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Abstract 

This research focuses on the development of a damage detection algorithm based on 

modal testing, vibrothermography and feature extraction.  The theoretical development of 

mathematical models is presented to illustrate the principles supporting the associated 

algorithms, through which the importance of the three components contributing to this 

approach is demonstrated.  Experimental tests and analytical simulations have been 

performed in laboratory conditions to show that the proposed damage detection algorithm 

is able to detect, locate and extract the features generated due to the presence of sub-

surface damage in aerospace grade composite materials captured by an infrared camera.  

Through tests and analyses, the reliability and repeatability of this damage detection 

algorithm are verified.  In the concluding observations of this article, suggestions are 

proposed for this algorithm’s practical applications in an operational environment.  
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1. Introduction 

With the increasing complexity of modern engineering structures in terms of both the 

number of components and the process in which the components are assembled, 

conventional damage detection techniques are often unable to detect the damage 

effectively.  A particular challenge is the more routine use of composite materials in 

industries, which has brought in new problematic damage mechanisms such as 

delamination.  Effective and efficient non-destructive testing and evaluation (NDT&E) 

techniques appear to be more necessary than ever with rapid developments in 

manufacturing engineering. 

In the area of NDT&E, ultrasonic C-scan has been the de-facto industry standard 

because of its high accuracy and strong penetrative capabilities.  There has been a 

substantial volume of research demonstrating the accuracy and reliability of ultrasonic C-

scan in damage detection, location and characterization, especially when applied to 

composite materials. 1 2 3  However, damage detection techniques based on ultrasonic 

waves are beset with operational challenges that can restrict their practicability and 

efficiency.  In general, the inspected object is required to be physically accessible, water-

resistant, homogeneous, with adequate size and smooth surface for accurate inspections 

with ultrasonic NDT. 4 5 

Infrared thermography (IRT) being another member in the most commonly 

deployed NDT&E technique category has several unique advantages, which makes IRT 

able to fill the void left by—or even replace—ultrasonic NDT in some situations.  

Specifically, it has an operational advantage in being able to scan a large area within 

short measurement time.6  The results, which are two-dimensional thermal images or 

videos, can provide a robust demonstration of the condition of the inspected object so that 

the analyses of results from IRT inspections are generally simpler and less time-

consuming compared to most other NDT&E techniques.  These combined advantages 

make IRT an excellent choice for damage detection of large structures because of its high 

efficiency from low measurement and data processing time.   

Conventional IRT requires thermal radiation as the input, either passively or 

actively, so that the temperature increase or decrease—depending on local thermal 

diffusivity—in the damaged region can be detected, with which the damage location can 

be associated and identified. 6  Vibrothermography is a specific application of IRT 

utilizing the vibration of the structure, in which the vibration generates friction around the 

defects.  The friction will then cause local temperature to increase through heat 

generation, which can be captured by an infrared (IR) camera.  Due to the friction-based 

nature of vibrothermography, it is especially effective in detecting cracks and 

delamination. 7  However, in order to apply vibrothermography correctly, dynamic 

properties—specifically modal parameters—of the inspected object are required so that 

the behavior—in particular the distribution of strain—of the object during vibration can 

be revealed, interpreted and utilized.  The acquisition of the modal parameters requires 

modal testing to be performed, which usually includes the finite element (FE) modal 

analysis, experimental modal testing and updating of the FE model. 



In IRT, the temperature data are acquired from a complex process starting with 

the electromagnetic radiation of the inspected item, from which the surface temperature 

can be calculated based on Planck’s law and Stefan-Boltzmann law.8  The results are 

usually two-dimensional thermal images, each of which contains a table of temperature 

data.  These images always contain multiple features, each generated by an independent 

heat (or cold) source.  These mixed features can be separated with properly selected 

feature extraction techniques, such as principal component analysis (PCA) and 

independent component analysis (ICA), so that the results become easier to analyze and 

interpret. 9 10 11 

In this article, a damage detection algorithm based on modal testing, 

vibrothermography and feature extraction is presented.  Multiple laminated plates made 

of aerospace grade composite materials were used as the specimens, in which artificial 

defects were created.  However, the damage detection approach presented here is also 

able to detect most common damage types in a wide context in structures made of other 

types of materials, given that there is sufficient friction around the damage sites.  The 

analytical justification, experimental procedures, measurement results and analysis 

outputs of the three components contributing to this damage detection algorithm are 

demonstrated and explained in this article.  A comparison of the results from the 

vibrothermographic test and result from an ultrasonic C-scan test is included to verify the 

reliability of the vibrothermography-based damage detection approach.  In the concluding 

observations of this article, the potential improvements and modifications that can be 

made for this damage detection algorithm to extend into more practical industrial 

applications, as well as the future work, are also presented and discussed. 

2. Literature review 

In the area of damage detection through IRT, there has been a substantial volume of 

research and associated published articles, a subsection of which has a specific focus on 

vibrothermography and/or feature extraction.  Ibarra-Castanedo et al.12 compared pulsed 

thermography, lock-in thermography and vibrothermography when applied to aerospace 

materials, showing that vibrothermography has greater capability in determining deeper 

damage than the conventional methods because of the internal heat generation which 

shortens the travel distance of the thermal waves.  Renshaw et al. 13 studied the sources of 

heat generation in vibrothermography with externally applied excitation forces.  Using 

conventional active thermography as the damage detection vehicle, Gao et al. 14 applied 

three different commonly used feature extraction techniques, namely PCA, ICA and non-

negative matrix factorization (NMF) to show that these techniques are able to separate 

the thermal patterns generated by visible features on the surface of a thin steel plate.  

Apart from vibrothermography which relies on vibration, there are other similar damage 

detection principles based on IRT, such as thermoelastic stress analysis that measures the 

temperature change due to deformations caused by quasi-static or low frequency elastic 

cyclic stresses. 15 16 17 18 

However, to the authors’ knowledge, there has been limited research that 
combines modal testing, vibrothermography and feature extraction, which are the three 



components sequentially demonstrating the capability of determining the damage 

detection.  Compared to past research outcomes focusing mainly on the processing of 

data from IRT inspections, the main novelty of this research is the inclusion of 

vibrothermography, which covers the detailed procedures on the execution of 

vibrothermographic inspections.  Vibrothermography has distinct advantages over 

conventional IRT techniques in detecting cracks and delamination due to its friction-

based heat generation mechanism, such as the delamination in the aerospace grade 

composite plate studied in this research.  However, in research activities that involve 

vibrothermography, the importance of modal parameters and strain distributions has often 

been overlooked. 19 20 21 22  These omissions almost always result in poor or incorrect 

choices of excitation frequency and location which are unable to excite the (correct) 

resonance of the inspected object effectively, so that a high amplitude for the excitation 

force has to be used to generate sufficient strain to reveal local damage sites.     

Excitation forces with unnecessarily high amplitude can initiate additional 

damage to the structure or exacerbate the existing damage.  This phenomenon can be 

significantly problematic if the specimen is made of laminated composite materials which 

are intrinsically vulnerable to impacts or high strain rates. 23 24 25 26 27 28 

The excitation frequency and/or location chosen without sufficient justification 

can also harm the reliability and repeatability of the damage detection algorithm 

significantly.  Some regions cannot have a high strain energy with a poorly selected 

excitation frequency and/or location so that the damage in these regions are unable to be 

detected due to the lack of friction. 

3. Algorithm overview and theoretical background 

In the preparation phase of the vibrothermographic damage detection process, the 

dynamic behavior—particularly the strain distribution—of the inspected object during 

vibration needs to be studied, which ensures the potentially damaged regions have a 

relatively high level of dynamic response so that there is adequate friction which can 

generate sufficient heat for detection by the IR camera.  This requirement can be 

achieved through modal testing which calculates the natural frequencies and mode shapes 

of the structure.  The operating deflection shape (ODS) of the structure during vibration 

is a linear combination of mode shapes of all the modes excited by the driving force, 29 so 

obtaining the natural frequencies and mode shapes of the structure is the key to 

understanding the dynamic behavior of the structure in operating conditions. 

3.1. Modal testing 

Before the start of the experimental tests, preliminary FE modal analyses should be 

performed, which estimate the natural frequencies and mode shapes of the relevant 

modes of the inspected object.  These results can provide the guidelines for the selection 

of the frequency range and location of the applied excitation force in experimental modal 

testing. 



After the preliminary FE modal analyses, the inspected structure should be subject 

to corresponding experimental modal tests, where its actual modal parameters are 

measured.  For modal testing using electrodynamic shakers, chirp or (pseudo)random 

signals are usually used to create frequency windows for excitation and measurement.   

The measured modal parameters are used to verify the reliability of the 

preliminary FE model, which usually results in the requirements on the updates of the 

preliminary FE model in order to reduce the discrepancies between results from the 

experimental tests and the FE analyses. 

3.2. Vibrothermography 

The verified—or updated—FE model serves the role of providing high-definition mode 

shapes and strain energy distribution maps of the relevant modes of the specimen.  These 

outputs from the FE analyses are the crucial references during the selection of excitation 

location and frequency in the vibrothermographic test section of the damage detection 

process so that the right resonance—or resonances—can be excited effectively which 

exhibit a viable strain distribution across structure.  The vibration response with the 

correct modal distribution will increase friction in the damaged region so that the heat 

generation and temperature rise can be increased as well, which boosts the chance of 

successful damage detection.   

In vibrothermographic testing, the heat generation mechanism due to friction can 

be explained mathematically.  First, the total work done by external forces acting on the 

structure consists of two parts 

 𝑊 = 𝑊𝑎𝑝𝑝𝑙𝑖𝑒𝑑 + 𝑊𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒, (1) 

where 𝑊𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is the work done by the applied force and 𝑊𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 is the work done 

by the conservative forces such as gravitational force.  When there is no energy loss in 

the system, the total work done by the applied force equals to the changes in the total 

mechanical energy of the structure, which can be divided into kinetic energy and 

potential energy 

 𝑊𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = ∆𝐾 + ∆𝑈. (2) 

For an elastic body, the potential energy, in this case, is in the form of strain 

energy, which is the energy stored in an elastic body upon deformation under external 

forces. 30  The mathematical expression of strain energy can be written as 

 𝑈 = 12 𝐹∆= 12 𝑉𝜎𝜀, (3) 

where 𝐹 is force, ∆ is displacement, 𝑉 is volume, 𝜎 is stress and 𝜀 is strain.  

When the vibration of the structure is taken into consideration, the energy in the 

structure changes between the form of kinetic energy and potential energy, or strain 

energy in this case.31  When the structure reaches the maximum deflection in each 

vibration cycle, there is an instantaneous moment when the structure is (quasi-)stationary, 

so (almost) all the mechanical energy is in the form of strain energy.  Similarly, when the 

structure is at the equilibrium state, the vibration velocity is at maximum, so all the 

mechanical energy is in the form of kinetic energy.  



In real situations where energy loss is unavoidable, an amount of mechanical 

energy in the system will be lost in each cycle of vibration.  When the major source of 

energy loss is frictional heat generation, the amount of energy loss due to friction is 

determined by several parameters, which are the shear stress 𝜏 between the contact 

surfaces, the total length of the relative movement (slip path) 𝛾 and the area of contact 𝐴, 

7 so that the total frictional heat generation on area 𝐴 is 

 𝑃𝐴 = ∬ 𝑃𝑓𝑟 𝑑𝐴 = ∬ 𝜏𝛾𝑑𝐴, (4) 

It is worth noting that there are other relatively minor sources of heat generation, 

such as plastic heat generation, viscoelastic effect and thermoelastic effect. 7 13 

For frictional heat generation, the shear stress in the contact region can be 

calculated from contact pressure 𝑝 and friction coefficient 𝜇, so that  

 𝜏 = 𝜇𝑝. (5) 

As shear stress in the contact region, which accounts for the heat generation, is 

directly proportional to the contact pressure that is the normal stress in this area, and the 

magnitude of the elastic deformation in the contact region determines the total length of 

the slip path in each cycle of vibration, a proportional relationship can be established 

between the local strain energy and the heat generation due to friction in this area, given 

that the friction coefficient and the area of contact remain mostly unchanged.  This 

proportional relationship between temperature rise and applied stress (or strain) is also 

described in the thermoelastic effect. 32 

The ODS of the structure during vibration is a linear combination of the mode 

shapes of all excited modes of vibration.  The proportional relationship between the 

temperature increase and strain energy due to applied stress should be aligned with the 

selection of a target mode—or modes—so that the potentially damaged region has high 

strain energy in an operating condition during vibration and is thus able to cause a 

relatively large amount of heat generation in the damaged region, which increases the 

chance of successful detection. 

When a single mode of vibration is considered, in order to excite the target mode 

effectively, a sinusoidal excitation at the corresponding natural frequency is required.  In 

this case, the behavior of the structure in its operating condition is dominated by this 

vibration mode and so the ODS will be almost identical to the mode shape of this mode 

of vibration as long as this target mode is adequately separated from the other modes. 29  

Due to the proportional relationship between the temperature increase from friction and 

strain energy, a mode where the potential damage site has relatively high strain energy is 

preferred.  Conversely, if the damaged region is not exercised by dynamic strain then no 

heat is generated through this process (according to Equation 4) and so the 

vibrothermographic detection is compromised.  

Besides the requirements on the excitation frequency, a correct excitation location 

must be selected as well based on the results from the modal analysis to increase the 

frictional heat generation.  This can be achieved by exciting the structure at the anti-node 

in the target mode, which increases the response in the structure during vibration.   



In vibrothermographic testing, with properly selected excitation frequency and 

location, the relative movement in the damaged region will introduce a relatively large 

amount of friction, which then causes heat generation and temperature rise that can be 

captured by an IR camera. 

3.3. Feature extraction 

The temperature data captured by the IR camera can be processed.  The original thermal 

images formed by mixtures of multiple underlying features generated by different 

physical sources can be analyzed so that the underlying features can be extracted.  

Analyses of the separated underlying features are significantly more straightforward 

compared to analyzing the thermal images with mixed features directly, as the mutual 

influences and superposition effects between the features are eliminated.  This type of 

process in order to separate and extract patterns and features from a set of data containing 

multiple samples and features can be completed by a variety of feature extraction 

techniques, among which PCA and ICA are arguably two of the most popular and most 

suitable methods in this situation. 9 33 

PCA performs the separation and extraction based on the correlation between the 

extracted features.  The extracted features are orthogonal to each other so there is zero 

mutual information left which guarantees the zero correlation between the features.  The 

features are ordered according to their relative contributions to the original data set, 

which can be reflected through the eigenvalue that each feature is associated with.  Some 

less-contributing components can be discarded, which achieves dimensionality reduction 

and data compression. 34  If dimensionality reduction is not performed, the number of 

extracted components is equal to the number of signals because of the matrix-based 

calculation algorithm of PCA.  There are two common approaches to performing PCA, 

some claiming that the singular value decomposition (SVD) approach is more robust than 

the eigen-decomposition approach due to the information loss in the latter. 35 36  

ICA is performed based on the statistical independence between the features.  The 

premise is that if several signals are from different physical sources, they must be 

statistically independent, and vice versa. 9  Like PCA, there are multiple approaches to 

performing ICA, which include the gradient-based methods and non-gradient-based 

methods.  The gradient-based approaches usually rely on gradient ascent/descent or other 

similar methods such as Newton’s method for optimization and the natural gradient 

method. 9 37  The common gradient-based ICA methods include the information-based 

infomax ICA, the maximum likelihood approach, the normality-based projection pursuit 

and the complexity-based complexity pursuit. 9 10 37 38 39 40  The major problem of the 

gradient-based methods is the user-defined parameters, the inappropriate choices of 

which can lead to failure of convergence so that the correct underlying features cannot be 

extracted.  These problems lead to the need for more reliable methods that do not rely on 

the gradient.  The most popular non-gradient-based ICA method is the FastICA which 

replaces the gradient ascent with a fixed-point convergence algorithm while either still 

using the conventional criteria such as information, normality and complexity or 

switching to other alternative choices of objective functions.38 41 42  Multiple sources have 

proved that FastICA is able to achieve more robust outputs compared to PCA and other 



ICA methods in most situations in terms of feature extraction. 10 11 43  In fact, PCA can 

also be integrated into FastICA and other traditional ICA techniques for dimensionality 

reduction before the feature extraction. 42  Similar to PCA, if dimensionality reduction is 

not included, the number of extracted components is equal to the number of signals 

regardless of which ICA approach is used.  An important consideration when using 

FastICA, or any other ICA technique, is that, due to their nature of being an ICA method 

which does not rely on eigenvalues and eigenvectors, it is unable to order the extracted 

components effectively without additional calculations. 11 43  However, this problem can 

be solved by introducing additional calculations, such as using kurtosis to order the 

extracted components, which will be demonstrated in Section Error! Reference source 

not found.. 

Eventually, the signals extracted by PCA or ICA containing the underlying 

features can be transformed back to images.  The features generated by the defects can be 

visualized more clearly by deploying a properly defined colormap so that the presence 

and location of the defects can be confirmed and identified.  In this research, through the 

use of a sub-surface defect in composite materials with additional noise factors 

(reflections), which will be explained in Section 4.4, it has been verified that FastICA is 

able to outperform PCA significantly. 

4. Experimental development and results 

4.1. Rig setup for experimental testing 

The experimental tests in this damage detection algorithm consisted of two parts.  The 

first part was experimental modal testing which measures the modal parameters that were 

to be used for the verification of the FE model.  The second part was vibrothermographic 

testing, during which the damage detection was performed.  Those two parts could share 

the same rig setup, with the only difference being the data collection method.  A scanning 

laser Doppler vibrometer (SLDV) was used for the modal tests to collect the kinematic 

data while an IR camera was used in the vibrothermographic tests to measure the 

temperature.  To describe the procedure, the picture showing the rig for the experimental 

tests and its corresponding flowchart are shown in Figure 1 and Figure 2 respectively. 



 

Figure 1: The rig for the experimental tests (with the SLDV for modal testing) 

 

Figure 2: The flowchart showing the procedures of the experimental tests 

The specimens used in this research consisted of five originally identical 

aerospace grade composite plates made of HexPly® 8552 AS4 epoxy matrix woven 

carbon prepregs composite material which is commonly utilized in primary aerospace 

structures. 44  The ply angle and stacking sequence was [45 −45⁄ ]10s except that ply-

drops were created on the second and third plies during the manufacturing phase.  The 

dimensions of a complete ply were 260 mm × 100 mm × 0.13 mm.  The dropped plies 

had half the length of a complete ply.  The total mass of the composite plate was 96.1 g.  

Artificial defects were created in the central region of the plates through fatigue, during 

which the ply-drops were used as a local stress concentrator.  Depending on the 

parameters used in the damage creation, a range of surface features from no to barely 

visible were left on the composite plates.  The central region of the least-damaged and 

most-damaged specimens are shown in Figure 3. 



            

(a)                                                                         (b) 

Figure 3: The (a) least-damaged and (b) most-damaged specimens used in this research 

project 

In both parts of the experimental tests, the specimens were suspended using two 

springs to avoid unnecessary external forces and constraints, so that the temperature 

increase at any location other than the excitation point could be guaranteed caused by the 

vibration of the specimen.  The photos showing the specimen suspension and shaker 

connection are shown in Figure 4. 

            

(a)                                                                         (b) 

Figure 4: (a) The suspended specimen and (b) the attachment point of the electrodynamic 

shaker  

4.2. Preliminary finite element modal analysis 

Before the experimental tests, preliminary FE modal analyses were performed using 

Abaqus 2016 to estimate the natural frequencies and mode shapes of the specimen.   

The preliminary FE model was created using the measured dimensions and the 

material properties provided by Hexcel and other sources. 44 45  The ply-drops were not 

included in the FE model as building a perfect FE model was not the main focus of this 

research.  Separately, details on how to create an FE model of a complex engineering 



structure and manually update it based on natural frequency difference (NFD) and modal 

assurance criterion (MAC) can be found in another article from the authors. 46  

The Abaqus built-in composite layup was used deploying a three-dimensional 

deformable shell to create a simplified model of the composite plate.  The model was 

meshed with S3 elements.  After mesh convergence, the seed size was 1 mm globally 

with a 10% minimum size control to avoid extremely small elements.  Free-free boundary 

condition was used to simulate the suspension in the experimental tests.  An FE modal 

analysis was performed to calculate the natural frequencies and mode shapes of the first 

ten non-rigid vibration modes of this preliminary model.  The first six non-rigid mode 

shapes and their corresponding strain energy distribution maps superimposed on the 

mode shapes are shown in Figure 5 and Figure 6 respectively.  The natural frequencies of 

these six modes are summarized in Table 1. 

           

(a)                                             (b)                                              (c) 

           

(d)                                             (e)                                              (f) 

Figure 5: Mode shapes of the (a)-(f) first-sixth non-rigid FE modes 

           

(a)                                             (b)                                              (c) 

           

(d)                                             (e)                                              (f) 

Figure 6: Strain energy distribution maps of the (a)-(f) first-sixth non-rigid FE modes 

 

 



Table 1: Summary of results from the preliminary FE modal analysis 

Mode Number Natural Frequency  Description 

1 118.34 Hz The first horizontal bending mode 

2 374.32 Hz The second horizontal bending mode 

3 390.00 Hz The first torsional mode 

4 746.44 Hz The third horizontal bending mode 

5 800.13 Hz The second torsional mode 

6 1141.2 Hz The first vertical bending mode 

Due to the geometry of the structure, its mode shapes could be easily predicted 

and explained.  However, the natural frequencies measured from the FE modal analysis 

might be inaccurate because of the omission of the ply-drops in the FE model and the 

differences in terms of boundary conditions.  The exact natural frequencies of the 

inspected object should be measured through experimental modal tests instead.  Apart 

from the differences in natural frequencies, the ply-drops were also able to cause a local 

concentration of strain energy that would help the heat generation in that region, which 

could not be reflected in the FE results. 

4.3. Experimental modal testing 

The preliminary FE modal analysis was able to provide the options of areas to attach the 

electrodynamic shaker.  By analyzing the mode shapes of the first six non-rigid FE 

vibration modes, the four corners of the plate were predicted as being the most sensible 

locations to apply the excitation force, with which all the six modes could be excited 

effectively.  The exact location selected as the excitation point is shown in Figure 4 (b), 

where an aluminum connector was manufactured and glued onto the composite plate to 

attach the stinger.  An LDS V201 permanent magnet shaker was used to provide the 

excitation force.  Instead of using accelerometer which is the conventional data 

acquisition tool in modal testing, a Polytec OFV 056 SLDV system was used to avoid the 

structural mass loading that can cause significant inaccuracies in the results due to the 

small mass of composite specimen.   

During the modal tests, a chirp signal was created for the excitation, which swept 

from 50 Hz to 1000 Hz over 2 seconds.  The selection of this frequency range was also 

based on the results from the preliminary FE analysis, so that it was expected to cover the 

first five to ten non-rigid vibration modes, according to the results in Table 1.  Ten cycles 

of measurements were performed, after which the results were averaged using the root 

mean square (RMS) method to increase the signal-to-noise ratio (SNR) by eliminating the 

effect of phase noise. 47  A 6×6 grid of points was created on the composite plate for data 



acquisition.  The exact locations of the 36 points are indicated by the reflective tapes that 

were required for the SLDV measurement in Figure 7.  The measured frequency response 

functions (FRFs) on the 36 points were used to generate the mode shapes which served 

the role of verifying the results from the FE modal analysis.  Measurement point marked 

by number 2 was placed at the location of the excitation point on the other side of the 

plate, whose result is the drive-point FRF shown in Figure 8. 

 

Figure 7: Measurement points located on the plate 

 

Figure 8: The drive point (point 2) mobility (velocity FRF) plot 



As shown in Figure 8, there were seven modes inside the frequency range of the 

modal test.  All experimental modes had lower natural frequencies compared to their FE 

counterparts.  The comparisons are listed in Table 2.  Although the inaccuracies in the FE 

model are able to lead to discrepancies between the experimental and FE results, the 

major reason is attributed to the altered mass and stiffness matrix caused by the stinger 

and shaker attachment.  As the external conditions would also make a difference in 

vibrothermographic testing, referring to the experimental results when selecting the 

excitation frequency for vibrothermographic testing was the more appropriate option. 

Table 2: Comparison of natural frequencies from the experimental test and FE analysis 

Mode Natural Frequency (FE) Natural Frequency (Experiment) Difference 

1 118.34 Hz 118 Hz -0.28% 

2 374.32 Hz 309 Hz -17.45% 

3 390.00 Hz 325 Hz -16.67% 

4 746.44 Hz 543 Hz -27.25% 

5 800.13 Hz 561 Hz -29.89% 

6 1141.2 Hz 814 Hz -28.67% 

Conventionally, the preliminary FE model needs to be updated after experimental 

modal testing to reduce the discrepancies in natural frequencies (and sometimes mode 

shapes) between the FE and experimental results.  However, as the real natural 

frequencies of the vibration modes had been measured through the experimental modal 

test, the sole purpose of the FE model was to estimate the mode shapes and, more 

important, the strain energy distribution maps of the vibration modes, so that a correct 

target mode and an appropriate excitation location could be selected for the 

vibrothermographic tests.  Because the preliminary FE model was sufficient in providing 

this information prior to model updating, FE model updating was not performed. 

4.4. Vibrothermographic testing 

As discussed in the previous sections, a correct target mode—or target modes— must be 

selected so that there could be an adequate amount of heat generation in the potentially 

damaged region when the structure was in an operating condition.  The selection of the 

target mode was based on the strain energy distribution map of each mode, as explained 

in Section 3.2.  The FE model had provided the strain energy distribution maps of the 

first six non-rigid modes.  Among these six modes, the central region where the damage 

was had relatively high strain energy in the first, third and fourth modes of vibration.   

During the creation of the damage, the composite plates were clamped around its 

vertical center line, as reflected in Figure 3.  This left an uncertainty for the exact location 



and size of the damage that could be anywhere along the edge of the clamp on the 

composite plate, which was a consequence of the unknown force distribution during the 

damage creation.  Because of the uncertain location, it was preferable to use a mode of 

vibration where the whole length of the clamp line had relatively high strain energy.  By 

observing the strain energy distribution maps shown in Figure 6, the first mode of 

vibration was the most optimal option.  In addition, as the first mode of vibration was 

sufficiently far away from the other modes, exciting the first mode was able to make the 

ODS almost identical to its corresponding mode shape. 

To determine the optimal excitation location, observing the mode shape of the 

first vibration mode in Figure 5 indicates the middle points of the left and right edges of 

the plate, which are marked by points 3 and 4 in Figure 7, would be the ideal locations to 

apply the excitation force.  However, because of the resolution and the aspect ratio of the 

IR camera, covering both the central region and the edge of the plate would reduce the 

accuracy of the measurement results significantly as the hotspots created at the damage 

and the excitation point could only contribute to a small portion of the recorded data.  

Irrelevant features in the background would also be captured.  This could add 

unnecessary challenges to feature extraction, which will be explained in Section 5.  Due 

to these practical considerations, the actual excitation point had been adjusted 

accordingly so that there were more pixels focusing on the relevant areas.  The exact 

location is marked by point 5 in Figure 7.  Other than the changed location of the shaker, 

the rig setup stayed identical as it was in the modal tests.  Another experimental modal 

test was performed to measure the natural frequency of the first mode with the new 

excitation location, which gave a result of 119 Hz.  The electrodynamic shaker was then 

set to exert a sinusoidal force at 119 Hz to excite the first mode of vibration.   

A FLIR T650sc IR camera, which has a resolution of 640 × 480 and a thermal 

sensitivity of 0.02 °C, was used to capture the temperature data.  Due to the high 

reflection capabilities of the surface of the composite plate, barriers were necessary to 

block the light and minimize the reflections.  Two options for the placement of the IR 

camera when barriers were used are shown in Figure 9. 

            

(a)                                                                         (b) 

Figure 9: Two options ((a) and (b)) for camera placements when barriers were used to 

reduce reflections  



It is important to note that the view angle between the camera and the inspected 

object is able to cause inaccuracies in the measured temperature data, where a larger view 

angle generally leads to more significant discrepancies between the measured 

temperature and the actual temperature.  This conclusion applies to all real objects.  

However, for a black body, the emissivity of its surfaces equals to one at any view angle, 

so that the measured temperature is irrelevant to the view angle.8 48  

4.4.1. The first vibrothermographic test 
The first vibrothermographic test was performed with the camera setup shown in Figure 9 

(b).  The excitation frequency and location were selected as described previously, where 

the excitation frequency was 119 Hz while the location is marked by point 5 in Figure 7.  

A low excitation amplitude (< 10 N) was used to prevent further damage to the composite 

plate.  However, it is important to note that the amount of energy provided by the low-

amplitude excitation is limited, in which case the thermal pattern generated by the 

damage might not be able to reach its maximum potential size due to the outer regions of 

the damage not having enough heat generation.  This observation is confirmed in Section 

6, in which the results from the vibrothermographic test are compared with the result 

from an ultrasonic C-scan test.  Among the five specimens created, which are described 

in Section 4.1, the third least damaged composite plate was used for the 

vibrothermographic tests. 

The data acquisition lasted for 45 minutes, which provided measurement results 

consisted of 181 frames.  The timeline of the events during the first vibrothermographic 

test is listed in Table 3.  The four snapshots mentioned in Table 3 are shown in Figure 10. 

Table 3: Timeline of the first vibrothermographic test 

Time (min:s) Event 

0:30 The first snapshot (Figure 10 (a)) was taken. 

5:00 The electrodynamic shaker was turned on. 

5:30 The second snapshot (Figure 10 (b)) was taken. 

25:00 The electrodynamic shaker was turned off. 

25:15 The third snapshot (Figure 10 (c)) was taken. 

45:00 The fourth snapshot (Figure 10 (d)) was taken. 

 

 



            

 (a)                               (b)                               (c)                                (d) 

Figure 10: Snapshots taken at (a) 0:30, (b) 5:30, (c) 25:15 and (d) 45:00 of the first 

vibrothermographic test 

The first picture (Figure 10 (a)) shows the temperature distribution before the start 

of the excitation, where the maximum temperature difference across the plate was very 

small (< 0.2 ℃).  The second picture (Figure 10 (b)) shows that the hotspots in the 

damaged region and at the excitation point could be observed clearly after a 30-second 

excitation, which also demonstrates that the frictional heat generation in the damaged 

region was stronger than the heat generation due to thermoelastic effect at the excitation 

point in this situation.  In fact, within a very small amount of time (< 4 seconds), the 

damage was already able to generate a visible hotspot that was captured by the camera, 

while it took approximately 15 seconds for a visible hotspot to be generated at the 

excitation point.  The third picture (Figure 10 (c)) shows that the heat generated at the 

damage site already started to show signs of swift dissipation after the shaker had been 

turned off for 15 seconds, while the hotspot at the excitation point was still clearly 

visible.  The fourth picture (Figure 10 (d)) was taken at 20 minutes after the excitation 

was stopped, at which moment the heat concentration around the excitation point had 

finally been fully dissipated.  The reason behind the significantly different time for heat 

dissipation can be first attributed to the different distance from the two heat sources to the 

surface of the plate.  In addition, the heat generated in the shaker was significantly higher 

than the heat generation in the plate.  After the shaker was turned off, the heat transfer 

between the shaker and the plate continued through the stinger connecting the shaker 

with the plate. 

4.4.2. The second vibrothermographic test 
In the previous test, barriers were used to block the light and reduce the reflections.  After 

the completion of multiple additional tests for verification, which had proved the 

repeatability of this damage detection algorithm, a more practical measurement where 

there was no barrier used and the IR camera was placed directly in front of the plate was 

performed.  The parameters and boundary conditions remained unchanged from the 

previous test.  The total measurement time was 50 minutes.  The timeline of events in this 

vibrothermographic test is listed in Table 4 and the snapshots mentioned in the table are 

shown in Figure 11. 

 

 

 

 

 

 



Table 4: Timeline of the second vibrothermographic test 

Time (min:s) Event 

0:30 The first snapshot (Figure 11 (a)) was taken. 

5:00 The electrodynamic shaker was turned on. 

6:00 The second snapshot (Figure 11 (b)) was taken. 

20:00 The third snapshot (Figure 11 (c)) was taken. 

35:00 The fourth snapshot (Figure 11 (d)) was taken. 

35:00 The electrodynamic shaker was turned off. 

40:00 The fifth snapshot (Figure 11 (e)) was taken. 

50:00 The sixth snapshot (Figure 11 (f)) was taken. 

 

           

(a)                                             (b)                                              (c) 

           

(d)                                             (e)                                              (f) 

Figure 11: Snapshots taken at (a) 0:30, (b) 6:00, (c) 20:00, (d) 35:00, (e) 40:00 and (f) 

50:00 of the second vibrothermographic test 

The first snapshot (Figure 11 (a)) shows that the reflections of the camera and 

other irrelevant objects were captured clearly on the composite plate.  Based on the 

experience from the previous tests, the damage should had generated enough heat that 

could be detected by the IR camera when the second snapshot (Figure 11 (b)) was 

captured, which was however unable to be found here because it was overshadowed by 



the strong reflections.  The third picture (Figure 11 (c)) shows that the hotspot at the 

excitation point could be captured clearly as it was sufficiently away from the reflections.  

Meanwhile, if close attention is paid, a more localized hotspot can be found in the 

damage site, which might be a sign of the heat generated by the defect being detected.  

The fourth picture (Figure 11 (d)) was taken at the moment when the shaker was 

switched off, which shows the maximum temperature of the plate in this test.  The fifth 

picture (Figure 11 (e)) was taken at five minutes after the excitation was stopped and the 

temperature distribution in the damaged region became less localized, almost identical to 

the initial condition, while the hotspot at the excitation point was still clearly visible.  The 

last picture (Figure 11 (f)) shows that the temperature distribution almost recovered to the 

initial state except that there were still slight traces of undissipated heat around the 

excitation point even though 15 minutes had passed after the electrodynamic shaker was 

switched off, which matches the observations from the previous test. 

After the completion of the vibrothermographic tests, the recorded results were 

processed using the two feature extraction techniques, namely PCA and ICA, described 

in Section 3.3. 

5. Data processing with feature extraction 

In the results from the two vibrothermographic tests, there were always at least two 

independent hotspots in the measurement results.  Analyzing the raw images with two 

hotspots might be manageable, but for practical applications where there are tens or 

potentially hundreds of hotspots in a single image, it is beneficial to isolate and extract 

these hotspots first so that each independent hotspot and its corresponding physical 

source can be analyzed without being conflated with influences from other sources. 

The eigen-decomposition approach was used for PCA and the FastICA approach 

was used for ICA.  The dimensionality reduction process was not included in either 

approach.  After the extracted components were transformed back to matrices, a 256-

color colormap was created based on the jet color scheme in MATLAB, which was then 

used to visualize the transformed matrices containing the extracted features. 

5.1. Feature extraction of the first vibrothermographic test 

The data containing 181 frames acquired during the first vibrothermographic test (Section 

4.4.1) was processed using both PCA and ICA.  Within the two sets of 181 extracted 

components, only few contained the thermal patterns from the physical sources of 

interest, such as the hotspots at the excitation point and the damage site.   

5.1.1. PCA results 
In PCA, the extracted components were ordered automatically according to their 

contributions to the original data set.  The results of the extracted components suggested 

that the most significantly contributing component was the hotspot at the excitation point, 

followed by the hotspot of the damage.  The first four components from PCA are shown 

in Figure 12. 



            

(a)                               (b)                               (c)                                (d) 

Figure 12: The (a)-(d) first-fourth components of the first vibrothermographic test 

extracted using PCA 

It is apparent that PCA was not able to completely separate and extract the 

thermal patterns of the regions of interest.  The hotspot generated at the excitation point 

was extracted and shown in the third principal component (Figure 12 (c)) but the 

separation of the hotspot generated by the damage was unsatisfactory. 

5.1.2. ICA results 
During the execution of ICA through FastICA, the additional calculations to order the 

components were not included so the results were ordered naturally according to the 

basins of attraction of the maxima with which the extracted components were associated. 

41 42  The lack of meaningful order meant that the important components needed to be 

identified manually.  The components that contained the hotspot at the excitation point 

and the hotspot generated due to the sub-surface defect were not extracted until the 30th 

iteration and the 44th iteration respectively.  This phenomenon shows that additional 

calculations, such as those based on kurtosis, are necessary to order the components and 

reduce the difficulties in finding meaningful features. 

            

(a)                                                                         (b) 

Figure 13: The (a) 30th and (b) 44th components of the first vibrothermographic test 

extracted using FastICA 

By observing the extracted components in Figure 13, the quality of results was 

obviously higher than those from PCA, which are shown in Figure 12.  This confirmed 

the conclusions made by previous authors who stated that FastICA, in general, is more 

robust than PCA in feature extraction, as described in Section 3.3.  Although the 

separation between the two thermal features was not absolute, significant improvements 

had been shown between the images in Figure 10 and the extracted features in Figure 13. 



5.2. Feature extraction of the second vibrothermographic 

test 

The second data set was significantly more challenging because there existed a large 

number of reflected features and the hotspot of the damage was overshadowed by the 

strong reflections, as described in Section 4.4.2.  The data set contained 200 images, so 

200 components were extracted through PCA and ICA respectively. 

5.2.1. PCA results 
The first three components contained most of the information in the data set despite the 

additional features due to reflections.  These three components are shown in Figure 14. 

           

(a)                                             (b)                                              (c) 

Figure 14: The (a)-(c) first-third components of the second vibrothermographic test 

extracted using PCA 

The quality of separation results appears degraded compared to those in the 

previous test because of the increase in the number of features.  The first two components 

were largely dominated by the reflections, and the quality of separation between the 

reflections and the two hotspots was unsatisfactory.  The features from different physical 

sources were apparently still mixed together, which indicates PCA was unable to achieve 

the objective of isolating and extracting the two relevant features in this situation. 

5.2.2. ICA results 
In the 200 components extracted using FastICA, the fourth and 13th components appeared 

to have captured the two important hotspots respectively while the reflections were 

contained in the 11th component.  These three components are shown in Figure 15. 

           

(a)                                             (b)                                              (c) 

Figure 15: The (a) fourth, (b) 11th and (c) 13th components of the second 

vibrothermographic test extracted using FastICA 



The two relevant hotspots appear to have been extracted from the mixtures of 

features successfully despite the strong reflections, although the hotspot generated by the 

defect was still slightly mixed with other minor features.  Compared to the images in 

Figure 11, the separated features have demonstrated that FastICA is able to improve the 

quality of the data from IRT inspections significantly, even if a large number of irrelevant 

features are captured. 

From the results processed using PCA and ICA, it is now clear that as the 

complexity of the data increases where there is a larger number of independent features, 

the quality difference in results from PCA and FastICA becomes more noticeable.   

5.3. Re-ordering of the components extracted by FastICA 

using kurtosis 

Although it has been demonstrated that FastICA is able to outperform PCA, especially 

when the complexity of the data increases, the lack of meaningful order in the 

components extracted by FastICA can still pose considerable challenges in an operating 

condition.  In detail, the original order of extracted component is decided naturally by the 

size of the basins of attraction with which each component is associated with, since 

optimization methods tend to find maxima with large basins of attraction first.  42  

However, the size of the basins of attraction is not directly related to any meaningful 

physical criterion, so the extracted components are usually in a seemingly random order.  

This phenomenon is more troublesome if the data are large so that there is a significant 

number of extracted components.  In this case, manual feature selection can be time-

consuming. 

As briefly mentioned in Section 3.3, kurtosis can be used to re-order the extracted 

components.  Kurtosis is a measure of the shape of a probability distribution.  It can be 

used to measure the difference between a random probability distribution and a Gaussian 

distribution.  The mathematical expression of kurtosis can be described as follows 

 𝐾𝑢𝑟𝑡(𝑥) = 𝐸[(𝑥−𝜇)4](𝐸[(𝑥−𝜇)2])2 − 3. 
(6) 

where 𝜇 is the expected value of variable 𝑥. 

In this case, the kurtosis of any univariate Gaussian distribution is 0.  Probability 

distributions with positive kurtosis are referred to as super-Gaussian.  Such distributions 

are peakier than Gaussian distribution and have fatter tails.  Similarly, probability 

distributions with negative kurtosis are referred to as sub-Gaussian.   

Due to the fact that defects are usually small and highly localized, when the 

thermal images are considered as probability distributions, those containing the thermal 

patterns of defects are usually extremely super-Gaussian.  By re-ordering the extracted 

components by kurtosis, the meaningful components are likely to appear at more anterior 

positions, which helps the subsequent feature selection.  



With this assumption, the components extracted by FastICA are re-ordered 

according to their kurtosis values.  The comparison between the new orders and the old 

orders is summarized in Table 5. 

Table 5: Comparison between the new orders by kurtosis and the old orders 

Test Component Old Order New Order 

1 

Excitation 30 4 

Damage 44 13 

2 

Excitation 13 2 

Damage 4 7 

Reflection 11 16 

As summarized in Table 5, it is demonstrated that, for the results from the first 

test, the orders of the meaningful components have shown noticeable improvement.  For 

the second test, the improvement is marginal.   

To explain this, as the components are now ordered by their kurtosis values, 

anterior components usually contain more localized features than the posterior ones.  

Apart from the meaningful features listed in Table 5, anterior components also consist of 

irrelevant features in the background, such as those clearly visible in Figure 10, as well as 

components that contain nothing but image noise.   

To conclude, orders from additional calculations such as those based on kurtosis 

are able to show significant improvement if the original orders determined naturally from 

the basins of attraction are unable to reveal the true relative significance between the 

extracted components.  However, the new order based on kurtosis is still not perfect, 

especially that some irrelevant sources are able to generate features more localized than 

the meaningful ones.  In such case, these irrelevant features can appear in a more anterior 

position due to having a peakier probability distribution.  However, the meaningful 

components are guaranteed to be at relatively anterior positions, while the irrelevant 

components with more sub-Gaussian distributions are shifted to more posterior positions.  

This will aid the subsequent feature selection significantly. 

6. Verification with ultrasonic C-scan 

It has been demonstrated that feature extraction techniques such as PCA and ICA are able 

to improve the quality of results by separating and extracting the thermal patterns 

generated by the damage that are captured by the IR camera during the 

vibrothermographic test.  However, the reliability of the original data from the 

vibrothermographic test is still unverified.  As described in Section 1, ultrasonic C-scan is 



currently the de-facto industry standard in the area of damage detection, whose result is 

able to provide the benchmark for alternate techniques.  For this reason, an ultrasonic C-

scan was performed, during which the central region of the composite plate was scanned.  

The result is shown in Figure 16. 

 

Figure 16: Ultrasonic C-scan result of the central region of the composite plate 

By comparing the results from the vibrothermographic tests in Figure 10 and the 

result from the ultrasonic C-scan in Figure 16, it can be observed that the location and 

shape of the damage in the vibrothermographic results match those in the ultrasonic C-

scan result.  Apart from the relatively large sub-surface damage, the ply-drop was also 

clearly visible in the results from ICA as shown in Figure 13 and Figure 15, despite the 

fact that it was barely noticeable in the images prior to feature extraction.  However, 

noticeable differences can be found on the size of the damage determined from the 

vibrothermographic results and the ultrasonic C-scan result.  As explained in Section 

4.4.1, this discrepancy is mostly attributed to the amplitude of excitation force used in the 

vibrothermographic tests.  Although a relatively low amplitude could protect the 

specimen from further damage, it was unable to introduce enough relative movement and 

friction in the damaged region so that the thermal pattern of the damage could not reach 

its maximum potential size due to the lack of heat generation in the edge areas. 

  Although differences could still be observed between the vibrothermographic 

results and the ultrasonic C-scan result in terms of the determination of the size of the 

damage, the comparison with ultrasonic C-scan confirms that this damage detection 

algorithm based on modal testing, vibrothermography and feature extraction has been 

successful in the detection and location of the sub-surface damage.  In addition, the 

measurement time for the vibrothermographic test was considerably shorter than the 

ultrasonic C-scan, which can be a significant advantage in some practical applications.  In 

detail, as described in Section 4.4, a clearly visible thermal pattern was generated in the 

damaged region within 4 seconds after the electrodynamic shaker was turned on, while 

the ultrasonic C-scan usually multiplies this number by several hundred, or even several 

thousand times, depending on the resolution of the C-scan.  

7. Discussion and conclusion 

In this research, it has been shown through mathematical analyses in combination with 

experimental tests that the damage detection approach based on modal testing, 

vibrothermography and feature extraction is able to detect, locate and extract the thermal 

features generated due to the presence of sub-surface damage captured by an IR camera.  



The theoretical background supporting this damage detection algorithm and the important 

factors determining the chance of success of the damage detection algorithm have been 

demonstrated, analyzed and explained in this article.   

In modal testing, a representative FE model must be created so that the natural 

frequencies and mode shapes of the relevant modes of vibration can be calculated which 

aids the parameter selection in the experimental modal tests.  After the completion of the 

experimental tests, FE updating might be required if the discrepancies between the 

experimental and FE results cannot be reconciled through usual observation.  The results 

from the modal analyses provide the natural frequencies, mode shapes and strain energy 

distribution maps of the relevant modes of the structure, from which the parameters used 

in the vibrothermographic tests can be determined. 

In the vibrothermographic tests, if a sinusoidal mechanical excitation force is 

used, a correct excitation frequency needs to be selected so that the suspected damaged 

region exhibits relatively high strain energy during vibration.  If the target vibration mode 

excited by the sinusoidal excitation force is sufficiently distant from the other modes, the 

ODS will be almost identical to the mode shape of the target mode.  The target mode can 

only be excited thoroughly if the excitation force is applied at a region with large 

displacement in this mode.  When the data are being recorded, the location of the IR 

camera is also a factor that may introduce unnecessary challenges to damage detection 

because of the reflections and other irrelevant features captured by the IR camera.   

In the feature extraction section, it has been demonstrated that both PCA and 

FastICA are able to improve the quality of data by extracting the underlying features in 

the original images.  It is also verified that FastICA is able to provide more robust results 

than traditional methods such as PCA, especially when there is a large number of features 

in the data set.  For FastICA, additional calculations, such as those based on kurtosis, can 

be used to re-order the extracted components.  It has been demonstrated that the new 

orders are able to show noticeable improvement compared to the old orders determined 

naturally from the basins of attraction, which lowers the challenges in subsequent feature 

selection. 

Apart from the activities completed and outputs produced in this research, 

improvements and modifications can still be made, especially for the extension of this 

damage detection approach into the area of more practical industrial applications.  The 

potential improvements and modifications, including future work, are described in the 

next and final section. 

8. Enhancement and future work 

In the process of this damage detection algorithm being established, some choices were 

made to cater for well-rounded tests in a laboratory condition, a part of which, however, 

conflicts with the practical conditions or is difficult to achieve in real applications so 

modifications to this algorithm are required to improve its practicality in industrial 

applications. 



In large engineering structures, connections and constraints always exist, some of 

which can produce additional hotspots due to frictional heat generation or other heat 

generation mechanisms.  The visual access to the inspected object and the locations to 

place the cameras are usually limited as well so that the existence of reflections and other 

irrelevant features in the measured data might become unavoidable.  All these factors will 

cause the number of independent features and the influences from the superposition effect 

to increase, which adds complexity to damage detection.  In this case, the data measured 

when the structure is in different conditions can be used to eliminate some of these 

irrelevant features, based on the fact that only a portion of the features are independent of 

the alternating conditions which include operating conditions and environmental 

parameters such as time, weather, light and temperature. 

In this research, a sinusoidal mechanical excitation was used in the laboratory 

tests because the approximate location of the damage was acknowledged from the outset.  

However, in more realistic situations, as the objective is to detect and locate the defects, 

their locations will be unknown.  In this situation, a broadband excitation that excites 

multiple modes should be used, so that there is a high level of strain energy distribution 

across the entire structure.  As explained previously, if there is not sufficient dynamic 

response in a damage site, the heat generation will be considerably low so that it may be 

undetectable for the IR camera. 

In addition, most real engineering structures are subject to self-induced vibration 

during their normal mode of operation so that additional excitation is not required.  The 

vibration of the structure usually spans a wide frequency range, so that a large number of 

modes are excited.  In this situation, the ODS of the structure is determined by all self-

excited modes of vibration.  However, there might still be regions that do not have high 

strain energy, some of which may actually contain damage and defects, so extra care 

must be taken in regions with relatively low dynamic response. 

Some real engineering structures also have internal heat generations that are 

irrelevant to vibration.  Although they can add complexity to damage detection by 

introducing additional irrelevant features, these heat generations can also be utilized for 

damage detection through a traditional passive IRT, and the feature extraction through 

PCA or ICA can still be performed regardless of the source of the heat as long as there 

are different time-variant thermal features captured in the measurement results.  After the 

completion of feature extraction, customized colormaps with thresholding can also be 

used to increase the color contrast in the damage sites to reduce the difficulties in finding 

the meaningful features. 

Another challenge that can be present in industrial applications is the quantity of 

data because of the scale of the inspected structures.  Data compression prior to the 

execution of feature extraction, as well as dimensionality reduction in conjunction with 

feature extraction, can be applied to reduce the demand for data analysis and storage.  

Apart from PCA and FastICA, other feature extraction techniques may be added 

for comparison in future works.  In addition, the comparison between results from PCA 

and FastICA was performed directly without quantitative metrics in this research, due to 



the fact that the discrepancies are significant.  In case that direct inspections are unable to 

tell the differences directly, which is possible if more feature extraction techniques are 

used, quantitative criteria for performance evaluation can be utilized for a comparative 

study. 

In addition, although it is demonstrated that additional calculations can be 

performed to re-order the components extracted by FastICA, which lowers the challenges 

in the subsequent feature selection, it is possible to reduce the difficulty and increase the 

efficiency of feature selection even further.  A potential solution is the inclusion of 

machine learning and deep learning, so that neural networks can be designed for 

automated feature extraction and feature selection.  However, due to the specialty of the 

application, the design of the neural network, and the subsequent training phase, are 

likely to pose more significant challenges. 

Finally but most significantly, the accuracy of the damage detection based on IRT 

is largely determined by the resolution, sensitivity and location of the camera and the 

amplitude of the vibration.  This implies that damage which produces small and weak 

hotspots might not be able to be detected due to the spatial resolution of the IR camera 

compared to the size of the defects and the distance from the IR camera to the inspected 

object.  Correct decision theory needs to be established to estimate the safety condition of 

the structure even if there is no damage detected.  For relatively larger damage, even 

when the damage is detected successfully, the size determined from the results of 

vibrothermographic tests might be inaccurate if the damaged region is not excited 

thoroughly due to the low amplitude of vibration.  Further studies on the quantification 

and characterization of the damage based on results from vibrothermographic tests are 

still required. 
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