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Modal Balancing of a Multi-Mass
Flexible Rotor Without Trial
Weights
In this paper, a procedure is presented to determine the unbalance distribution in a
multi-mass flexible rotor system without requiring that trial weights be placed upon

the shaft to first determine the influence coefficient matrix of the various balance
planes. A modified Nyquist plotting procedure is presented to generate a polar plot

of proximity probe measurements for determination of the 90-deg phase shift
position of the modal eccentricity. By knowing the rotor modal mass and mode

shape, a modal balancing distribution can be calculated. This relationship provides
a quick procedure in estimating a first mode balance correction weight in both
magnitude and angular location. An application is presented for a steam turbine
during the startup of a hydrogen gas compression train. Higher order modal un-
balance corrections are shown to be calculable in a similar manner.

NOMENCLATURE

A.	frequency dependent amplification factor for
ith mode

A
c
	amplification factor at undamped critical speed

Au	amplification factor at unbalance resonance
speed

A	normalized amplification factor

[C] system damping matrix

C r	damping constant associated with r th mode

Crs cross coupled modal damping coefficient

E.	modal eccentricity of ith mode
i

iwte 	
periodic reference factor = coswt + i sinwt

Kr modal stiffness of rth mode

[M] system mass and rotational inertia matrix

M 1	modal mass of first mode

Mr modal mass of rth mode

n	number of degrees of freedom of system

N	shaft rotational speed in RPM

N 1	shaft first critical speed in RPM

Nr	shaft rth critical speed in RPM

(Q] vector of complex displacement coefficients
which describe the periodic response of the
system

q.	complex displacement coefficient for jth degree
J	of freedom

f l	ratio of rotor speed to rotor first critical
speed f l = N/N l = to/w 1

f
r	f

i	imaginary number prefix

j	degree of freedom index

[K] system stiffness matrix

ratio of rotor speed to rth rotor critical
speed = N/N = to/w

r r r

q. magnitude of q.
J J

^. phase	angle	of	q.	referenced with	respect	to
the	alignment	of	a	shaft	notch	with	a	sta-
tionary detector

{q] vector	of	time	dependent	elements	which	de-
scribes the system's displacements

r	index for mode number

s	index for mode number

{U} vector of complex force coefficients, i.e.
magnitude and phase. The phase angle is again
referenced with respect to the alignment of a
shaft notch with a stationary detector.
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U.	complex shaft unbalance acting along the line
of the jth degree of freedom

U 1	modal unbalance of first mode U1
	(A1 + ip 1 )

U c 1 correction imbalance applied to the rotor
balance plane

A l + ip 1 first modal unbalance eccentricity in
rectangular form.

Note A l + ip 1 = U 1 =	E 1 e ion

Ar + ip r rth modal unbalance eccentricity

t 1	first modal damping factor

rth modal damping factor
r

rs cross coupled modal damping factor

ts.. component of the ith mode shape at jth degree
1J of freedom (or probe location)

{t,r 1 rth mode shape

modal unbalance angle referenced to the probe
u	direction. Positive in the direction of shaft

rotation.

^cl angle of the correction imbalance referenced to
the probe direction. Positive in the direction
of rotation.

y	sth mode shape coefficient
S

w	shaft rotational speed in radians/second

w,	shaft ith critical speed in radians/second
i

I. INTRODUCTION

In the chemical process and related industries,
many steam or gas turbines and multi-stage centrif-
ugal compressors have normal operating speeds be-
tween their first and second rotor critical speeds.
It is a wise procedure to minimize the shaft vibra-
tory response, measured at the bearings, while
traversing through the first critical. This prac-
tice should guarantee low vibrations levels in the
operating speed range and the avoidance of internal
seal rubs. If an influence coefficient balancing
method is employed to reduce these vibrations, an
initial trial weight must be placed on the rotor.

The magnitude and location of this weight is so
critical that it will in some cases decide the
success or failure of the balance attempt. The
analysis and application of a balancing technique is
presented here, which predicts a proper trial weight
and that should reduce the critical speed vibration
amplitudes considerably.

Similar previous work was done by the authors
Bishop, Parkinson, Jackson and Lindley (1,2,3,4,5),
and by Kellenberger (6), Lindsey (7), and LeGrow
(8). Though this literature is closely related, the
technique presented in this paper eliminates the
prior assumption of coincidence between the un-
balance response peak and the critical speed. This
provides a more accurate estimate of the effective
modal unbalance and modal damping factor.

The method assumes the predominance of a spe-
cific mode in the vicinity of its associated fre-
quency range. This assumption isolates the mode and
provides a basis for analytically relating the
response measurements to the unknown mass unbalances
along the rotor. The analysis requires knowledge of
the shaft mode shape of interest and the associated
modal mass. These quantities may be estimated from
a critical speed computer program model.

The actual vibration measurements utilized
should be of shaft absolute motion, i.e. relative to
space. This would typically be attained with the
instantaneous electronic addition of shaft relative
to bearing housing and bearing housing relative to
space transducer signals. Due to high casing to
shaft weight ratios, many machines exhibit very low
casing vibration response levels compared to shaft
response levels. In these instances, shaft motion
relative to the bearing housing will closely approx-
imate shaft absolute motion (9).

Measurements must be conditioned to represent
only the portion of the response attributable to
unbalance. This is accomplished by directing the
transducer signals through a digital vector or
tracking filter. This instrument narrow bandpass
filters the raw data, with center frequency at the
shaft rotational speed. This final conditioned
"synchronous" signal is depicted in Figure 1 along
with the response phase angle convention used in the
analysis.

shaft vibration sensing probe

bearing housing

o

phase reference
probe

I	I i	I

_I	'

I

I

^ W

I

—^ time

I I
increasing

I i

period
=	Zn ^,L filtered synchronous

response waveform

indicates shaft notch is aligned with phase reference probe

Fig. 1.	Illustration of phase angel convention
used in the analysis and actual measure-
ment.

II. ROTOR DYNAMICAL EQUATIONS OF MOTION

The generalized equations of motion for a rotor
bearing system may be expressed in the matrix form
as follows (see Appendix A)
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IM) {q) + [C] q} + [K] q} = w 2Ue
iwt

 (2.1)

The generalized displacement vector {q} is composed
of both displacements and rotations in the XZ and YZ
planes respectively. The mass matrix [M] contains
both the mass terms and the transverse moments of
inertia for the N stations considered. For a gen-
eral multi-stage turborotor, the number of degrees
of freedom in the system can be quite large. The
order of the system, however may be considerably
reduced by expressing the displacement field (q] in
terms of a finite number of planar mode shapes
corresponding to the undamped system such that

{q] = y1)ii1} + y2 {e4i2 } + y3 fkU3 ) . . . (2.2)

For the case of a turborotor which has two
resonance frequencies in the operating range, the
use of the first four modes in the modal expansion
is usually sufficient.

Upon application of orthogonality, the modal
equations of motion are of the form

n
y+ 2 2 w y+ w2 y= w2 E eiwt (2.3)
r rs s s r r r

s=1

Appendix A shows that, in general, the use of the
undamped planar modes will not completely uncouple
the modal equations of motion. The effect of the
modal cross coupling damping coefficients , is to
couple the planar modes of motion in a system with
discrete bearing damping locations to form a complex
rotor mode shape that is skewed or nonplanar. This
space skew effect is more pronounced near the bear-
ings.

The motion of a turborotor operating through
two critical speeds may be represented approximately
in terms of its first three planar modes as follows

Iq} = y 1 [{0 1 } - i2 t31 f3 Io3 ]) + ''2 102
) (2.4)

Assume that if the rotor speed is in the vi-
cinity of the first critical, the first mode pre-
dominates the response. Then equation (2.4) implies
for motion near the rotor center span

(A1 + rp l ) f l 0ljqj = 2 = EIA10 lj (2.5)-

(1 f l + i 2 , 1 f 1 )

In the above equation the rotor modal mass may
be calculated, along with the rotor mode shapes,
from a standard critical speed code. The modal mass
is given by

L N

m l = I p(x) 0 2 dx = 2 w 4i j/g (2.6)
0 j=1

The rotor modal mass for the first mode for a multi-
stage compressor normally lies between 55 to 65% of
the total rotor mass.

The problem of modal balancing of a system that
behaves in a fashion similar to Equation (2.5)
reduces to the determination of the complex modal
eccentricity value E 1 . The modal unbalance U 1 is

given be

U 1 = m l E l = A l + ip	(2.7)

More than one balancing plane may be used to achieve
the required modal balancing value U 1 . In the case
of three balancing planes the modal unbalance value
01 is equivalent to

U. = U 1 4, 11 +u
2
 x, 12 +u

3
 x, 13	(2.8)

In order to accurately determine the modal unbalance
eccentricity E without the use of trial weights, we
must be able to determine from an examination of the
experimental data, the principal modal damping co-
efficient There are several ways to achieve
this. One may use the half power point procedure in
which the rotor speeds are determined corresponding
to the speeds where the amplitude of motion is equal
to 1/ 2 times the resonance frequency amplitude.
The damping in the system is then given by

N2 - N1	
(2.9)

N2 + N 1

The amplification factor at the undamped critical
speed is given by

A = 1	 (2.10)

At this frequency, the modal eccentricity vector E.
is leading the modal coordinate y. by 90°. By prop-
erly identifying the speed and phase angle at which
the 90 0 shift occurs, the location of the plane for
modal balancing may be determined. It should be
noted that the maximum amplitude of motion does not
occur at the undamped critical speed. The maximum
amplitude occurs at a speed of

N
N =	c	(2.11)Nu
	1 - 2t 2

The amplification factors A at the maximum
response speed is given by	11

A
A =	 (2.12)

u	'YYY/ 1	
^2

The relative displacement eccentricity phase angle
at this speed is always larger than 90 0 . The prob-
lem then of modal balancing without resorting to the
application of an initial trial weight, then becomes
a problem in accurately determining the damping
ratio , for the mode and the speed at which the 90 °
modal eccentricity phase shift occurs. These two
values may be determined by means of a modified
Nyquist or polar plotting procedure as described in
the following sections.

Figure 2 represents the amplitude and phase
angle motion of an experimental 3 mass rotor system
with the measurement point near the center span.

Table 1 is a computer simulation of the experi-
mental Centritech rotor at the University of Vir-
ginia Rotor Dynamics Laboratory, with 4.3 gm-in
located at the zero ref. position. The undamped
critical speed is predicted to be at 2484 RPM. Note
that at this speed, the phase angle is lagging the
timing reference mark by 90 ° . However, Table 1
clearly shows that the maximum rotor amplitude does
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0

Nu	2526.1 RPM
Au	- 3.9

60Xu	= 3.9 Nils
Pu	= 97.5 Deg
Xuc	3.9 Mils
Poe = 97.5 Deg

120	>

180 w

240

270°

300

360
2	3	4 5

Rotor Speed, RPM x 10-3

I
Eu	= .5 Mils
Puo = 0.0 Deg
Blow - 0.0 Mils
Pbow - 0.0 Deg
Xo - 0.0 Mils

l	Po	- 90.0 Deg

Fig. 2.	Simulation of 3-mass Centritech Rotor X-2
midspan location -1st mode.

not occur at the undamped critical speed but at the
slightly higher speed of 2526 RPM. At this speed,
the phase angle lag is 97.5 0 . Figure 2 shows the
corresponding rotor amplitude and phase plotted. If
one were to assume that the mass center (or modal
mass center E in this case) is leading the maximum
response amplitude by 90 0 , then there would be an
error of 7.5% on the angular estimation of the
unbalance location. The speed at which the 90 0

phase shift occurs can be determined by means of a
modified Nyquist or polar plot.

Table 1

Simulation of Experimentall Centritech Rotor with First
Mode Excitation

x-2 Midspan Location -1 st Mode

Weight	 Stiffness	Damping
LB	 LB/IN	LB-SEC/IN

19	 3330	3.3

ZETA(DIM)	Cc(LB-SEC/IN)	Acr(DIM)	Amax(DIPI)
.129	25.606	3.880	3.912

Ncr(RPM)	Nd	 No
(Undamped Critical)	(Damped Critical)	(Resonance Speed)

2484	2463	 2526

MASS UNBALANCE = 4.3 GM-IN

SISNLATION OF 3-MASS CENTRITECH ROTOR
x-2 MIDSPAN LOCATION -1 st MODE CASE NO. 1.0

RPM	o	XC	PHASE	PHASEC	AMP FACTOR
(UNCORRECTED)	(UNCORRECTED)

(P-P MILS)	(MILS)	(Deg)	(Deg)	(DIM)

25 2400	3.62	3.62	75.09	75.09	3.55
26 2484	3.88	3.88	90.00	90.ud	3.86
------------------------------------------------------
27 2500	3.90	3.90	92.89	92.89	3.86 cr
28 2526	3.91	3.91	97.47	97.47	3.80
------------------------------------------------------------------------ N
29 2600	3.83	3.83	109.55	109.55	3.42 u
30 2800	3.20	3.20	132.99	132.99	2.22

III. MODIFIED NYQUIST PLOT

Equation (2.5) shows that the complex rotor
amplitude {q} at the jth location is a function of
the modal unbalance eccentricity E., the modal dis-
placement .. corresponding to the jth location, and
a complex amplification factor A.. Where

tan l4l _
2f

1 - f 2

When f = 1, the frequency ratio corresponds to the
undamped critical speed. The amplification factor
at the undamped critical speed is

Ac = i2- = - 2-	 ( 3.2j

Fig. 3 represents a plot of the relative amplifi-
cation function

A = 2t A	 (3.3)

At the critical speed (f=1) the value of A is 1 for
all values of damping and the phase lag is 90°.
Fig. 3 represents a _polar plot of the relative
amplification factor A for various values of A
(1,5,10). For very high values of A (or lightly
d amped systems) the plot will approach a unit circle.
For moderate to heavy values of damping, as given by
the values of A = 5 and 1, the maximum amplitude
does not occur at the 90° phase lag position and the
curve becomes considerably distorted from a circle.
It will be shown that the function A can be trans-
formed into a unit circle by the following pro-
cedure. Consider the complex quantity:

f

(1 - f 2 + i 2 ,f)

Separating this into real and imaginary parts, i.e.

(x + iy);

N

Fig. 3.	Polar plot of relative amplification
factor A for various values of A

c

where

R _	f2

(1 - f2)2 + (2tf)2

A i =

f2
i

1 - f2 + i2f.
i	 i i

= R.e-le i	( 3.1)
1
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=	
f(1 - f 2 )

 (1 - f2)2 + (2, f)2

- 2t f 2
y=

(1 - f2)2 + (2t f)2

It follows:

x 2 + (y + 4 ) 2 =	 (3.4)

((1 - f 2 ) 4 + (1 - f 2 ) 2 (8t 2 f 2 ) + 16, 4 f 4 } _	1

161 2 ((1 - f 2 ) 4 + 8t 2 f 2 (1 - f 2 ) 2 + 16^ 4 f 4 J 16 t2

This is the locus of a circle in the complex plane
with:

1	1
center: (0,	4t- ) and diameter: 2t

Therefore it is seen from Equation (3.4) that the
ratio of the speed dependent amplification function
divided by the frequency ratio f plots into a circle
with the maximum amplitude = A = 1/2g.

This circle is represented in Figure 4 by the
dashed line. Note that the position on this circle
corresponding to the critical speed (N = N ) can
easily be found by setting f 1 = 1 in equation 1(3.4).
The coordinates of this point are then (0, - 1/(2

)). This point is at the bottom of the circle on
tie negative imaginary axis. Then the critical
speed occurs at exactly one diameter from the ori-
gin. Rearranging equation (2.5) shows

q.( f 3	) _
1	lj

sgn {t^ lj I (A l + i1J I )

where sgn{t^1 J i =	 j1,	tj1 > 0

1,
49 1j <0

0

In this form the modal unbalance eccentricity
(A 1 + ip I ) rotates the circle counterclockwise
through the angle;

Ou = tan -1 (da 1 /A 1 )

and changes its diameter to

	2 	2
n l + ^1 _ E 1

	2t 1	2t1

The analytical expression for the quantity to
be measured is obtained from equation (3.5) as:

	-i _	 (3.6)
N

( 1̂ Z) E 1 sgn {} e iou
N 1

.270

-240	
-300

-^1
f	91

g

-210
p	 -330

+180

!	O 1

increasin	\	p

-180 speed	 u

e	Ste/	_/ ♦	creasing

1-f2+i20f	
speed

-150	 _—'	 -30

ÔT9	 N	P1 j '0
•

rrOd•	 -120	 "N1

-60

-90

Fig. 4.	Modified polar response plot.	Zero de-
grees is transducer direction when notch
and k aligned.

The expression for the circle diameter in Figure 4 is
now

Olj	U1
(3.7)

2•m 1 •N 1 •t 1

From the preceding discussion, the critical
speed occurs at one diameter from the origin in
equation (3.6). Therefore, the diameter may also be
expressed

q.

J N=N l
N	(3.8)

1

Equations (3.7) and (3.8) then imply

2•m l •t 1 q.
J N = N

U l = 	1	(3.9)

1j

Equation (3.9) is an expression for the magnitude of
the shaft first modal unbalance; however the damping
factor ( ) is still unknown. This may be calcu-
lated by considering the phase angle of the response
as measured at the probe location. Consider the
response equation (2.5) in polar form

f 2U 1	Oli	 fl

qJ	m1	(1 - fl)2 + (2t 1 f 1 )2

= amplitude of measured
synchronous response	(3.10)

- 2
1 f 1

0. =	+ tan	 (3.11) (3.11)
J
	on
	1 - fi

= phase angle of measured synchronous
response (radians)

fl	
(3.5)

(1 - f 2 + i 2E 1 f 1 )

f1

2

(1 - f2 + i 2,
1 f 1 )
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Taking the frequency derivative of the response
phase angle shows

2 ww

dw (4)j ) = dw
 (tan-1 {w	})

1

(wi - w 2 )( - 2t 1w1 ) + ( 2, iww 1 )( -2w)

(wi — w2 ) 2 + ( -2 1ww1 ) 2

Evaluating this expression at the critical speed
shows

d (0 ) I — -1	(3.12)
dw j	

w1	wltl

Expressing this relationship in revolutions per
minute (RPM) and degrees

I	N171	- "4j

2	360 ( N	) = AcI	
(3.13)

1	N=N1

where

4

AN

IN=N 1

is the slope of the phase angle versus shaft speed
curve at the first critical speed in degrees per
RPM.

Substituting equation (3.13) into equation
(3.9) provides an expression for the modal unbalance
magnitude in terms of measured or calculable quan-
tities

U 1	g	 (3.14)

360	(m	g)
=	1	{ N	degreesn 

X13 ^*T

N=N1

g	=	gravitation constant = 386 in/s 2

m l	=	first modal mass in lb • s 2 • in

=	shaft first mode shape component at probe
location, dimensionless

q. =	amplitude of shaft synchronous response at
the probe location, inches (mils/1000)

4).	=	phase angle of shaft synchronous response
at the probe location, degrees

The modal unbalance, U 1 , can now be determined
in magnitude (Equation 3.14) and phase angle (Figure
4) with shaft vibration measurements recorded
through the critical speed range.

The modal unbalance can be nulled by the addi-
tion of a proper correction weight to a balance
plane of the shaft. To calculate the correction
weight, consider the definition of the modal un-
balance from equation (A.13b) of Appendix A.

U1 = Al + ip 1

= O11U1 + 0 12U2 + ... 
0lb U

b + ... 4in Un

where 4) lb is the first mode shape component at the

balance plane location. With the addition of a
correction mass, Uc1 , to the balance plane the modal
unbalance becomes

U 1	= 4s11U1 + 4)12U2 +...4i
lb (Ub + Ucl ) +...4) inUn

after

U1 + 0lbUcl

Requiring that the final modal unbalance becomes
zero produces the correction weight equation

Uci = - U1/4)ib	 (3.15)

IV. APPLICATION ON INDUSTRIAL STEAM TURBINE

The use of the preceding theory is illustrated
with the vibration response of a steam turbine
driver in a hydrogen compression train. In this
case, it was requested by plant personnel to esti-
mate the amount of unbalance in the turbine rotor.

Figure 5 is an unbalance response plot of
synchronous response amplitude and phase angle made
during the train startup. The transducer used was a
shaft relative displacement-proximity probe, per-
manently installed in the turbine inlet end bearing
housing. This data has been electronically com-
pensated for false slow roll data, induced by shaft
surface imperfections and magnetic inhomogeniety.
Note that the amplitude scale is labeled in units of
mils peak to peak divided by 2, since the readout of
the instrument used for the measurement is in mils
peak to peak. Additionally, the phase angle scale
is in negative degrees since the measurement instru-
ment readout is 360 0 minus 4

j
 (see Figure 1).

q1

- 300
2.a

N	6800

1.5	 I	1	Peak	 ^-! —^^ w  250_ 
4200	 / f`	 1

^^,	 I	err

-200

r ^/	Slope = -.04688 deg/RPM

o - iso

 - ioo

 4.0	4.5	5.0	0.5	6.0	6.5

Machine Speed RPM x 10 3

Fig. 5.	Shaft unbalance response plot at turbine
inlet end bearing.

Table 2 lists the data from Figure 5 required
in using the theoretical development. This table is
divided into three columns: rotor speeds, trans-
ducer synchronous response reading, and the same
reading divided by the rotor speed. The second
column quantities correspond with equations (3.10)
and (3.11), while the third column corresponds to
equation (3.6) and the polar plot in Figure 6.
Figure 6 is a polar plot of the numbers in column 3.
Comparison of this figures with Figure 4 identifies
the critical speed to be 4200 RPM. This speed does
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not correspond to the peak response speed (4800 RPM)
shown in Figure 5. The graphical isolation of the
critical speed from the unbalance response peak pro-
vides for a more accurate evaluation of Eq. (3.14).
Also, comparing Figures 4 and 6 identifies the modal
unbalance angle to be ^ u = 252°, since 1p 1 > 0 as
shown in Figure 7.

Table 2

Turbine Response Data from Fig.	5 and the Polar Plot
Parameter q. /N

N q.
.3

5. q./N

RPM mils, degrees (mils/RPM)x10 4

3000 1.15, -	154 3.833, - 153

3200 1.30, -	162 4.063, -	162

3400 1.50, -	168 4.412, -	168

3600 1.60, -	172 4.444, -	172

3800 1.70, -	180 4.474, -	180

4000 1.75, -	189 4.375, -	189

4200 1.85, -	198 4.405, -	198

4400 1.93, - 205 4.390, - 205

4600 1.95, -	216 4.241, -	216

4800 1.98, - 224 4.125, - 224

5000 1.95, -	234 3.900, - 234

5200 1.85, - 240 3.560, - 240

5400 1.65, - 245 3.056, - 245

5600 1.40, - 252 2.500, - 252

5800 1.25, - 256 2.155, -	256

6000 1.00, - 258 1.666, -	258

6200 0.83, - 252 1.340, - 252

6400 0.73, - 240 1.141, - 240

The mode shape shown in Figure 7 was generated
from a 10 mass station computer model of the turbine
rotor. This same model calculates the first modal
weight to be 455 lbs. The magnitude of the first
modal unbalance may now be calculated from equation
(3.14),

qj
360 • (m l • g)

U 1 • g = -	n	{ - N 	• degrees

^ 1 J	̂J
AN

N=N 1

= 360 • (455 lbs)	4.405 x 10-7in./RPM
	degrees

it	(0.7607)	0.04688°/RPM

= 0.644 lb.in . = 10.3 oz.in .

where the quantities are obtained from

4i
j 

:• Figure 7
l

N	Table 2

N=N 1

D
Figure 5

AN
N=N 1

The modal unbalance weight can now be expressed as

171 = 10.3,	252° oz.in .

The correction weight to be applied at the balance
plane is calculated from equation (3.15):

Ucl	- 411b

where 0 lb is approximately 0.80 from Figure 7.
Therefore

Ucl = (- 10.3, 252°)/0.80 oz.in .

= (12.9,	72°) oz.in.

SLl

EM

Fig. 6.	Polar plot of turbine unbalance response
vectors divided by ro%ational speed, in
units of mils/RPM x 10 .

Since this is a rather large balance correction
weight for this size of rotor, a safety reduction
factor of between 2 and 3 should be applied to its
magnitude before actual attachment. The reason for
this high magnitude can easily be seen from the
response curves shown in Figure 5. Unsually high
damping is present in this rotor-bearing system as
is implicated by the broad amplitude response and
small phase angle slope. Actual attachment of the
correction weight is illustrated in Figure 8.
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0

balance plane	balance plane

1	 2

shaft notch aligned with
phase reference probe

Fig. 9.	Diagram for the attachment of the two cor-
rection imbalances required for the elimi-
nation of two modal unbalances.

s 	aligned with
phase reference Probe

Ucl	correction imbalance

balance plane	probe location

	

1.0	I	 I	1.0
'Y	 I

y lb - ^'l3 - 0.80

	

0.5	 I	0.5

*l^ = y 18 = .7607

0.0
1	2	3	4	5	6	 7	8 9110	

0.0

I B	 IB

	-0.5
	1

-1.0

exhaust	 inlet

Fig. 7.	Turbine rotor - first mode shape. Note
the balance plane and probe location modal
components.

V. BALANCING OF HIGHER MODES AND THEORETICAL
LIMITATIONS

Examining the equations of the theoretical
analysis section reveals that the same procedure may
be followed in calculating higher order modal unbal-
ances. This is most easily seen by simply changing
subscripts in (3.1).

UcI ''l,bl + Uc2 41 ,b2 = - 
1	(5.1)

U ci 412,b1 + Uc2 42,b2 = - U2	(5.2)

where

Uc1 = Ucl	oci:	
correction mass imbalance
at balance plane 1

Uc2 = Uc2	4c2:	correction mass imbalance
at balance plane 2

411,b1	411,b2	
first mode shape components
at the two balance planes

412,b1	412,b2	
second mode shape compo-
nents at the two balance
planes

U 1 , U2	first and second modal un-
balances	calculated	as
described in section 3

Equations 5.1 and 5.2 may then be solved for
the correction weights and these attached to the
shaft as shown in Figure 9.

shaft vibration

probe direction	sensing probe, q j

u l 	-

l"slc modal

,,balance
- 252 degrees

c1	
72 degrees

I0 1 I	10.3 oz.in.

IOc1 I- 12.9 oz.in.

Fig. 8.	Location of the first modal unbalance and
the correction imbalance on the steam tur-
bine balance plane.

To effectively balance several modes, the
corresponding modal unbalances must be simulta-
neously nulled. This requires that the number of
balance planes used must equal the number of modes
considered. This condition leads to the development
of a system of simultaneous equations to be solved
for the correction weights. These are derived in
the same manner as Equation (3.15).

Considering the 2 mode case, the requirements
for nulling the first two modal unbalances are
expressed as:

The mathematical representation of a rotor
bearing system presented has some limitations.
These arise mainly from the assumptions of symmetry
and proportional damping used in the analysis.
Hence, the methods presented may be more effective
in certain classes of machinery than in others.
Those most likely to exhibit response character-
istics in agreement with the theory will have rotors
supported in anti-friction or tilting pad journal
bearings. These elements are generally known to
possess very small asymmetric cross-coupling forces.
The machines which may respond in a fashion dif-
fering from the theory are those (1) with rotors
supported in sleeve-type journal bearings (Reference
10), (2) with overhung wheels producing gyroscopic
forces (Reference 11), (3) and rotors with consider-
able seal related dynamic forces (Reference 12).
These configurations are known to produce asymmetric
cross coupling forces between the shaft's two geo-
metric radial planes.

8

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/G

T
/p

ro
c
e
e
d
in

g
s
-p

d
f/G

T
1
9
8
2
/7

9
6
0
3
/V

0
0
5
T

1
3
A

0
1
6
/2

3
9
4
6
3
7
/v

0
0
5
t1

3
a
0
1
6
-8

2
-g

t-2
6
7

.p
d
f b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



CONCLUSIONS

A technique has been theoretically and experi-
mentally developed to approximate the effective
unbalances in a rotor. This has generally been
accomplished by analytically developing the rela-
tionship between the rotor's unbalance response and
its inherent unbalance distribution. The graphical
procedure developed to separate the critical speed
from the unbalance response peak provides for a more
accurate evaluation of the effective unbalance.
This method can be used in conjunction with influ-
ence coefficient balancing to judiciously choose
proper trial weights.

A practical application was presented on the
steam turbine driver of a hydrogen gas compression
train. This example illustrates the experimental
data and procedure required to implement the bal-
ancing technique. Finally, the method is shown to
be applicable to higher mode balancing.

There are several limitations to this procedure
that should be noted. The rotor must be capable of
operating through the critical speed region, and
also the rotor system should be lightly damped. In
the case of heavily damped rotors, an additional
correction factor must be incorporated which relates
the difference in phase angle observed at the probe
position as compared to the rotor phase angle at the
center span.
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APPENDIX A

The dynamical equations of motion of a multi-
mass rotor-bearing system may be expressed in terms
of discrete mass, damping, and stiffness matrices as
follows (15)

[M] {q} + IN {q} + [K] [q} = (F (t)3 (A.1)

Assuming zero damping and no forcing functions
acting on the system, the standard eigenvalue prob-
lem is as follows

- wr [M] + [K]] {fi r} = (0] (A.2)

The function te r is a planar mode shape of the
system corresponding to the rth mode (rth eigen-
vector). These mode shapes may also be generated by
a standard critical speed program using matrix
transfer theory. In this case the mode shapes are
normalized displacement (and rotation mode shapes)
rather than orthonormal modes. Assuming symmetric
mass and stiffness matrices, the mode shapes satisfy
the standard orthogonality conditions (13,14)

^o1 T [M] qj] = 0 , r sr s 
m , r = s (A.3)
r

^Or ] T [K] {t^ sI = 0 r # s
k 
r	,
	r = s	(A.4)
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Table A.I

Rotor Modal Characteristics

	

Modal	Critical BRG

	

Weight	Speed	Damping

Mode W	cN	
Cxx

1	600	4500	1200
2	400	9800	1200
3	800	21,000	1200

BRG Modal
Displacement

k 11 0i2

.2	.2

-.8	.8

.9	.9

Modal Damping
Matrix

C11 C12 C 13

96	0 432

0 1536	0

432	0 1944

The quantites m and k are referred to as the modal
mass and modaf stiffness of the system, respec-
tively. Note that by premultiplying equation A.2 by
{t^ } and using (A.3) and (A.4) shows

r

k
2 =

r
w	 (A.5)
r m

r

the modal equations of motion. This is because the
damping matrix is, in general, not proportional to
either the mass or the stiffness matrix.

Consider as an example a multistage compressor
with the following characteristics and modal dis-
placement coordinate at the bearings.

The response vector {q} of the system may be
expressed in terms of the sum of the generalized
modal coordinates y and mode shapes 

r
 as follows

r 

n

{q} = F	y 	
(A.6)

s=1

where

n: total number of modal degrees of freedom

y : sth mode shape coefficient-
s

Premultiplying equation A.1 by	}T and substitu-
ting equation (A.6) yields	r

{Or } T [M] I	y s {t^s } + {ter } T [c]!	ys {t^s }

s=1	 s=1

n
+ {ter } T [K]!	ys {4} _ {ter } T {F(t)}	(A.7)

s- 1

Applying the orthogonality conditions A.3 and A.4 in
A.7 shows

mr yr + C rs ys + k r yr = {Or } T {F(t)}	(A.8)

where C	= {te} T [Crs	r ] {Os }

In most structural vibration problems, where
the modal damping is only several percent of criti-
cal damping, the damping matrix is assumed to be a
"proportional" damping matrix. Reference 14 demon-
strates that the general form of the damping matrix
required to satisfy this property is

[C] =[M E a i {[M] -1 [K]} 1	(A.9)

where

i E {0, ±1, ±2, ...}

and a. are arbitrary constants.
i
In this event the damping matrix satisfies a

similar orthogonality condition as the mass and
stiffness matrices,

{O} T [C] {O s } =	0	,	r # sr 
C	,	r = s	(A.10)
r

Assuming proportional damping equation (A.8) becomes

m r yr + Cr yr + k r yr = {U^ r } T {F(t)}	(A.11)

For the case of a multi-mass flexible rotor in
fluid film bearings, the damping on the shaft is
acting at discrete locations. Under these circum-
stances, the use of the planar modes as a set of
orthogonal functions, will not completely uncouple

Table A.1 shows that for the particular case of
a symmetric turborotor, the first and second modes
are uncoupled because the cross-coupled modal damp-
ing coefficient between the first and second modes
is zero. However, such is not the case with the
third mode. Note that there is a sizable third mode
cross coupling coefficient C 13 associated'with the
first planar modal equation which must be taken into
consideration. The implication of this higher modal
coupling through the damping matrix is that the
motion of the rotor cannot be expressed as a planar
function of only the first mode shape. The discrete
damping at the bearing causes the mode shape to warp
out of the plane of the undamped mode. This warping
effect is more pronounced as one observes the motion
closer to the bearing and must be accounted for when
performing modal balancing by means of proximity
probe measurements near the bearing.

Assume that the forcing function {F(t)} acting
on the rotor system is caused by an arbitrary dis-
tribution of unbalance {U} along the shaft. The
synchronous forcing function may be expressed in
complex form as

{F(t)} = w2 {U} 
eiwt
	(A.12)

Dividing by the modal mass m , the modal equa-
tions of motion are given by	r

+2° r
 
	

y + w 2 y = W2 E eiwt	(A.13a)
rrs s	r r	r

where

{Or'T [C] {P s }

^rs	2 m w
r r

E
r
 = modal unbalance eccentricity

{fir } T {U}

_	= Ar + ip r	(A.13b)
m
r

Atssuming synchronous shaft motion, let '(t) _
y e lw . Equation (A.8) reduces to
r

(w2 -w2 +2iww	) y +i2ww	y
r	 r rr	r	r	rs s

= w2 E
r
	(A.14)

10

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/G

T
/p

ro
c
e
e
d
in

g
s
-p

d
f/G

T
1
9
8
2
/7

9
6
0
3
/V

0
0
5
T

1
3
A

0
1
6
/2

3
9
4
6
3
7
/v

0
0
5
t1

3
a
0
1
6
-8

2
-g

t-2
6
7

.p
d
f b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



The modal steady state equation of motion may
be put in dimensionless form by dividing by the w 2
as follows r

(1 - f2 + i2	f )y + i2 f ,	y = f2 E (A.15)
r	rr r r	r rs s	r r

Table A.2

Rotor Dim Modal Damping Coef.	And Amplification Factors

Wr Cr trl ^r2 tr3 Act A

 rad/sec critical

damping

1	471 1465 .064 0 0.295 7.81 7.83

2	1026 2126 0 0.722 0 .693 1.000

3	2200 3419 0.126 0 0.5886 .85 1.05

The natural frequencies and modal damping
coefficients for a typical multi-stage compressor
with two damped resonance frequencies in the opera-
ting range, are given in Table A.2. The value of
A	represents the amplification factor at the
undramped critical speed and the value of A	repre-
sents the maximum modal amplification factor. Note
that, although the second critical speed is within
the compressor operating speed range, it is criti-
cally damped (A = 1). The first mode will have a
substantial ampYification factor at the first cri-
tical speed. Table A.2 also shows that the modal
cross coupling coefficient t I is over 4 times
larger than the principal firs modal damping co-
efficient and hence cannot be arbitrarily drop-
ped from the analysis.

Assume that the turborotor is operating near
the first critical speed such that f = 1, f = 0.46
and f3 = 0.21. The governing equations for the
magnitude of the modal coordinates y is given by
A.15 and reduces to r

(1 - f 1 2 + i .128 f l )y l + i 0.590 f
l 13 = f l E 1

(.7884 + i .6642) y2 = .2116 E2

(.956 + i .2472)y 3 + i .0529 y l = .04 E 3	(A.16)

The simultaneous solution of the above complex
algebraic equations yields the values of the modal
coefficients in terms of the modal unbalance eccen-
tricities E 1 , E3 . However, when operating near the
first critical speed only about 4% of the third
modal unbalance eccentricity E is excited. One
could then approximate the modal coefficient 1 3 by

I = -	i 2 X31 f3 yl	
. - i2 

31
f 3 y 1 (A.17)

(1	f3 + 2 i X
33 f3 )

The total rotor motion is given by

{q} = X 1 €ill + 12
 Ito2 1 + X3 {lp3 }	(A.18)

Ignoring the contribution of the second mode
for the time being, the rotor motion operating near
the first critical speed is given by

{q} = y 1 1 {4s	- 2 i 
431 f

3 {413 11	(A. 19)

This shows that the displacement of the rotor
near the first critical speed is composed of the
first planar mode {tp1 } with the addition of approxi-
mately 5% of the third mode which lags about 90 0

behind. This addition of the third mode component
with a phase lag is what accounts for the skewed
shape of the space curve of the rotor centerline.
Thus we see that the rotor is not perfectly planar
due to the action of bearing damping at the ends of
the shaft. This skewed effect becomes more pro-
nounced as we measure the rotor motion closer to the
bearing ends. If the monitoring probes are placed
at least one-quarter span inboard from the bearing
locations, then shaft skew due to the third mode
excitation does not have to be taken into considera-
tion in the balancing procedure.

Note also if Equation (A.17) is substituted
into Equation (A.16) then we obtain

(1.03 - fl + 
i 2 X11 f

l ) y l = f 2 E 1	(A.20)

This equation implies that the first natural
frequency appears to increase by 1.5% due to the
influence of the third mode.

In the particular example cited, it was seen
that the second mode was critically damped. In
practice it has been found that for the normal
turborotor design with the impeller discs located
between the bearings, the second critical speed
amplification factor is normally much lower than the
first critical speed amplification factor. There-
fore if displacement measurements are taken reason-
ably close to the rotor center span, the first modal
equation of motion is a reasonable approximation of
the shaft behavior. The small contribution due to
the second mode is minimized since the shaft center
span is a node point.

Neglecting modal coordinate cross coupling, the
rotor response vector is given by

n	rT
{q} = e

iwtw2	{fi}{U}	€,r}
r=1

m
r
 (— w2 + i2w w

r r 
+ w2 )

r

(A.21)

The complex displacement coefficient, i.e. amplitude
and phase angle, for any particular degree of free-
dom is given by

n	(A + ip ) f 2 t^
q= 2	r	r	r rj = I E A
	(A.22)

3 r=1	(1 - f 2 + i2	f )	
r r rj

r	r r

where A =	frequency dependent modal amplifi-
r	cation factor for rth mode

f 2
r

1 - f 2 + i2 , f
r	r r
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