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Electrohydraulic Stewart platform is a multi-input and multi-output mechanical-hydraulic coupling system, which has the
advantages of large power-to-weight ratio and high accuracy. It has been widely used in construction machinery, aerospace, and
other fields. In the actual working process, especially in the high-speed motion, the Stewart platform movement process will
produce a large impact and vibration and then affect the stability, accuracy, and service life of the platform.When the frequency of
the external excitation coincides with the natural frequency of the electrohydraulic Stewart platform, it may cause the failure of the
platform. +erefore, based on the relationship between the volumetric elastic modulus of the gas-bearing oil and the hydraulic
stiffness of the leg, a mechanical-hydraulic coupling dynamic model of the electrohydraulic Stewart platform was established, and
the natural frequencies and modal shapes of the platform were analyzed under typical conditions. +e sensitivity calculation
formula of the natural frequency of the system on the upper platformmass and the hydraulic stiffness of the outer leg is given by an
analytical method, and the influence law of the upper platform mass and the outer leg stiffness on the natural frequency and the
sensitivity of the electrohydraulic Stewart platform under typical conditions is discussed. +is study can provide theoretical
support for dynamic optimization of the electrohydraulic Stewart platform.

1. Introduction

+e six-degree-of-freedom platform, also known as the
Stewart platform, was designed and proposed by the British
engineer Stewart in 1965. It is a typical parallel mechanism,
originally used as a flight simulator for pilot training. In the
later stage, the electrohydraulic Stewart platform appeared
on the basis of combining the hydraulic transmission sys-
tem. Compared with the series simulator platform, the
electrohydraulic Stewart platform has the advantages of
large power-to-weight ratio, large stiffness, small inertia, and
high precision [1–3] and is currently widely used in various
fields such as machine tool [4], medical equipment [5],
vehicle [6, 7], spacecraft [8, 9], and telescope [10, 11].+e
design and development of the electrohydraulic Stewart
platform involve multiple disciplinary fields such as

machinery [12], fluid transmission and control [13, 14],
computer [15], and sensor [16].+e electrohydraulic Stewart
platform is a multi-input multi-output system with strong
coupling because its legs cooperate with each other to
achieve the corresponding position and attitude in the de-
sign space. When the platform is working, the lower plat-
form is generally fixed, so its dynamic characteristics are
mainly affected by the stiffness of the six supporting legs and
the mass of the upper platform. Compared with the direct
motor drive, the leg stiffness of the electrohydraulic Stewart
platform has been improved to a certain extent, but it is still
significantly lower than that of the mechanical components.
+erefore, the dynamic characteristics of the platformwill be
significantly different with the change of the structure.When
the frequency of external excitation is close to its natural
frequency, the vibration and destruction of the platform will
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be caused no matter which structure is adopted [17, 18].
+erefore, it is of great significance to analyze the inherent
characteristics and parameter sensitivity of the platform to
improve its dynamic performance [19, 20].

In practical work, especially at high speed and high fre-
quency, the vibration of Stewart platform may be caused by
defects of platform components or parts, errors during plat-
form assembly, or incoordination between the control system
of the platform and the actual movement of the platform
[21–23].With the development and progress of science and
technology, instruments and equipment in various fields have
higher and higher requirements for accuracy, and such vi-
bration has more and more negative effects on the accuracy of
equipment [24–26].For the problem of vibration reduction,
Wang et al. proposed a novel Stewart isolation platform system
based on a bionic X-shaped structure. In the presence of
X-shaped structure, beneficial nonlinear stiffness and nonlinear
damping characteristics can be obtained, which is conducive to
better vibration isolation performance in multiple directions
[27]. Cheng et al. studied the dynamic control problem of
Gough–Stewart vibration platform with flexible support
structure, simplified the Stewart parallel mechanism into a
multibody system with elastic base platform by Newton–Euler
method, and proposed a PD control law based on position
prediction of two platforms.+e simulated wind excitation was
used for control simulation, and the control effect was eval-
uated by root mean square index [28]. For the entire Stewart
platform, ensuring that the overall stiffness of the platform
reaches the expected value can effectively reduce the vibration
caused by the platform motion [29, 30].

To study the dynamic characteristics of the Stewart
platform, it is necessary to establish and solve its dynamic
equation, which mainly includes mass matrix, stiffness
matrix, and damping matrix [31, 32]. +e natural frequency,
mode shape, and parameter sensitivity can be further solved
by the dynamic equation. For Stewart platform, Lagrange
method [33], virtual work principle [34], Newton–Euler
method [9], and Kane equation [35] can be used to solve its
dynamics problem.

In conclusion, the hydraulic stiffness of the leg and the
mass of the upper platform have important effects on the
dynamic characteristics of the electrohydraulic Stewart
platform, but the natural frequency, mode shape, and pa-
rameter sensitivity of the platform need to be further
studied. +erefore, based on the relationship between the
volumetric elastic modulus of gas-bearing oil and the hy-
draulic stiffness of the leg, the dynamic equation of the
electrohydraulic Stewart platform is established to deter-
mine the natural frequency and mode shapes of the plat-
form, and the sensitivity of the natural frequency of the
platform to the mass of the upper platform and the hydraulic
stiffness of the leg is studied by using the analytical method.

2. Dynamic Modeling of Electrohydraulic
Stewart Platform

2.1. Composition andPoseDescription of the Stewart Platform.
As shown in Figure 1, the Stewart 6-DOF platform is com-
posed of an upper platform (moving platform), a lower

platform (static platform), and six outer legs with the same
structure.+e six supporting legs are connected to themoving
platform through ball hinge S and to the static platform
through hooker hingeU.+ere is amoving pair P on the outer
leg, which ensures the movement of the whole platform by
exerting driving force on P. +e mechanism belongs to plane
platform type, and the centers of six spherical hinge S and six
hooker hinge U are distributed in two planes, respectively.

For the convenience of analysis, the absolute static co-
ordinate system o-xyz is established at the center of mass of
the static platform, where o is the center of the circle of the
static platform. +e relative moving coordinate system O-
XYZ is established at the center of mass of the moving
platform, where O is the center of the circle of the moving
platform.+e position of the six spherical hinge Swith respect
to the relative motion coordinate system O-XYZ is defined as
A1, A2, . . ., A6, and the position of the six Hook hinge U
relative to the absolute static coordinate system o-xyz is a1, a2,
. . ., a6 denotes.+e six legs of the platform are l1, l2, . . ., l6 said.
+e displacement matrix of the moving coordinate system
O-XYZ relative to the absolute static coordinate system o-xyz
is expressed by E, and the rotation matrix is expressed by Ra.

+e shape and position of the platform can be uniquely
determined by six variables (Px, Py, Pz, α, β, and γ) where Px,
Py, and Pz represent the projection of the displacement
vector of the moving coordinate system O-XYZ relative to
the absolute static coordinate system o-xyz along the axes x,
y, and z; α, β, and γ are, respectively, the roll angle, pitch
angle and yaw angle of rotation of the coordinate system O-
XYZ on a moving platform compared with that of the co-
ordinate system o-xyz on a static platform, which are de-
scribed by ZYX Euler angle.+en, the displacement matrix E
and rotation matrix Ra can be expressed as

E � Px Py Pz( )T,
Ra �

cγcβ cγsβsα − sγcα sγsα + cγsβcα
sγcβ cγcα + sγsβsα sγsβcα − cγcα
− sβ cβsα cβcα

 , (1)

where sα � sin α and cα � cos α.
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Figure 1: Stewart 6-DOF platform geometrical structure diagram.
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+e positions of the six supporting legs of the platform
can be expressed as

li � Ra × Ai + E − ai, (2)

where i� 1, 2, . . ., 6.
+is paper mainly analyzes the free vibration and sen-

sitivity of the two poses, and the parameters of the two poses
are as follows:

Pose 1:

x � Px, Py, Pz, α, β, c( ) � 0 0 2
�
3

√
0 0 0( ). (3)

Its graph is shown in Figure 2.
Pose 2:

x � Px, Py, Pz, α, β, c( ) � 1 2 2
�
3

√
10 5 5( ). (4)

Its graph is shown in Figure 3.
Among them, pose 1 represents that the electrohydraulic

Stewart platform is in the positive position, as shown in
Figure 1, and the platform has symmetry. +e pose 2 rep-
resents the general position of the electrohydraulic Stewart
platform; that is, the shape and position parameters of the
platform vary and the platform is not symmetrical. +rough
the analysis of dynamic characteristics of pose 1 and pose 2,
the influence of platform position change on its dynamic
characteristics was determined.

Physical parameters were obtained by measuring and
calculating the existing electrohydraulic Stewart platform in
the laboratory, as shown in Table 1.

2.2. Dynamic Equation of the Electrohydraulic Stewart Plat-
form Drive System. +e dynamic model of the electrohy-
draulic Stewart platform adopts the following assumptions:

(1) +e components of the Stewart platform are all rigid
bodies; that is, the elastic deformation of other
components is not considered.

(2) +e effect of the six supporting legs on the moving
platform is equivalent to a linear spring along the
length of the legs.

(3) Since the mass of the upper platform is much larger
than the mass of the outer leg, the effect of the outer
leg mass on the Stewart platform system is negligible.

(4) +e friction generated by relative movement of
components is ignored.

(5) Machining and installation errors of all parts are
ignored.

2.2.1. Velocity Analysis and Jacobian Matrix. +e six vari-
ables that determine the shape and position of the platform
are set as generalized coordinates:

x � Px, Py, Pz, α, β, c( )T. (5)

+en, the velocity V and angular velocity ω of the
moving platform can be expressed as

V � _P � _Px _Py _Pz( ),
ω � _θ �( _α, _β, _c).

(6)

Let r be the vector diameter of hinge point S relative toO;
Vs is the velocity of hinge point S; e is the unit direction
vector of bar l; and v is the change rate of rod length of rod l,
then

ri � RaAi, (7)

Vai � V + ω × ri, (8)

vi � Vai · ei, (9)

where i� 1, 2, . . ., 6.
Substituting (8) into (9), we can obtain

Figure 2: Schematic diagram of 6-DOF platform under pose 1.

Figure 3: Schematic diagram of 6-DOF platform under pose 2.
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vi � eTi ri × ei( )T[ ] V

ω
[ ]. (10)

For all six legs, there is

v1

v2

v3

v4

v5

v6




�

eT1 r1 × e1( )T
eT2 r2 × e2( )T
eT3 r3 × e3( )T
eT4 r4 × e4( )T
eT5 r5 × e5( )T
eT6 r6 × e6( )T





V

ω
[ ]. (11)

Shorthand for

v[ ] �[J] V ω[ ]T, (12)

where [J] is the Jacobian matrix.

2.2.2. Structural Dynamic Equation. Letm be themass of the
upper platform and Ia be the moment of inertia of the upper
platform. Because the mass and inertia of each leg are rel-
atively small on the upper and lower platforms, it is un-
necessary to consider. +e electrohydraulic equivalent
stiffness in the six supporting legs is determined by k1, k2, . . .,
k6, damping is expressed by c1, c2, . . ., c6, and the output
force is fa1, fa2, . . ., fa6 denotes.

+e virtual power of the inertial force acting on the body
is calculated, which can be obtained according to the virtual
power principle:

δp � fa − kΔl − c _l( ) · δ _l +(− m €p ) · δ _p
+ − Ia _ω − ω × Iaω( ) · δω � 0.

(13)

Because the working space of the electrohydraulic
Stewart platform is very small, Coriolis and centrifugal
forces can be ignored. +us, (13) can be reduced to

δp � fa − kJx − cJ _x( )TJδ _x − m€p Ia _ω( )Tδ _x � 0. (14)

In the above formula, _x � _p ω( )T. Since the compo-
nents of δ _x are independent of each other, it means that all
the coefficients are zero, and the explicit dynamic equation is
finally obtained:

M€x + C _x + Kx � JTfa, (15)

where

M �
mI3×3 0

0 Ia

 ,
K � JTkJ,

C � JTcJ,
k � diag k1 k2 k3 k4 k5 k6[ ]( ),
c � diag c1 c2 c3 c4 c5 c6[ ]( ),
fa � fa1 fa2 fa3 fa4 fa5 fa6( )T.

(16)

3. Dynamic Equivalent Stiffness of
Fluid Element

3.1.Aeoretical Model of Dynamic BulkModulus of Elasticity.
Generally, the transmission medium of the electrohydraulic
Stewart platform is gas-oil, which belongs to gas-liquid
mixed fluid. +e transmission medium is regarded as an
elastomer, and its definition is

E � − V ΔpΔV,
(17)

whereV is the total volume of gas-liquid mixture (m3), Δp is
the change in pressure of gas-liquid mixture (Pa), and ΔV is
the volume change of gas-liquid mixture (mm3).

Take the small pressure change, and then the differential
expression of the above equation is as follows:

Table 1: Physical parameters of electrohydraulic Stewart platform (unit: Si).

Name Symbol Value

Upper platform radius R 2
+ickness of upper platform D 0.2
Quality of upper platform M 20
Inertia of the upper platform about the X-axis Ix 20.07
Inertia of the upper platform about the Y-axis Iy 20.07
Inertia of upper platform about the Z-axis Iz 40
Hook hinges at position 1 a1 (1/2)R (

�
3

√
/2)R 0[ ]T

Hook hinges at position 2 a2 (1/2)R (
�
3

√
/2)R 0[ ]T

Hook hinges at position 3 a3 (1/2)R − (
�
3

√
/2)R 0[ ]T

Hook hinges at position 4 a4 (1/2)R − (
�
3

√
/2)R 0[ ]T

Hook hinges at position 5 a5 − R 0 0[ ]T
Hook hinges at position 6 a6 − R 0 0[ ]T
Ball hinge at position 1 A1 − (1/2)R (

�
3

√
/2)R 0[ ]T

Ball hinge at position 2 A2 R 0 0[ ]T
Ball hinge at position 3 A3 R 0 0[ ]T
Ball hinge at position 4 A4 − (1/2)R (

�
3

√
/2)R 0[ ]T

Ball hinge at position 5 A5 − (1/2)R (
�
3

√
/2)R 0[ ]T

Ball hinge at position 6 A6 − (1/2)R (
�
3

√
/2)R 0[ ]T
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E � − V dp

dV
. (18)

3.2. Dynamic Equivalent Stiffness of the Leg Hydraulic Cyl-
inder Fluid Unit. In the Stewart platform system stiffness
matrix, the stiffness of the fluid element in the leg hydraulic
cylinder needs to be equivalent calculated. Based on the
theory of dynamic volumetric elastic modulus of gas-liquid
mixed fluid, the dynamic equivalent stiffness of each leg fluid
element of the Stewart platform system is calculated.

Let the average cross-sectional area of the fluid unit be Sa
and the axial length l, then the volume of the fluid unit in the
definition of the volume elastic modulus of the gas-liquid
mixed fluid as shown in (17) can be expressed as

V � Sal. (19)

+e stiffness of an elastomer is defined as

k � − ΔFΔl ,
(20)

where ΔF is the change in fluid unit load (N) and Δl is the
variation in the axial length of a fluid element (mm3).

By combining (17)–(20), the dynamic equivalent stiff-
ness of fluid element expressed by dynamic volume elastic
modulus of gas-liquid mixed fluid can be obtained as

k � ESa
l
. (21)

4. Modal Analysis of Electrohydraulic
Stewart Platform

4.1.ModalAnalysis of theElectrohydraulic StewartPlatformat
Pose 1. +e hydraulic stiffness of six legs is divided into two
different cases to study (unit: N/m):

Case (a): k1� 6×105, k2� 6×105, k3� 6×105,
k4� 6×105, k5� 6×105, k6� 6×105.
Case (b): k1� 6×105, k2� 5.9×105, k3� 5.8×105,
k4� 5.7×105, k5� 5.6×105, k6� 5.5×105.

By substituting the pose parameters of pose 1, data in
Table 1, and hydraulic stiffness of six legs into (15), the modal
frequency and mode shapes of the platform transmission
system can be obtained, as shown in Tables 2 and 3, which
correspond to Cases (a) and (b), respectively.

According to Tables 2 and 3, the Stewart 6-DOF platform
has the following characteristics:

(1) According to the characteristics of each mode shape,
each mode is named as the moving vibration mode
and the rotating vibration mode of the upper plat-
form along the X-axis, Y-axis, and Z-axis; that is, in
each mode, the vibration displacement and vibration
rotation of the upper platform along the X-axis, Y-
axis, and Z-axis are the maximum, respectively.

(2) In the positive position, when the hydraulic stiffness
of the six supporting legs is the same, the mobile

vibration mode and the rotational vibration mode
frequency of the upper platform along the X-axis and
Y-axis are the same.

(3) In the positive position, when the six supporting legs
have the same hydraulic stiffness, the system only has
two coupling modes: the upper platform moving
vibration modes along the X-axis and the upper
platform rotating vibration modes along the Y-axis,
and the upper platform moving vibration modes
along the Y-axis and the upper platform rotating
vibration modes along the X-axis.

(4) In the positive position, when the hydraulic stiffness
of the six supporting legs is different, the system has
six order different natural frequencies, and the
coupling of the system increases.

4.2.ModalAnalysis of theElectrohydraulic StewartPlatformat
Pose 2. +e hydraulic stiffness of six legs is divided into two
different cases to study (unit: N/m):

Case (c): k1� 6×105, k2� 6×105, k3� 6×105,
k4� 6×105, k5� 6×105, k6� 6×105.
Case (d): k1� 6×105, k2� 5.9×105, k3� 5.8×105,
k4� 5.7×105, k5� 5.6×105, k6� 5.5×105.

By subbing pose parameters of pose 2, data in Table 1,
and hydraulic stiffness of six legs into (15), the modal fre-
quency and mode shapes of the platform transmission
system can be obtained, as shown in Tables 4 and 5, which
correspond to Cases (c) and (d), respectively:

According to Tables 2–5, the Stewart 6-DOF platform
has the following characteristics:

(1) When the pose of the platform is changed, the Ja-
cobianmatrix of the upper platform and the outer leg
changes, leading to the change of the stiffness matrix
in the system dynamics equation, so the sixth-order
natural frequency and the corresponding mode
shapes of the system change, but the influence range
is small.

(2) As the six leg stiffness decreases, and the platform
along the X-axis and Y-axis and Z-axis movement
vibration modal and rotating vibration modal and
the six degree of freedom in addition to their main
characteristics, namely, the platform along theX-axis
and Y-axis and Z-axis movement vibration and
rotation vibration relative to 1, still remaining in the
modal degree-of-freedom vibration were little
changed.

(3) Among the modal frequencies, lateral and longi-
tudinal rotation of the upper platform requires
stronger supporting capacity than lateral and lon-
gitudinal movement of the upper platform.
+erefore, the natural frequencies corresponding to
the rotating vibration modes along the X and Y axes
of the upper platform are larger than the moving
vibration modes along the X and Y axes of the
platform. On the contrary, the bearing capacity of
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the supporting leg required by the vertical rotation
of the upper platform is weaker than that required
by the vertical movement of the upper platform.
+erefore, the natural frequency value corre-
sponding to the rotating vibration mode of the
upper platform along the Z-axis is smaller than that
of the moving vibration mode of the upper platform
along the X-axis.

(4) Among the modal frequencies, the vertical move-
ment of the upper platform requires a stronger
bearing capacity than the lateral and longitudinal
movement of the upper platform. +erefore, the

natural frequency value corresponding to the
moving vibration modes along the Z-axis of the
upper platform is larger than that of the moving
vibration modes along the X-axis and Y-axis of the
upper platform. On the contrary, the vertical rota-
tion of the upper platform requires a weaker bearing
capacity than the lateral and longitudinal rotation of
the upper platform. +erefore, the natural frequency
value corresponding to the Z-axis rotational vibra-
tion mode of the upper platform is smaller than that
of the X-axis and Y-axis rotational vibration modes
of the upper platform.

Table 3: Modal frequencies and corresponding modal shapes of the Stewart platform in Case (b).

Vibration modes of each degree of
freedom of upper platform

Moving along
the X-axis

Moving along
the Y-axis

Moving along
the Z-axis

Rotate along
the X-axis

Rotate along
the Y-axis

Rotate along
the Z-axis

Frequency (Hz) 20.2278 20.4584 58.1965 82.6201 83.5604 41.1358

Modal vibration mode

1 0.2417 − 0.0110 0.0381 − 0.1592 0.0033
− 0.2417 1 − 0.0063 0.1504 0.0406 − 0.0081
0.0075 0.0072 1 0.0140 − 0.0131 0.0173
0.0407 − 0.1488 − 0.0090 1 0.2700 0.0217
0.1575 0.0383 0.0139 − 0.2700 1 0.0122
0.0041 − 0.0050 0.0087 0.0088 0.0085 − 1

Table 4: Modal frequencies and corresponding modal shapes of the Stewart platform in Case (c).

Vibration modes of each degree of
freedom of upper platform

Moving along
the X-axis

Moving along
the Y-axis

Moving along
the Z-axis

Rotate along
the X-axis

Rotate along
the Y-axis

Rotate along
the Z-axis

Frequency (Hz) 20.1335 20.7141 58.4720 81.2448 84.9425 40.9946

Modal vibration mode

1 0.5786 − 0.0038 0.1159 − 0.1447 − 0.0592
0.5792 − 1 0.0091 − 0.1617 − 0.1058 − 0.0288
0.0021 − 0.0116 − 1 0.0003 − 0.0016 0.0221
− 0.08 0.1642 − 0.0007 − 1 − 0.6944 0.0313
0.1466 0.0918 − 0.0024 − 0.6944 1 − 0.0613
− 0.0437 − 0.0031 − 0.011 0.0046 − 0.0359 − 1

Table 5: Modal frequencies and corresponding modal shapes of the Stewart platform in Case (d).

Vibration modes of each degree of
freedom of upper platform

Moving along
the X-axis

Moving along
the Y-axis

Moving along
the Z-axis

Rotate along
the X-axis

Rotate along
the Y-axis

Rotate along
the Z-axis

Frequency (Hz) 19.6809 20.294 57.2292 79.4651 83.2042 40.1239

Modal vibration mode

1 − 0.3536 0.0068 − 0.1017 0.1476 − 0.0553
0.3554 1 0.0154 0.1572 0.083 − 0.0372
0.0105 0.0128 − 1 0.0013 0.0241 0.033
− 0.0388 − 0.1592 0.0097 1 0.5615 0.052
0.1524 − 0.0591 − 0.0174 0.5604 − 1 − 0.0473
− 0.0387 − 0.0114 − 0.0163 0.0127 0.0331 − 1

Table 2: Modal frequencies and corresponding modal shapes of the Stewart platform in Case (a).

Vibration modes of each degree of
freedom of upper platform

Moving along
the X-axis

Moving along
the Y-axis

Moving along
the Z-axis

Rotate along
the X-axis

Rotate along
the Y-axis

Rotate along
the Z-axis

Frequency (Hz) 20.4484 20.4484 58.4773 83.4761 83.4761 41.3497

Modal vibration mode

1 0 0 0 − 0.1543 0
0 1 0 − 0.1543 0 0
0 0 1 0 0 0
0 − 0.1538 0 − 1 0 0

0.1538 0 0 0 1 0
0 0 0 0 0 − 1
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5. Sensitivity Analysis of Natural Frequency of
Electrohydraulic Stewart Platform

5.1. Derivation of Natural Frequency Sensitivity Formula of
Transmission System. +e eigenvalue equation of (15) is

k − ω2
im( )ϕi � 0, (22)

where ϕi is the mode shape vector of the Stewart platform.
(22) is left multiplied by ϕTi to get

ϕTi k − ω
2
im( )ϕi � 0. (23)

If ω2
i is the isolated eigenvalue of the driveline, then it is

differentiable with respect to the design variable, so the first
derivative of ωi with respect to the design variable can be
obtained by (23).Assuming that the design variable is t, ωi, k,
and ϕi are differentiable functions, take the partial deriva-
tives of both sides of (23) with respect to the design variable
t, and get

zϕTi
zt

k − ω2
im( )ϕi + ϕTi zk

zt
−
z ω2

im( )
zt

 ϕi
+ϕTi k − ω

2
im( ) zϕi

zt
� 0.

(24)

Considering eigenvalue (22), (k − ω2
im) is a real sym-

metric matrix, so ϕTi is the left eigenvector of (k − ω2
im),

namely,

ϕTi k − ω
2
im( ) � 0. (25)

Substituting (22) and (25) into (24), the simplified
formula can be obtained:

ϕTi
zk

zt
− 2ωi

zωi
zt
m − ω2

i

zm

zt
( )ϕi � 0. (26)

From (26), the sensitivity formula of natural frequency
ωi to design variable t (mass or stiffness parameter of the
transmission system) can be obtained:

zωi
zt

� 1

2aei

1

ωi
ϕTi

zk

zt
ϕi − ωiϕ

T
i

zm

zt
ϕi( ), (27)

where aei � ϕTi mϕi, zk/zt, and zm/zt are determined by
specific design parameters.

In any mode, the derivative of the mass matrix m with
respect to the stiffness parameter is equal to zero, i.e.,
(zm/zt) � 0.+erefore, the sensitivity calculation formula of
natural frequency to stiffness parameters is changed into

zωi
zt

� 1

2aei

1

ωi
ϕTi

zk

zt
ϕi( ). (28)

For natural frequencies of different modes, the derivative
value of stiffness matrix k with respect to mass parameters is
equal to zero; that is, (zk/zt) � 0. +erefore, the sensitivity
calculation formula of natural frequency with respect to
mass parameters is

zωi
zt

� − 1

2aei
ωiϕ

T
i

zm

zt
ϕi( ). (29)

5.1.1. Sensitivity Formula of Natural Frequency to Mass
Parameters. Since changes in themass of the upper platform
affect the system mass matrix, the sensitivity of natural
frequency to mass parameters can be calculated according to
(29) as follows:

zωi
zρ1

� − 1

2aei
ωiϕ

T
i

zm

zm1

ϕi( ). (30)

5.1.2. Sensitivity Formula of Natural Frequency to Stiffness
Parameters. Since the variation of stiffness K of the six legs
all affects the stiffness matrix k of the system, the sensitivity
calculation formula of natural frequency to stiffness pa-
rameters can be obtained according to (28) as follows:

zωi
zQ

� 1

2aei

1

ωi
ϕTi

zk

zQ
ϕi( ), (31)

where Q � k1, k2, k3, k4, k5, k6.

5.2. Sensitivity Analysis of System Natural Frequency with
Typical Design Parameters under Platform Post 1.
+rough (30) and (31), the natural frequency and sensitivity
of the platform under the specified pose are calculated. +e
pose parameters input are

x � Px, Py, Pz, α, β, c( ) � 0 0 2
�
3

√
0 0 0( ). (32)

5.2.1. Sensitivity Analysis of Natural Frequency to Upper
Platform Mass. Keeping other design parameters of Stewart
6-DOF platform unchanged, the sensitivity variation curve
of natural frequency and each modal frequency of the
transmission system to the mass of the upper platform is
shown in the figure.

As can be seen from Figure 4, the sensitivity of natural
frequency to themassm of the upper platform increases with
the increase of the mass of the upper platform, and the
sensitivity values of the moving modes of Y-axis, rotation
modes of Y-axis, and rotation modes of Z-axis of the upper
platform vary greatly. +e variation curves of the sensitivity
values of the X-axis moving modes and the Y-axis moving
modes and the X-axis rotating modes and the Y-axis rotating
modes coincide with each other, and the variation ranges are
basically the same.+e sensitivity values of all the supporting
legs are negative. According to the definition of sensitivity,
the natural frequencies of Z-axis moving mode and Z-axis
rotating mode decrease with the increase of internal rotor
mass, and the ranges are basically the same. +e natural
frequency change curves of X-axis moving mode and Y-axis
moving mode and X-axis rotating mode and vibration mode
are identical, and the ranges are basically the same.
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5.2.2. Sensitivity Analysis of Natural Frequency to Hydraulic
Stiffness of Outer Leg 1 and Outer Leg 4. According to
equation (31), the variation of natural frequency and sen-
sitivity with the stiffness of outer leg 1 is the same as that with
the stiffness of outer leg 4. Only the natural frequency and
sensitivity of outer leg 1 are analyzed below.

Keeping other design parameters of Stewart 6-DOF
platform unchanged, the sensitivity variation curve of
natural frequency and each modal frequency of the trans-
mission system to the outer leg 1 is shown in the figure.

Figure 5 shows that the stiffness leg 1 to 6×105N/m and
inherent frequency of modal sensitivity with leg 1 X-axis
rotation stiffness increase with the increase of the ka, inherent
frequency movement modal of X-axis and Z-axis movement
modal, Z-axis rotation modal stiffness sensitivity decreases
with the increase of the stiffness leg 1 ka and X-axis motion
mode and the Z-axis rotation mode, and changes in Y-axis
motionmode, modal sensitivity almost has no change and the
Y-axis rotation curves overlap, but when the leg 1 stiffness
reaches 6×105N/m, X-axis rotation, the sensitivity of modal
fell sharply, and the X-axis movement modal sensitivity de-
creased. +e sensitivity of the Y-axis rotating mode increases
sharply, and that of the Y-axis moving mode increases
sharply. According to the definition of sensitivity, with the
increase of stiffness ka, the natural frequencies corresponding
to each supporting leg mode almost do not change.

5.2.3. Sensitivity Analysis of Natural Frequency to the Hy-
draulic Stiffness of Outer Leg 2 and Outer Leg 3.
According to equation (31), the variation of natural fre-
quency and sensitivity with the stiffness of outer leg 2 is the

same as that with the stiffness of outer leg 3. In the following,
only the natural frequency and sensitivity of outer leg 2 are
analyzed.

Keeping other design parameters of Stewart 6-DOF
platform unchanged, the sensitivity variation curve of
natural frequency and each modal frequency of the trans-
mission system to the outer leg 2 is shown in the figure.

Figure 6 shows that the inherent frequency of Y-axis
rotation modal stiffness sensitivity with leg 2 stiffness in-
creases with the increase of the kB inherent frequency of leg Y
modal and Z-axis movement modal, Z-axis rotation modal
sensitivity decreases with the increase of the stiffness leg 2 kB,
greatly reduces the sensitivity of the Y-axis movement mode,
Y-axis rotation mode corresponding to sensitivity signifi-
cantly increased and the value is bigger, the X-axis motion
mode and X-axis rotation mode in leg 2 stiffness sensitivity at
6×105N/m before almost have no change and basic coin-
cidence, and sensitivity curve in leg 2 stiffness reaches
6×105N/m.+e sensitivity of X-axis moving mode increases
sharply, and the sensitivity of X-axis rotating mode increases
somewhat. According to the definition of sensitivity, with the
increase of stiffness kB, the natural frequencies corresponding
to each supporting leg mode almost did not change.

5.2.4. Sensitivity Analysis of Natural Frequency to the Hy-
draulic Stiffness of Outer Leg 5 and Outer Leg 6.
According to (31), the variation of natural frequency and
sensitivity with the stiffness of outer leg 5 is the same as that
with the stiffness of outer leg 6. In the following, only the
natural frequency and sensitivity of outer leg 5 are analyzed.
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Figure 4: Curves of natural frequency and its sensitivity as a function of upper platform mass. (a) Natural frequency. (b) Sensitivity of
natural frequency to upper platform mass.
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Figure 5: Curve of natural frequency and its sensitivity changing with the stiffness of outer leg 1. (a) Natural frequency. (b) Sensitivity of
natural frequency to the stiffness of outer leg 1.
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Figure 6: Curve of natural frequency and its sensitivity changing with the stiffness of outer leg 2. (a) Natural frequency. (b) Sensitivity of
natural frequency to the stiffness of outer leg 2.
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Keeping other design parameters of Stewart 6-DOF
platform unchanged, the sensitivity variation curve of
natural frequency and each modal frequency of the trans-
mission system to the outer leg 5 is shown in the figure.

Figure 7 shows that the stiffness leg 5 to 6×105N/m
before the natural frequency of the X-axis rotation modal
stiffness sensitivity with leg may increase with the increase of
the stiffness ke, inherent frequency movement modal of X-
axis and Z-axis movement modal, Z-axis rotation modal
sensitivity decreases with the increase of the leg 5 stiffness ke,
the X-axis motion mode and the Z-axis rotation mode, and
changes in Y-axis motionmode, modal sensitivity almost has
no change and the Y-axis rotation curves overlap, but when
the leg 5 stiffness reaches 6×105N/m, X-axis rotation, the
sensitivity of modal fell sharply, and the X-axis movement
modal sensitivity decreased. +e sensitivity of the Y-axis
rotating mode increases sharply, and that of the Y-axis
moving mode increases sharply. According to the definition
of sensitivity, with the increase of stiffness ke, the natural
frequencies corresponding to each supporting leg mode
almost do not change.

5.3. Sensitivity Analysis of System Natural Frequency with
Typical Design Parameters under Platform Pose 2.
+rough (30) and (31), the natural frequency and sensitivity
of the platform under the specified pose are calculated. +e
pose parameters input are as follows:

x � Px, Py, Pz, α, β, c( ) � 1 2 2
�
3

√
20 15 0( ). (33)

5.3.1. Sensitivity Analysis of Natural Frequency to Upper
Platform Mass. Keeping other design parameters of Stewart
6-DOF platform unchanged, the sensitivity variation curve
of natural frequency and each modal frequency of the
transmission system to the mass of the upper platform is
shown in the figure.

As can be seen from Figure 8, the sensitivity of natural
frequency to themassm of the upper platform increases with
the increase of the mass of the upper platform, and the
sensitivity values of Z-axis moving mode, X-axis rotating
mode, and Y-axis rotating mode vibration mode vary
greatly. +e sensitivity values of X-axis moving mode, Y-axis
moving mode, and Z-axis rotating mode were basically the
same, and all the sensitivity values of the supporting legs
were negative. From the definition of sensitivity, it can be
seen that the natural frequencies of Z-axis movingmodes, X-
axis rotating modes, and Y-axis rotating modes decrease
with the increase of the internal rotor mass, and the natural
frequencies of X-axis moving modes, Y-axis moving modes
and Z-axis rotating modes decrease with the increase of the
internal rotor mass, and the range is small.

5.3.2. Sensitivity Analysis of Natural Frequency to Hydraulic
Stiffness of Outer Leg 1. Keeping other design parameters of
Stewart 6-DOF platform unchanged, the sensitivity variation
curve of natural frequency and each modal frequency of the
transmission system to the outer leg 1 is shown in the figure.

As can be seen from Figure 9, the sensitivity of natural
frequency to the X-axis rotational mode stiffness increases
with the increase of the stiffness ka of the outer leg 1, while
the sensitivity of natural frequency to the Y-axis moving
mode, Z-axis moving mode, and Z-axis rotating mode de-
creases with the increase of the stiffness ka of the outer leg 1,
while the sensitivity of other outer legs almost has no change.
According to the definition of sensitivity, with the increase of
stiffness ka, the natural frequencies corresponding to each
supporting leg mode almost do not change.

5.3.3. Sensitivity Analysis of Natural Frequency to Hydraulic
Stiffness of Outer Leg 2. Keeping other design parameters of
Stewart 6-DOF platform unchanged, the sensitivity variation
curve of natural frequency and each modal frequency of the
transmission system to the outer leg 2 is shown in the figure.

Figure 10 shows that the inherent frequency of Y-axis
rotation modal sensitivity increases with the increase of leg 2
kb stiffness, natural frequency movement modal of X-axis
and Y-axis modal, Z-axis movement modal, and Z-axis
rotation modal sensitivity decreases with the increase of the
stiffness leg 2 kb, Z-axis movement mode, greatly reduces the
sensitivity of the Z-axis rotation mode, Y-axis rotation mode
corresponding to sensitivity significantly increased, and the
value is bigger. According to the definition of sensitivity,
with the increase of stiffness kb, the natural frequencies
corresponding to each supporting leg mode almost did not
change.

5.3.4. Sensitivity Analysis of Natural Frequency to Hydraulic
Stiffness of Outer Leg 3. Keeping other design parameters of
Stewart 6-DOF platform unchanged, the sensitivity variation
curve of natural frequency and each modal frequency of the
transmission system to the outer leg 3 is shown in the figure.

Figure 11 shows that natural frequency on the Y-axis
rotation modal sensitivity with leg 3 increases with the
increase of the rigidity of kc, inherent frequency movement
modal of Y-axis and Z-axis movement modal, Z-axis rota-
tion modal sensitivity decreases with the increase of the
rigidity leg 3 kc, which greatly reduces the sensitivity of Z-
axis movement mode, Y-axis rotation mode corresponding
to sensitivity significantly increased, and the value is bigger.
According to the definition of sensitivity, with the increase of
stiffness kc, the natural frequencies corresponding to each
supporting leg mode almost do not change.

5.3.5. Sensitivity Analysis of Natural Frequency to Hydraulic
Stiffness of Outer Leg 4. Keeping other design parameters of
Stewart 6-DOF platform unchanged, the sensitivity variation
curve of natural frequency and each modal frequency of the
transmission system to the outer leg 4 is shown in the figure.

Figure 12 shows that natural frequency on the Y-axis
rotation modal sensitivity with the increase of the leg 4
stiffness kd increased significantly, the inherent frequency
movement modal of X-axis and Y-axis modal, Z-axis
movement mode, the X-axis rotation mode, the Z-axis ro-
tation modal sensitivity with the increase of the stiffness kd
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Figure 8: Curves of natural frequency and its sensitivity as a function of upper platform mass. (a) Natural frequency. (b) Sensitivity of
natural frequency to upper platform mass.
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Figure 9: Curve of variation of natural frequency and its sensitivity with stiffness of outer leg 1. (a) Natural frequency. (b) Sensitivity of
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Figure 10: Curve of variation of natural frequency and its sensitivity with stiffness of outer leg 2. (a) Natural frequency. (b) Sensitivity of
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Figure 11: Curve of variation of natural frequency and its sensitivity with stiffness of outer leg 3. (a) Natural frequency. (b) Sensitivity of
natural frequency to the stiffness of outer leg 3.
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Figure 12: Curve of variation of natural frequency and its sensitivity with stiffness of outer leg 4. (a) Natural frequency. (b) Sensitivity of
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leg 4 significantly decreases, and by the sensitivity definition,
with the increase of the stiffness kd, each leg modal natural
frequency corresponding almost has no change.

5.3.6. Sensitivity Analysis of Natural Frequency to Hydraulic
Stiffness of Outer Leg 5. Keeping other design parameters of
Stewart 6-DOF platform unchanged, the sensitivity variation
curve of natural frequency and each modal frequency of the
transmission system to the outer leg 5 is shown in the figure.

Figure 13 shows that natural frequency of the X-axis
rotation mode and Y-axis rotation modal sensitivity with leg
5 increase with the increase of the stiffness ke, inherent
frequency movement modal of X-axis and Z-axis rotation
modal sensitivity with the increase of the stiffness ke leg 5
significantly decreases, and the other leg sensitivity changes
much, and by the sensitivity definition, with the increase of
the stiffness ke, each leg modal natural frequency corre-
sponding almost has no change.

5.3.7. Sensitivity Analysis of Natural Frequency to Hy-
draulic Stiffness of Outer Leg 6. Keeping other design
parameters of Stewart 6-DOF platform unchanged, the
sensitivity variation curve of natural frequency and each
modal frequency of the transmission system to the outer leg
6 is shown in the figure.

Figure 14 shows that the inherent frequency of Y-axis
rotation modal sensitivity increases with the increase of leg 6
stiffness kf, inherent frequency movement modal of Y-axis
and Z-axis movement modal sensitivity decreases with the
increase of the stiffness leg 6 kf, other leg almost has no
change, sensitivity, and by the sensitivity definition, with the
increase of the stiffness kf, each leg modal natural frequency
corresponding almost has no change.

6. Kinetic Experimental Study

In this section, the Stewart 6-DOF platform dynamics test
bed is built, and the hammering method is used to carry out
modal tests on the system. +e validity and accuracy of the
theoretical analysis results are verified by the experimental
value of the first-order natural frequency of the system.

6.1. Construction of the Test Platform. In order to obtain the
natural frequency of the Stewart 6-DOF platform, the
hammering method was adopted to carry out modal tests on
the system under working conditions. +e test platform is
shown in Figure 15.

+e acceleration sensor is installed on the Stewart 6-DOF
platform prototype to measure the acceleration signal of the
system, and the piezoelectric acceleration sensor is installed
to measure the acceleration signal of the upper platform, and
the signal analyzer, computer, and sensor are properly
connected. +e connection diagram of each device in the
modal test is shown in Figure 16.

+e relevant parameters of the piezoelectric acceleration
sensor are shown in Table 6.

6.2. Test and Test Procedures. Specific operations during the
modal test are as follows:

(1) Check the Stewart 6-DOF platform prototype, turn
on the controller connected to the platform, turn on
the pump station, and make the platform move to a
certain position and pose.

(2) Install a piezoelectric acceleration sensor, and attach
one piezoelectric sensor to one of the legs near the
end of the upper platform. +e direction of the
output end of the sensor is the same as the direction
of the legs, and remember the positions of the three
directions XYZmarked on the sensor. +en, another
piezoelectric sensor is attached to the circumscribed
surface of the upper platform. +e direction of the
output end of the sensor is the same as the axial
direction of the upper platform. Remember the
positions of the three directions XYZ marked on the
sensor.

(3) Connect the circuit of the analysis system and knock
the platform on the Stewart platform with a force
hammer to check whether the analysis system can
receive signals normally.

(4) After the above steps are confirmed, increase the
system pressure to 5MPa. After the system is stable,
keep the system working for 60 s, and record the data
of all sensors.

(5) Keep the above conditions unchanged, use the force
hammer to repeatedly hit all parts of the platform on
the Stewart platform, and record the data of each
sensor.

(6) Restore the platform, shut down the pump station
and clean the site. Follow the above steps to complete
the Stewart 6-DOF platform modal test and collect
test data.

6.3. Analysis of Test Results

6.3.1. Modal Test Results and Analysis at Pose 1. Fast Fourier
transform algorithm is used to transform the acceleration
signal of jet system under the action of pulse excitation, and
the amplitude-frequency characteristics of the system are
obtained.

Based on themodal analysis results of the Stewart 6-DOF
platform, Case (a), it is compared with the theoretical cal-
culated values of the Stewart platform in the first-order
dynamic natural frequency stabilization stage. +e com-
parison results are shown in Table 7.

It can be seen from Table 7 that the theoretical calculated
value of the first-order natural frequency of the system is
very close to the experimental value with a small error,
indicating the effectiveness and accuracy of the theoretical
analysis of electrohydraulic Stewart platform dynamics.

6.3.2. Modal Test Results and Analysis at Pose 2. Fast Fourier
transform algorithm is used to transform the acceleration
signal of the jet system under the action of pulse excitation,
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Figure 14: Curve of variation of natural frequency and its sensitivity with stiffness of outer leg 6. (a) Natural frequency. (b) Sensitivity of
natural frequency to the stiffness of outer leg 6.
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Figure 13: Curve of variation of natural frequency and its sensitivity with stiffness of outer leg 5. (a) Natural frequency. (b) Sensitivity of
natural frequency to the stiffness of outer leg 5.
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and the amplitude-frequency characteristics of the system
are obtained.

Based on the modal analysis results of the Stewart 6-DOF
platform, Case (c), it is compared with the theoretical cal-
culated values of the Stewart platform in the first-order
dynamic natural frequency stabilization stage. +e com-
parison results are shown in Table 8.

It can be seen from Table 8 that the theoretical calculated
value of the first-order natural frequency of the system is
close to the experimental value with a small error, indicating
the effectiveness and accuracy of the theoretical analysis of
electrohydraulic Stewart platform dynamics.

7. Conclusion

Based on the above analysis results of natural frequency and
sensitivity of the electrohydraulic Stewart 6-DOF platform,
the following law can be obtained:

(1) In the same posture, the mass of the upper platform
has a more significant influence on the natural
frequency and sensitivity of each component than
that of the six legs, which indicates that the mass of
the upper platform has a more significant influence
on the stability and accuracy of the electrohydraulic
platform than that of the six legs.

(2) When the position posture is in the positive position,
the sensitivity of the six legs presents symmetry; that
is, the sensitivity change curve of the two legs is the
same.+is is because the coupling between the legs is
reduced when the position posture is in the sym-
metric position. When the posture was in an
asymmetric position, the sensitivity of the six legs did
not show symmetry.

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.

Table 7: In the condition of pose 1, Case (a), the theoretical value of
the first-order natural frequency of the electrohydraulic Stewart
platform is compared with the experimental value.

+e theoretical value
(Hz)

+e actual value
(Hz)

Error
(%)

Value 20.45 20.40 0.24

Table 8: In the condition of pose 2, Case (c), the theoretical value of
the first-order natural frequency of the electrohydraulic Stewart
platform is compared with the experimental value.

+e theoretical value
(Hz)

+e actual value
(Hz)

Error
(%)

Value 20.14 20.23 4.5
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Figure 15: Test platform for the modal test.
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Figure 16: Connecting block diagram of the modal test.

Table 6: +e relevant parameters of the piezoelectric acceleration
sensor.

Parameter name Value

Sensitivity (mV·g− 1) 100
Frequency response (Hz) 0.5∼5000
Scale range (g) 50
Impact resistant (g) 200
Excitation voltage (VDC) 15∼24
Exciting current (mA) 2∼10
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