = r̄i+ǫ∆ri , and αi = ᾱi+ǫ∆αi , (B.1)

where the bar denotes estimated quantities, and vector x = {xi, xi+1, xi+2}T

contains the modal amplitudes of the particular cross-section which errors are

given by ∆x. The error on the position and direction of the three DOFs is given

by ∆ri+k and ∆αi+k with k = 0, 1, 2.

The modal amplitudes and DOF geometry (B.1) are used to estimate a mode

shape vector which will be subject to error described as ū + ǫ∆u. To derive an

expression for ∆u the equation (B.1) is inserted into equation (1) which, after

Taylor expansion of transformation matrix A (A.5), yields

ū+ ǫ∆u =

(

Ā + ǫ

2
∑

k=0

∂A

∂rx
i+k

∆rx
i+k + ǫ

2
∑

k=0

∂A

∂ry
i+k

∆ry
i+k

+ǫ
2

∑

k=0

∂A

∂αi+k
∆αi+k +O(ǫ2)

)

(x̄ + ǫ∆x) , (B.2)

where O(ǫ2) denotes higher order terms, and bar over matrices show that they are

evaluated at the estimated DOF geometry r̄i+k and ᾱi+k with k = 0, 1, 2. Collect-

ing terms of order ǫ0 shows that ū = Āx̄ which corresponds to equation (1) used

for calculating the estimate of the mode shapes in each cross-section. Collecting

terms of order ǫ1 yields

∆u =

[

Ā∆X+

2
∑

k=0

∂A

∂rx
i+k

∆rx
i+k +

2
∑

k=0

∂A

∂ry
i+k

∆ry
i+k +

2
∑

k=0

∂A

∂αi+k
∆αi+k

]

x̄ ,

(B.3)

where matrix ∆X = diag{∆xi/x̄i,∆xi+1/x̄i+1,∆xi+2/x̄i+2} contains the relative

errors on the modal amplitudes. The sum of matrices in the brackets of (B.3) is

subsequently denoted ∆A.

Because the sign of the errors on modal amplitudes and DOF geometry is un-

known we use equation (B.3) to derive the variance matrix of the errors on the

mode shapes as function of the relative variance on the modal amplitudes and the

absolute variance on the position and direction of the DOFs. Using that x̄ = Ā−1ū

the variance matrix of the errors on the mode shapes becomes

∆u∆uT = ∆AĀ−1ūūT
(

∆AĀ−1
)T

. (B.4)

The standard deviations on the mode shapes can now be calculated as the square

root of the diagonal elements of this variance matrix ∆u∆uT .
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B.2 Optimal configuration of DOFs

The optimal configuration of the DOFs is evaluated by its ability to describe the

rigid body motion of the cross-section with minimum error. A few examples of the

“optimization” of a basic configuration with two flapwise DOFs and one edgewise

DOF is now given. For a wind turbine blade, the torsion in a cross-section is

most sensitive to such errors because it is a small quantity (cf. Chapter 4). The

examples therefore focus on the ability of the configuration to describe torsion.

The initial directions and positions of these DOFs in the basic configuration are

listed in Table 3. Similar optimizations of other configurations of DOFs can easily

be performed analogously.

y

x

DOF no. +2i
DOF no. +1i

DOF no. i

DOF no. rx
i [m] ry

i [m] αi [deg]

i 0.5 0.0 0

i+ 1 0.5 0.0 90

i+ 2 −0.5 0.0 90

Table 3. Example of a basic configuration of DOFs in a cross-section.

Sensibility to errors on modal amplitudes

Equation (B.3) shows that errors on the mode shapes due to errors on the esti-

mated modal amplitudes are proportional to the elements of the transformation

matrix A. Figure 18 and 19 shows the elements used for calculating torsion about

the pitch-axis A31, A32, and A33 versus the position rx
i+2 and direction αi+2 of

DOF number i+ 2 in the basic configuration.

Figure 18 illustrates that moving the flapwise DOF number i+2 away from the

other flapwise DOF decreases the absolute values of the elements A32 and A33.

Thus, errors on the estimated torsion θ in a mode shape due to errors on the

modal amplitudes decreases with increasing distance between the flapwise DOFs.

Figure 19 shows that the optimal direction of DOF number i + 2 in the basic

configuration is flapwise at 90◦. The element A33 has a minimum absolute value

at αi+2 = 90◦, whereas the element A32 is independent of αi+2. The extremum of

A33 is flat showing that a deviation of αi+2 from 90◦ will only have a minor effect

on A33. However, Figure 19 also shows that the estimated torsion will be affected

by the modal amplitude in the edgewise DOF number i through the element A31,

if the direction of DOF number i+2 is not purely flapwise. This will increase the

risk of errors due to errors on the estimated modal amplitudes.

Sensibility to errors on directions and positions of the DOFs

Equation (B.3) shows that errors on the mode shapes due to errors on the direc-

tions and positions of the DOFs are proportional to the derivatives of the elements

of the transformation matrix A (A.5) with respect to these parameters of the con-

figuration.

Figure 20 shows derivatives with respect to the direction and position of DOF

number i+2 versus the same direction and position. Similar to the previous section,

Figure 20 shows that increasing the distance between the two flapwise DOFs

and directing DOF number i + 2 in the flapwise direction of 90◦, decreases the

sensitivity of the estimated torsion in the mode shapes to errors on the direction

and position of this DOF.
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Figure 20. Derivatives of A31, A32, and A33 with respect to the position (top

figures) and direction (bottom figures) of DOF i + 2 versus the position (left

figures) and direction (right figures) of DOF i+ 2.
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C Optimum transfer function

In the absence of noise, the response of an ideal linear constant parameter physical

system to some input (forcing) can be expressed as a convolution of the system

impulse response function and the particular input [9]. Due to the convolution,

this relation is conveniently expressed in the frequency domain, where the Fourier

transform of the response equals the product of a transfer function and the Fourier

transform of the system input (cf. equation (5)). The transfer function is simply

the Fourier transform of the system impulse response function.

Deterministic single-input/single-output system

Let us consider the simple single-input/single-output system defined as the forcing

(acting in DOF number j) of a wind turbine blade and the respective response

of the i’th DOF. In the ideal situation, with absence of noise in input– as well

as output signals, these signals are of a pure deterministic character12, and the

corresponding Fourier transforms are consequently not encumbered with statistical

uncertainty. The ideal transfer function, Hij , can thus be computed directly from

the definition given in equation (5), which states

Hij(ω) ≡ Xi(ω)/Fj(ω) , (C.1)

where Xi(ω) denotes the Fourier transform of the output signal, and Fj(ω) is the

Fourier transform of the input signal, respectively.

Single-input/single-output system with extraneous noise

Unfortunately, the system described above is a theoretical abstraction. For the real

physical wind turbine blade system, the recorded forcing, as well as the recorded

response, will consist of the ideal signal superimposed by an extraneous noise

contribution caused by the recording system. Considering the forcing acting in

DOF number j and the response measured in DOF number i, the situation is

illustrated in Figure 21.

)(ωt

jF

)(ωf

jN

)(ωjF )(ˆ ωijH )(ωiX )(ωt

iX

)(ωx

jN

Figure 21. Single-input/single-output system with extraneous noise.

Decomposing the observed force signal, f t
j(t), into an actual signal, fj(t), and

a noise contribution, nf
j (t), we have

f t
j (t) = fj(t)+nf

j (t) . (C.2)
12For the present investigation transient deterministic excitation has been selected; cf. Chapter
3. In case continuous excitation of random character is selected, estimation of the system transfer
function can be performed using the algorithm dedicated for signals including noise components.
This algorithm is addressed in the last part of this Appendix.
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Analogous, decomposing the observed response signal, xt
i(t), into an actual sig-

nal, xi(t), and a noise contribution, nx
i (t), we obtain

xt
i(t) = xi(t)+nx

i (t) . (C.3)

The Fourier transforms of the apparent force– and response signals, respectively,

are obtained directly from the equations (C.2) and (C.3) as

F t
j (ω) = Fj(ω) +Nf

j (ω) ,

Xt
i (ω) = Xi(ω) +Nx

i (ω) ,
(C.4)

where an upper index t refers to the apparent (or total) signal, Nf
j denotes the

Fourier transform of the noise on the input signal, and Nx
i denotes the Fourier

transform of the noise on the response signal.

We now turn to estimation of the system transfer function based on the observed

signals. Different possibilities exists. A straight forward possibility is to general-

ize equation (C.1) by replacing the Fourier transforms of the actual signals with

the Fourier transforms of the apparent signals. The associated estimated transfer

function, Ĥij(ω), is thus expressed by

Ĥij(ω) =
Xi(ω) +Nx

i (ω)

Fj(ω) +Nf
j (ω)

. (C.5)

However, this estimation strategy has some serious draw backs. First of all, it

is only based on one particular realization of the random noise contribution, and

thus only a single (raw) estimate of the Fourier transforms of the noise contri-

butions. The consequence is, that these Fourier transforms, in general, will be

encumbered with significant statistical uncertainty. An acceptable estimate of the

transfer function is thus only achieved, if the input noise and the response noise

are (very) small relative to the input signal and the response signal, respectively.

In other situations the transfer function estimate, given by equation (C.5), will

not be appropriate to characterize neither the ideal system, nor the recorded sys-

tem. Even though, the requested relationship, between the Fourier transforms of

the observed input– and output signals, are identically satisfied by the transfer

function, estimated according to equation (C.5), for this particular realization of

recorded input– and output signals, the same transfer function estimate, applied

to other realizations of input– and response signals, would most likely lead to

significant inconsistencies.

A more appealing approach is to aim for a transfer function estimate that,

in an average sense, will give the best possible (linear) characterization of the

relationship between the observed input– and response signals – the optimum

transfer function. This is the topic for the remaining part of this Appendix.

The optimum transfer function estimate

Let Ĥij(ω) be any estimated (linear) transfer function connecting the system

input signal with the system response signal. Due to the random noise components

inherent in both the input signal and the response signal, it is not possible to define

a transfer function that reflects a perfect correlation between arbitrary realizations

of the input– and response signals. However, as indicated above, we can determine

a transfer function that provides the best possible correlation in an average sense.

For this purpose, let the observed system be described by

Xt
i (ω) = Ĥij(ω)F

t
j (ω)+N r:j

i (ω) , (C.6)
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where the residual noise term N r:j
i (ω) accounts for the lack of perfect correlation

between an arbitrary forcing acting in DOF number j and the corresponding

response measured in DOF number i. Note, that no assumptions has been put on

this noise term. Isolating the residual noise term from equation (C.6), the following

relation is obtained

N r:j
i (ω) = Xt

i (ω)−Ĥij(ω)F
t
j (ω) . (C.7)

The residual noise term will, in general, be a complex quantity like the other

terms in equation (C.7). The size of the noise term, in an energy sense, is conse-

quently obtained by multiplying N r:j
i (ω) by its complex conjugate given by

N
r:j

i (ω) = X
t

i(ω)−Ĥij(ω)F
t

j(ω) , (C.8)

where an ”overbar” denotes complex conjugate. The magnitude of the residual

noise component is then given by

|N r:j
i (ω)|2 = N r:j

i (ω)N
r:j

i (ω)

= Xt
i (ω)X

t

i(ω)−Xt
i (ω)Ĥij(ω)F

t

j(ω)−

X
t

i(ω)Ĥij(ω)F
t
j (ω) + Ĥij(ω)Ĥij(ω)F

t
j (ω)F

t

j(ω) .

(C.9)

Following the definition of (one-sided) spectra, as given in [9], for sample records

of length T, the autospectrum of the residual noise noise component is expressed

by

SRR
ij (ω) = lim

T→∞

2

T
〈N r:j

i (ω)N r:j
i (ω)〉 , (C.10)

where 〈·〉 denotes ensemble averaging. Introducing equation (C.9) in equation (C.10),

the residual noise autospectrum is expressed in terms of the (observed) input– and

response spectral quantities as follows

SRR
ij (ω) = SXtXt

ij (ω)−Ĥij(ω)S
F tXt

ij (ω)−Ĥij(ω)S
XtF t

ij (ω)+Ĥij(ω)Ĥij(ω)S
F tF t

ij (ω) ,

(C.11)

where the lower indices, i and j, indicate that the forcing is applied in DOF

number j, and the respective response is observed in DOF number i. SF tF t

ij (ω)

denotes the apparent input autospectrum, and SXtXt

ij (ω) is the apparent response

autospectrum. The cross spectra between the apparent input and response signals,

denoted by SF tXt

ij (ω) and SXtF t

ij (ω), respectively, are defined by

SXtF t

ij (ω) ≡ lim
T→∞

2

T
〈Xt

i(ω)F
t
j (ω)〉 ,

SF tXt

ij (ω) ≡ lim
T→∞

2

T
〈F t

j(ω)X
t
i (ω)〉 .

(C.12)

From equations (C.12) the following relation between cross spectra is derived

SF tXt

ij (ω) = S
XtF t

ij (ω) . (C.13)

We now return to the expression for the residual noise autospectrum, as given

in equation (C.11), and define the optimum transfer function as the least squares

estimate, Ĥij(ω), that minimizes SRR
ij (ω) over all possible definitions of (linear)

transfer function estimates.
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All quantities in equation (C.11) are real valued, except the transfer function

and the cross spectra. Decomposing the complex quantities in real and imaginary

parts, denoted by upper indices R and I, respectively, we obtain

Ĥij(ω) = ĤR
ij (ω)− iĤI

ij(ω),

Ĥij(ω) = ĤR
ij (ω) + iĤI

ij(ω),

SF tXt

ij (ω) = SF tXt

ij

R
(ω)− iSF tXt

ij

I
(ω),

SXtF t

ij (ω) = S
F tXt

ij (ω) = SF tXt

ij

R
(ω) + iSF tXt

ij

I
(ω) .

(C.14)

Introducing equations (C.14) in equation (C.11) finally yields

SRR
ij (ω) = SXtXt

ij (ω)− 2ĤR
ij (ω)S

F tXt

ij

R
(ω)− 2ĤI

ij(ω)S
F tXt

ij

I
(ω)+

(

ĤR
ij (ω)

2 + ĤI
ij(ω)

2
)

SF tF t

ij (ω) .
(C.15)

Note that, as a check on the calculations, the autospectrum of the residual noise

come correctly out as a real quantity. The optimum transfer function estimate is

now defined by equalizing the partial derivatives of SRR
ij (ω) with respect to ĤR

ij (ω)

and ĤI
ij(ω), respectively, to zero and subsequently solve for ĤR

ij (ω) and ĤI
ij(ω).

Thus

∂SRR
ij (ω)

∂ĤR
ij (ω)

= −2SF tXt

ij

R
(ω) + 2ĤR

ij (ω)S
FF
ij (ω) = 0 ,

∂SRR
ij (ω)

∂ĤI
ij(ω)

= −2SF tXt

ij

I
(ω) + 2ĤI

ij(ω)S
FF
ij (ω) = 0 ,

(C.16)

from which

ĤR
ij (ω) =

SF tXt

ij

R
(ω)

SF tF t

ij (ω)
,

ĤI
ij(ω) =

SF tXt

ij

I
(ω)

SF tF t

ij (ω)
.

(C.17)

The optimum transfer function estimate is thus given by

Ĥij(ω) =
SF tXt

ij (ω)

SF tF t

ij (ω)
. (C.18)

The coherence function associated with the optimum transfer function

In addition to the benefits described above, the recommended definition of the es-

timated transfer function, as expressed in equation (C.18), also suggests a straight

forward interpretation of the coherence function between the observed input– and

the observed response signal, which will turn out be be very useful in the evalua-

tion of the quality of performed measurements.

By introducing the optimum transfer function, given by equation (C.18), in the

expression for the residual noise autospectrum (C.11), the following relation is

obtained
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SRR
ij (ω) = SXtXt

ij (ω)− Ĥij(ω)S
F tXt

ij (ω)

= SXtXt

ij (ω)

(

1−
|SF tXt

ij (ω)|2

SXtXt

ij (ω)SF tF t

ij (ω)

)

= SXtXt

ij (ω)
(

1− γF tXt

ij

2
(ω)

)

, (C.19)

where the coherence function between the observed input– and the observed re-

sponse signal is defined by

γF tXt

ij

2
(ω) ≡

|SF tXt

ij (ω)|2

SXtXt

ij (ω)SF tF t

ij (ω)
. (C.20)

As seen, equation (C.19) quantifies the residual noise entirely in terms of the

spectral characteristics of the observed input– and response signals. For perfect

”reproducibility” – that is zero scatter in response signal for fixed transfer func-

tion – the autospectrum of the residual noise equals zero, whereby equation (C.19)

reduces to γF tXt

ij

2
(ω) = 1. Note, that the computation of the coherence function

and the optimum transfer function is largely based on the same spectral charac-

teristics – having determined the optimum transfer function, the amount of extra

computations to calculate also at the coherence function is consequently limited.

Correlation-properties related to the optimum transfer function esti-

mate

Using the optimum transfer function as our system-transfer function, it can be

shown that the residual noise is uncorrelated with the observed input signal as

well as with the coherent part of the response signal.

)(ˆ ωijH )(ωcoh

iX

)(: ωjr

iN

)(ωt

iX)(ωt

jF

Figure 22. Single-input/single-output system with residual noise.

Referring to Figure 22, the coherent part of the observed response signal,Xcoh
i (ω),

is defined as

Xcoh
i (ω) ≡ Ĥij(ω)F

t
j (ω) , (C.21)

whereby the residual noise term, utilizing equation (C.6), is expressed as

N r:j
i (ω) = Xt

i (ω)−Xcoh
i (ω) . (C.22)

Thus

Risø–R–1181(EN) 55



SF tR
ij (ω) ≡ lim

T→∞

2

T
〈F t

i(ω)N
r:j
i 〉

= lim
T→∞

2

T
〈F t

i(ω)X
t
i (ω)〉 − lim

T→∞

2

T
〈F t

i(ω)X
coh
i (ω)〉

= SF tXt

ij (ω)− lim
T→∞

2

T
〈F t

i(ω)Ĥij(ω)F
t
j (ω)〉

= SF tXt

ij (ω)− Ĥij(ω)S
F tF t

ij (ω) = 0 , (C.23)

which proves that the residual noise is uncorrelated with the observed input signal.

To prove that the residual noise is uncorrelated with the coherent part of the

response signal, simply note, from equation (C.21), that the coherent part of the

response signal is given as a (constant) transfer function multiplied by the observed

input signal. Thereby

SXcohR
ij (ω) ≡ lim

T→∞

2

T
〈Ĥij(ω)F

t

i(ω)N
r:j
i 〉

= Ĥij(ω) lim
T→∞

2

T
〈F t

i(ω)N
r:j
i 〉

= Ĥij(ω)S
F tR
ij (ω) = 0 , (C.24)

where equation (C.23) has been utilized.

Characteristics of the optimum transfer function estimate

The last subject of interest, related to the choice of the optimum transfer function

estimate, is how this estimate compares with the ideal transfer function that cor-

responds to the real physical quantities, where the noise contributions are absent.

Let us consider the optimum transfer function, as expressed in equation (C.18),

and let us elaborate a little on the quantities entering this expression.

Introducing equation (C.4), the numerator is expressed by

SF tXt

ij (ω) ≡ lim
T→∞

2

T
〈
(

F i(ω) +N
f

i (ω)
)

(

Xj(ω) +Nx
j (ω)

)

〉

= SFX
ij (ω) + SFNx

ij (ω) + SNf X
ij (ω) + SNf Nx

ij (ω) . (C.25)

Analogously, introducing equation (C.4) the denominator is expressed by

SF tF t

ij (ω) ≡ lim
T→∞

2

T
〈
(

F i(ω) +N
f

i (ω)
)(

Fi(ω) +Nf
i (ω)

)

〉

= SFF
ij (ω) + SFNf

ij (ω) + SNf F
ij (ω) + SNf Nf

ij (ω) . (C.26)

Under the present experimental conditions, Fi(ω) is associated with a determin-

istic signal (the force established by the hammer hit). The ensemble averaging is

especially simple for deterministic signals, as

SFNx

ij (ω) = lim
T→∞

〈 2
T
F i(ω)N

x
j (ω)〉 = F i(ω) lim

T→∞

〈 2
T
Nx

j (ω)〉 . (C.27)

Now, a characteristic for a noise signal is a zero mean. Thus

〈nx
j (t)〉 ≡ 0 , (C.28)
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which, due to the linearity of the ensemble mean operator, as well as of the Fourier

transform operator, is equivalent with

〈Nx
j (ω)〉 ≡ 0 . (C.29)

Introducing equation (C.29) into equation (C.27) yields

SFNx

ij (ω) = 0 . (C.30)

Referring to Figure 21 it is easily seen that Xi(ω) is associated with a determin-

istic signal when Fi(ω) is associated with a deterministic signal. It is thus straight

forward, by considerations analog to those for SFNx

ij (ω), to show that

SNf X
ij (ω) = 0 ,

SFNf

ij (ω) = 0 , (C.31)

SNf F
ij (ω) = 0 .

If further, the noise associated with the observed input signal is assumed un-

correlated with the noise associated with the observed response signal, then the

following relation holds

SNf Nx

ij (ω) = 0 . (C.32)

Introducing equations (C.30)–(C.32) into equations (C.25)–(C.26) we obtain

SF tXt

ij (ω) = SFX
ij (ω) ,

SF tF t

ij (ω) = SFF
ij (ω) + SNf Nf

ij (ω) .
(C.33)

Combining equations (C.33) with equation (C.18) we finally arrive at the fol-

lowing relationship between the ideal system transfer function and the estimated

transfer function

Ĥij(ω) =
Sftxt

ij (ω)

SF tF t

ij (ω)
=

SFX
ij (ω)

SFF
ij (ω) + SNf Nf

ij (ω)
=

Hij(ω)

1 +
SNf Nf

ij
(ω)

SF F
ij

(ω)

. (C.34)

Thus, for a situation with non-correlated extraneous input– and response noise,

the optimum transfer function estimate, as based on observed quantities, is a biased

estimate of the ideal transfer function. The inherent bias, in the estimated transfer

function, depends on the input signal/noise ratio only, and tends consistently to

zero for this noise contribution approaching zero.

If, instead of the present deterministic transient hammer excitation, an exci-

tation technique based on continuous excitation with a random character forcing

was applied, then an expression identical to equation (C.34), for the estimated

optimum transfer function, is achieved, provided that the noise, superimposed

on the response signal, is uncorrelated with the ideal input signal (meaning that

SFNx

ij (ω) = 0), and that the noise, superimposed on the ideal input signal, is un-

correlated with the ideal input signal (SFNf

ij (ω) = SNf F
ij (ω) = 0) as well as with

the ideal response signal (SNf X
ij (ω) = 0)

As seen from equation (C.19), the coherence function quantifies the amount of

scatter in the results introduced by the presence of extraneous noise sources in the

observed signals. Computing the coherence between observed input– and output
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signals, according to equation (C.20), we shall now see how this function reflects

the extraneous noise sources as described by equations (C.2) and (C.3). We adopt

the same assumptions as introduced in the treatment of the optimum transfer

function estimate, and equation (C.33) thus still applies, whereby

|SF tXt

ij (ω)|2 = |SFX
ij (ω)|2 . (C.35)

Moreover, equation (C.25) reduces to

SF tF t

ij (ω) = SFF
ij (ω)+SNf Nf

ij (ω) , (C.36)

and finally the (observed) response autospectrum is reduced to

SXtXt

ij (ω) ≡ lim
T→∞

2

T
〈
(

X i(ω) +N
x

i (ω)
)

(Xi(ω) +Nx
i (ω))〉

= SXX
ij (ω) + SXNx

ij (ω) + SNxX
ij (ω) + SNxNx

ij (ω)

= SXX
ij (ω) + SNxNx

ij (ω) , (C.37)

where, for the last identity (if random excitation is applied), the presumptions

have been extended to also include no correlation between the ideal response signal

and the imposed noise on the response signal (SXNx

ij (ω) = SNxX
ij (ω) = 0). The

resulting expression for the coherence is obtained by introducing equations (C.35)-

(C.37) into equation (C.20)

γF tXt

ij

2
(ω) =

|SFX
ij (ω)|2

(

SFF
ij (ω) + SNf Nf

ij (ω)
) (

SXX
ij (ω) + SNxNx

ij (ω)
)

=
γFX

ij
2
(ω)

(

1 +
SNf Nf

ij
(ω)

SF F
ij

(ω)

)

(

1 +
SNxNx

ij
(ω)

SXX
ij

(ω)

)

=
1

(

1 +
SNf Nf

ij
(ω)

SF F
ij

(ω)

)

(

1 +
SNxNx

ij
(ω)

SXX
ij

(ω)

)

, (C.38)

as the coherence between the ideal signals (cf. equation (C.19)) is identical 1 for

linear systems. The deviation from the ideal value (i.e. 1) of the coherence function

is thus due to the presence of extraneous noise on the input signal as well as on

the response signal. The resulting coherence function depends explicitly on the

signal/noise ratios related to both the input signal and the response signal. Note,

that it is not possible to separate the integrated effect of the extraneous noise into

the involved noise components, based on computation of the coherence function,

unless one of the noise sources is explicitly known a priori.
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D Uncertainty in spectral estimates

The (expected) spectral quantities introduced in Appendix C are defined in terms

if an ideal ensemble averaging procedure. However, the concept of ensemble av-

eraging is an abstraction, which in practice is replaced by an averaging over a

finite number of observations displaced in time, assuming that the stochastic pro-

cess in question (noise, random excitation and corresponding random response,

etc.) is a stationary and ergodic process. In addition to the uncertainty caused by

natural variability of the observed forcing– and response signals, as dealt with in

Appendix C, the estimation of the (expected) associated cross– and autospectra

consequently further introduces statistical uncertainty.

The dependence of the statistical uncertainty on the number of observations (on

which the performed averaging procedure is based) is addressed in the following,

assuming only that the available observations are statistical independent.

Let us, as an example, focus on the evaluation of the cross spectrum between

the observed forcing (applied in DOF number i) and the observed response (at

DOF number j). According to the definition given in equation (C.12), we have

SXtF t

ij (ω) ≡ lim
T→∞

2

T
〈Xt

i(ω)F
t
j (ω)〉 . (D.1)

In practice the limiting process, included in definition above, is omitted, and a

suitable (fixed) size of the observation time T is selected, reflecting the required

lower cut-off frequency. This approximation does not affect the statistical uncer-

tainty on the estimates, but relates only to the available frequency range. Thus,

in practice, the definition given in equation (D.1) is replaced by

ŜXtF t

ij (ω) =
2

T
M

[

X
t

i(ω)F
t
j (ω)

]

, (D.2)

where the spectral estimate is denoted by ŜXtF t

ij (ω), and the mean value estimate

operator M [·] is defined by

M
[

X
t

i(ω)F
t
j (ω)

]

≡ 1

N

N
∑

l=1

(

X
t

i(ω)F
t
j (ω)

)

l
, (D.3)

whereN denotes the number of (statistical independent) recordings. The necessary

total recording time is then at least NT .

Let X
t

i(ω)F
t
j (ω) follow some (arbitrary) probability function with mean value

µraw and variance σ2
raw. Denoting a ”true” mean value operator by E[·], the

random error on the spectral estimate (D.2), expressed in terms of the variance

of the spectral estimate, σŜXtF t

ij

(ω)2, is given by

σŜXtF t

ij

(ω)2 = E

[

(

ŜXtF t

ij (ω)− E
[

ŜXtF t

ij (ω)
])2

]

. (D.4)

Utilizing equations (D.2) and (D.3), the second term in equation (D.4) can be

reformulated as
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E
[

ŜXtF t

ij (ω)
]

= E

[

2

T

1

N

N
∑

l=1

(

X
t

i(ω)F
t
j (ω)

)

l

]

=
1

N
E

[

2

T

N
∑

l=1

(

X
t

i(ω)F
t
j (ω)

)

l

]

=
1

N

2

T

N
∑

l=1

E
[(

X
t

i(ω)F
t
j (ω)

)]

l

=
1

N

2

T
Nµraw =

2

T
µraw . (D.5)

Introducing equation (D.5) in equation (D.4) yields

σŜXtF t

ij

(ω)2 = E

[

(

ŜXtF t

ij (ω)− 2

T
µraw

)2
]

=
4

T 2
E





(

1

N

N
∑

l=1

(

X
t

i(ω)F
t
j (ω)

)

l
− 1

N

N
∑

l=1

µraw

)2




=
4

T 2

1

N2

{

E

[(

N
∑

l=1

((

X
t

i(ω)F
t
j (ω)

)

l
− µraw

)

) (

N
∑

m=1

((

X
t

i(ω)F
t
j (ω)

)

m
− µraw

)

)]}

.

(D.6)

When, as assumed,
(

X
t

i(ω)F
t
j (ω)

)

l
are statistical independent quantities, the

following holds

E

[(

N
∑

l=1

(

X
t

i(ω)F
t
j (ω)

)

l
− µraw

) (

N
∑

m=1

(

X
t

i(ω)F
t
j (ω)

)

m
− µraw

)]

=

N
∑

l=1

N
∑

m=1

E
[((

X
t

i(ω)F
t
j (ω)

)

l
− µraw

)((

X
t

i(ω)F
t
j (ω)

)

m
− µraw

)]

=
N

∑

l=1

N
∑

m=1

E
[

δlm

((

X
t

i(ω)F
t
j (ω)

)

l
− µraw

)((

X
t

i(ω)F
t
j (ω)

)

m
− µraw

)]

=

N
∑

l=1

E

[

((

X
t

i(ω)F
t
j (ω)

)

l
− µraw

)2
]

=
N

∑

l=1

σ2
raw = Nσ2

raw , (D.7)

where the linearity of the operator E[·] has been been utilized and δlm is the

Kronecker delta. Introducing equation (D.7) into equation (D.6) finally yields

σŜXtF t

ij

(ω)2 =
4

T 2

1

N
σ2

raw , (D.8)

where N = 1 corresponds to the spectral raw estimate.

Equation (D.8) shows, that the statistical uncertainty on the estimate of the

cross spectrum is inversely proportional to the number of averages used in the

estimation, and further that this random error tend to zero for the number of
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averages approaching infinitely (as expected). In practice, usually only a limited

number of averages is necessary to obtain sufficient accuracy (say, of the order of

5).

Analog results for estimates of autospectra are easily derived from the above

derivation by replacing X
t

i(ω)F
t
j (ω) with X

t

i(ω)X
t
j(ω) or F

t

i(ω)F
t
j (ω).
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E Alternative experimental strate-
gies

Different alternative experimental strategies have been investigated during the

course of the project in order to establish the most suitable experimental procedure

for wind turbine blade testing. These are briefly accounted for in the present

appendix.

Apart from the impact excitation concept, accounted for in Chapter 3, two

alternative exitation principles have been considered – snap back excitation and

random exitation using an electromagnetic exciter. In addition, different analysis

strategies were associated with each of these approaches.

E.1 Snap-Back Experiments

In snap-back experiments the structure is elastically deformed and then instan-

taneously released – the structure snaps back. Depending on the contribution of

the individual mode shapes to the initial structural deflection of the blade (and

possible non-linearities in the structure), the derived free oscillations contain a

range of mode shapes, each vibrating with their respective natural frequencies.

Experimental procedure

One end of a fishing line, with an adequate breaking strength, was attached to the

blade – the other end was, through a force transducer, attached to a winch. The

winch was subsequently pulled so that the blade was conveniently deflected, until

the fishing line finally fails, and the blade snapped back. The associated jump in

the measured force was used to trigger the measurements.

The motion of the blade was measured using two reference accelerometers lo-

cated at the blade tip, and three accelerometers mounted on the conventional

measuring bridge (cf. Figure 4) at the cross section in question.

The measurements were repeated with the three accelerometers, resolving

flapwise–, edgewise– and torsional deflection, placed in 10 different cross section.

Analysis procedure

The applied analysis method differ from the one described in Chapter 3. As no

forcing is recorded, the analysis can not be based on the concept of transfer func-

tions. Instead, the analysis is performed in the time domain, using the reference

measurement to link the modal decompositions originating from different cross

sections.

Using the algorithm described in Appendix A to relate cross sectional DOF’s

with cross sectional displacements, the basic idea is to express a measured response

in terms of a modal expansion as formulated in equation (7). The modal expansion

is truncated by selecting a suitable number of relevant mode shapes. Each term

in the truncated modal expansion contains a modal amplitude, a modal damping

factor (essentially the real part of the eigenvalues associated with the eigenvalue

problem (3)), and a natural frequency (the imaginary part of the eigenvalues as-

sociated with the eigenvalue problem (3)). As the modal amplitudes are complex

quantities, accounting for weightning of the individual modes as well as mutual

phase shift between these, we are left with 4 parameters for each contributing

mode to be determined. These are determined numerically by means of a opti-

mization procedure based on the least square principle. The optimization aims at
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ensuring the best possible agreement between the measured response signal and

the truncated modal expansion.

Results

An example of a decomposition, resulting from the optimization algorithm, is

shown in Figure 23, where a measured DOF-response has been resolved into the

7 lowest vibration modes. The underlying curve, with largest amplitudes, is the

measured signal. The measured signal is compared to the superposition of the

identified modal components in Figure 24. As seen, the derived modal expansion

approximate closely the measured signal.
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Figure 23. Decomposition of the measured signal (largest amplitude) into modal

components.

The modal shapes, natural frequencies and damping characteristics obtained,

using the above procedure, are approximately similar to the ones presented in

Chapter 4. This supports both results and furthermore indicates that the present

procedure is feasible.
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Figure 24. Comparison of superposition of identified components (approximated)

and measured signal.

Evaluation of the technique

The advantages with this technique are its high degree of reproducibility with

respect to magnitude and direction of the ”forcing”. The disadvantages are the

amount of work necessary to replicate an experimen, the lack of a force obser-

vation and the resulting relative slow analysis method in the time domain. For

these reasons, it was decided not to proceed any further with this experimental

technique.

E.2 Shaker Excitation

Imposing the external excitation by means of a shaker results in analysis of a

system of forced blade oscillations.

Experimental procedure

A variety of forcing signals are possible – in the present situation only white

noise excitation have been investigated, as this excitation type in particular allows

for simultaneous analysis of the whole range of modal shapes. The experimental
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procedure is thus eased considerably compared e.g. to sinusoidal excitation.

Recording simultaneously the external forcing and the derived response, the

experimental analysis can be performed in the frequency domain based on the

transfer matrix (cf. Section 3.2). The analysis method is thus analogue to the one

applied for the transient excitation.

Different types of exciters exist – f.ex. exiters based on an electromagnetic prin-

ciple and hydraulic exiters. The exiter applied in the present experiments was

an electromagnetic vibration exciter of the type B&K (Brüel & Kjær) 4808 (cf.

Appendix F). In principle the shaker works, and is controlled, similar to a loud-

speaker.

Due to the symmetry of the transfer matrix, expressing the dynamic relationship

between excitation (direction, magnitude) at a given location and the structural

response in one of the defined DOF’s, the experiment can be performed either

with fixed excitation location and roving response recording, corresponding to the

chosen discretization of the blade motion, or vice versa. Moving the exciter, and

in particular the attachment of the exciter, along the blade is, however, some-

what cumbersome. Therefore, the only practical way of performing this type of

experiments is to have the excitation fixed. The experimental setup employed is

illustrated in the pictures below.

Transducer
Force

Blade

Exciter

Figure 25. Experimental setup using an electromagnetic exciter.
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Figure 26. Vertical and horizontal forcing applying an electromagnetic exciter.

Results

The results obtained from these experiments were very similar to the results ob-

tained from the experiments using transient excitation presented in Chapter 4.

Evaluation of the technique

One of the advantages with this type of forced excitation is the high degree of re-

producibility (level, frequency content) between individual experiments. Recording

a number of consecutive signal sequencies (typically of the order of 5), an aver-

aged transfer function estimate can be determined, thus reducing the inherent

noise contribution and improving the statistical significance of final results.

However, a problem was encountered with the available electromagnetic ex-

citer. For low frequencies the magnitude of the exitation force turned out to be

insufficient. The measurements showed low coherence below approximately 1.5

Hz, which is in particular a major disadvantage for large blades (the lower blade

modes, which are the most important ones, will have natural frequencies in this

range or even lower).

For this reason, it was decided not to proceed further with this technique. How-

ever, other types of exciter tables have characteristics that make them suitable

for exitation in the low frequency range below 1.5 Hz, and applying one of these

might turn the technique attractive also for wind turbine blade modal analysis.
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F Instrument specifications

The present appendix presents a summary of the hardware used and evaluated in

the experimental investigations performed. The make, product identification and

product specifications are given. For convenience, the hardware are categorized

into instrument classes depending on the function of the equipment.

Shaker and Controller:

device name description

shaker B&K 4808

power amplifier B&K 2712 frequency range: 0–100kHz (reduced power)

Force Transducer:

device name description

force transducer B&K 8201 force range: -4kN–16kN

Accelerometers:

device name description

DeltaTron B&K 4507 built-in amplifier; sensitivity: 10.0 mV/(m/s2);

nominal frequency range 1. . . 5kHz.
DeltaTron B&K 4506 built-in amplifier; sensitivity: 10.0 mV/(m/s2);

nom. frequ. range 1. . . 5kHz; triaxial.
Charge-UniGain B&K 4370 sensitivity: 10.0 pC/(m/s2);

nominal frequency range 0.1. . . 5kHz
Charge B&K 4501 sensitivity: 0.35 pC/(m/s2);

nominal frequency range 0.1. . . 20kHz

Amplifiers:

device name description

charge condition amplifier B&K 2635 one channel; nominal frequency

range 1. . . 5kHz
charge conditioning amplifier B&K 2692 four chanel;

equipped with dedicated high

pass filters (0.5 Hz, 1 Hz,

10 Hz) and low pass filters

(12.5 Hz, 25 Hz, 50 Hz)

Data Acquisition System:

device name description

data acquisition system B&K 3551 12 input chanels.

computer HP
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G FEM Model

The FE modeling of the blade is due to M.L. Thøgersen and J.T. Petersen, Risø

[6]. The blade structure properties have been approached by neglecting the elastic-

ity (but not the weight) of the tip brake mechanism and by assuming the root part

to be fully clamped (and thus neglecting the moderate elasticity of the support

structure). Moreover, the material damping properties are not taken into account.

Basically, the blade model is a shell model. The surface geometry is defined by

connecting a number of predefined blade cross sections with radial splines. The

geometry of webs and other inner support structures is defined by subsequently

connecting suitable surface points with area elements. The defined surface area is

subsequently subdivided into 8-nodes triangular shell elements with quadratic in-

terpolation functions. The element is capable of modeling 100 layers of ortotropic

material properties, but only one layer, representing the average properties over

the shell thickness, was applied in the present modeling. Within a particular el-

ement the material properties are considered isotropic. The model has 4000 ele-

ments, 6000 nodes and 36000 DOF’s.
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The modal analysis technique has been used to identify essential dynamic proper-

ties of wind turbine blades like natural frequencies, damping characteristics and

mode shapes.

Different experimental procedures have been considered, and the most appropriate

of these has been selected. Although the comparison is based on measurements on

a LM 19 m blade, the recommendations given are believed to be valid for other

wind turbine blades as well.

The reliability of the selected experimental analysis has been quantified by es-

timating the unsystematic variations in the experimental findings. Satisfactory

results have been obtained for natural frequencies, damping characteristics and

for the dominating deflection direction of the investigated mode shapes. For the

”secondary” deflection directions, the observed experimental uncertainty may be

considerable – especially for the torsional deflection.

The experimental analysis of the LM 19 m blade has been compared with results

from a state-of-the-art FE-modeling of the same blade. For some of the higher

modes substantial discrepancies between the natural frequencies originating from

the FE-modeling and the modal analysis, respectively, are observed. In general the

qualitative features of measured and computed modes shapes are in good agree-

ment. However, for the ”secondary” deflection directions, substantial deviations

in the absolute values may occur (when normalizing with respect to the primary

deflection direction).

Finally, suggestions of potential future improvements of the experimental proce-

dure are discussed.
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