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Abstract

Modal active control is based on a state model that requires the identification of modal parameters.

This identification can typically be done through a rational fraction polynomial algorithm applied

in the frequency domain. This method generates numerical problems when estimating high-order

models, particularly when moving from the basis of orthogonal polynomials for the modal basis. This

algorithm must therefore be applied independently on multiple frequency ranges with a low order

for each range. In this case, the controller design cannot be automated and requires a lot of human

intervention especially to build the state space model. To address this issue, this paper presents

the application of the direct modal parameters estimation algorithm for active modal control design.

The identification algorithm is presented in a simplified version with only positive frequencies. Unlike

other classical identification methods in the frequency domain, the direct modal parameters estima-

tion algorithm provides a solution with a great numerical stability and allows estimating models

with a higher order. Using this method, the design of the controller can be largely automated and

requires a minimal of human intervention. After a theoretical presentation, the proposed method is

experimentally validated by controlling the vibration modes of a suspended plate.

1 Introduction

In current industrial structures, severe stress conditions like high-level vibrations cause robustness prob-
lems and affect the lifetime of structures. One way to reduce vibrations is to apply active control to
increase the natural damping of systems and consequently its lifetime. A review of different control tech-
niques such as collocated control, active and passive strategies, state space approach and modal control
can be found in [1]. There are many active control applications on different industrial structures like
aircraft [2], manipulator [3], multi-axis systems [4] or on shell structures [5]. The application of active
modal control is less common cause of the complexity of design and of its lack of robustness. Neverthe-
less, there are a few applications in the industrial domain. For example, in aerospace domain to reduce
damage induced by vibrations on electronic systems [6, 7], in the field of sound transmission [8] or in
musical domain where active modal control has become a way to modify the sound of instruments [9, 10].
Recently, a new approach to the synthesis of active modal control is introduced in [11]. This approach
permits to easily evaluate spillover effects on non-modeling modes.
Modal active control is based on a state model that requires the identification of modal parameters, fre-
quency, damping, actuators and sensors properties (modal amplitudes). There are a lot of identification
algorithms in the frequency domain which can be used to achieve it. The traditional rational fraction
polynomial algorithm (RFP) [12] based on the use of orthogonal polynomials [13, 14] is a first solution.
A control procedure based on the RFP algorithm is detailed in [15]. This procedure is based on the
identification of the product of actuator and sensor properties. Indeed, it’s important to note that just
this product has to be identified to establish the controller. There is no need to identify independently
the actuator and sensor matrices. For example, in the case of piezoelectric sensors and actuators, the
measure of the electromechanical properties of the transducers is very difficult without a dedicated system
[16, 17]. In spite of its application, the RFP algorithm is not suitable in the case of high modal density
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or high model order. In this case, the identification of modal parameters is in general not optimal due to
the ill-conditioned problem to estimate the power polynomial matrices from the orthogonal polynomial
matrices. One approach that is used to avoid this problem consists in cutting the spectrum in several
frequency ranges that need only a few modes in the identification procedure. But this solution does no
permit to automate the control procedure. An alternative approach consists in building an identification
algorithm based on well conditioned matrices for higher order model. Recently, the dual fitting method
[18] or the Direct Modal Parameters Estimation (DMPE) [19] propose a stable numerical solution to
estimate high order models. The DMPE algorithm is introduced using complex orthogonal polynomials
with both negative and positive frequencies for the generation of orthogonal polynomials as explained
in [13]. The principle of the method is based on companion matrices introduced in ([20]). Moreover, in
control procedures, the interpretation of identification results has to be automated. One way to select
physical modal parameters is to use stabilization charts as explained in [21] and [22].
In this paper, we propose a new control procedure based on the DMPE algorithm and using automated
stabilization charts interpretation to design the state model of the controller. The formulation of the
DMPE algorithm is simplified using real polynomials with only positive frequencies. The identification
results will be then included in a control procedure. This paper is organized as follows. The identifica-
tion and the control design are theoretically presented in the first section. The efficiency of the proposed
method is then experimentally validated and compared to the classical procedure based on the RFP
algorithm in the second section.

2 Identification and control design

The aim of the identification step is to determine the state model of the structure which can be described
by

{

ẋ(t) = Ax(t) +Bu(t) +Gw(t)

y(t) = Cx(t)
, (1)

where A is the dynamical system matrix, B and C are the actuator and sensor matrices respectively
and G is the disturbance matrix. x and y are the state and the output vectors respectively. u is the
control and w the disturbance. In the case of one actuator and one disturbance point, u and w are scalar
quantities. The state vector can be written for n modes

x =

[

q

q̇

]

, (2)

where q is the modal displacement vector. The state matrices can be written for n modes

A =

[

0n×n Idn×n

−diag
(

ω2

k

)

n×n
−diag (2ξkωk)n×n

]

2n×2n

,

B =

[

0n×1

Πa
n×1

]

2n×1

, C =
[

Πs
1×n 01×n

]

1×2n
, G =

[

0n×1

Πw
n×1

]

2n×1

,

(3)

where ωk and ξk are the modal frequency and damping respectively. Πa, Πw and Πs are the actuator,
sensor and disturbance vectors respectively.
This model is then used to design the observer and the controller. The crucial point of the identification
is the numerical stability of the procedure, that’s why we propose to use the DMPE algorithm to identify
the state model of the structure.

2.1 Simplified DMPE algorithm

The measured transfer function between one sensor output y and one actuator input u can be expressed
in a rational form using orthogonal polynomials and for n modes

H(si) =
y

u
=

2n−1
∑

k=0

βkφi,k(si)

2n
∑

k=0

αkθi,k(si)

, (4)
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where si = jωi is the Laplace variable evaluated at frequency ωi. φi,k and θi,k are the numerator
and denominator orthogonal polynomials matrix associated to the coefficients βk and αk respectively for
frequency i and order k. These coefficients are supposed to be estimated from a first step. More details are
given in [13, 14, 12]. We remind that the zeros of the denominators are the poles of the system associated
to the modal parameters, frequency and damping. The generation of complex Forsythe polynomials for
negative and positive frequencies using a recurrence relation is detailed in [13]. The simplification of this
method using real polynomials and just positive frequencies is explained in [12]. In the case of Forsythe
polynomials, the real orthogonal polynomials Si,k of the numerator can be calculated for a complex
Frequency Response Function (FRF) of length L using the recurrence relation

Si,k = ωiRi,k−1 − Vk−1Ri,k−2, (5)

where

Vk−1 = 2

L
∑

i=1

ωiRi,k−1Ri,k−2qi. (6)

The normalized real Forsythe polynomial is obtained from

Ri,k =
Si,k

Dk
, (7)

with

Dk =

(

2

L
∑

i=1

S2

i,kqi

)1/2

. (8)

The complex polynomials Pi,k are obtained from the real Forsythe polynomials using

Pi,k = (j)
k
Ri,k. (9)

Equation (5) can be written using (7)

ωiRi,k−1 = DkRi,k + Vk−1Ri,k−2. (10)

Multiply the above through by jk and with equation (9), the recurrence relation can be written

(jωi)Pi,k−1 = DkPi,k − Vk−1Pi,k−2 (11)

and finally

Pi,k = s
Pi,k−1

Dk
+ Vk−1

Pi,k−2

Dk
. (12)

This relation is available for the denominator using Pi,k = θi,k. The 2n poles of the system can be found
by seeking the roots of the equation

2n
∑

k=0

αkθi,k(si) = 0. (13)

Using the polynomial fraction-matrix model and the fact that α2n = 1, the roots of the denominator
of the transfer function (4) can be calculated with

2n
∑

k=0

αkθi,k(si) = 0 ⇔ θi,2n = −

2n−1
∑

k=0

αkθi,k(si). (14)

Equation (14) can be written in an equivalent matrix form
[

θi,2n θi,2n−1 · · · θi,1
]

1× 2n
=

[

θi,2n−1 θi,2n−2 · · · θi,0
]

1× 2n
Dden

(15)

with

Dden =

















−α2n−1 1 0 . . 0
−α2n−2 0 1 . . 0

. . . . . .

. . . . . .

−α1 0 . . 1 0
−α0 0 . . 0 0

















2n× 2n

. (16)
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Using recurrence relation (12) applied for the denominator with Pi,k = θi,k

[

θi,2n θi,2n−1 · · · θi,1
]

1× 2n
=

[

θi,2n−1 θi,2n−2 · · · θi,0
]

1× 2n
(sZden +Pden)

(17)

with

Zden =













D−1

2n 0 . . 0
0 D−1

2n−1
0 . 0

. . . . .

. . . . .

. . . . D−1

1













2n× 2n

,

Pden =













0 . . . 0
V2n−1D

−1

2n 0 . . 0
. . . . .

. . . . .

0 . . V2D
−1

2
0













2n× 2n

.

(18)

Equation (17) can be written in the form of an eigenvalue problem

Dden = sZden +Pden ⇔ (Dden −Pden)Z
−1

den − s Id = 0. (19)

In practice, the estimation is achieved using scaled frequency to avoid numerical problems. The simplest
scaling procedure is to scale all frequency to the unit interval by dividing all frequency by the highest
value ωmax. The eigenvalues λk and its conjugate λk

∗ of the matrix Gden = (Dden −Pden)Z
−1

den can be
written using the scaled frequency wk and modal damping ξk

λk, λk
∗ = −ξkωk ± jωk

√

1− ξ
2

k. (20)

The modal frequency ωk and modal damping ξk can be finally obtained using

ωk = |λk|ωmax, ξk = −
Re(λk)ωmax

ωk
. (21)

2.2 Selection of the stable poles and modal amplitude coefficients estimation

The stable poles are then automatically extracted using a stabilization chart. We remind that a stabiliza-
tion chart is based on several runs of the pole identification process by using models of increasing order.
Physical poles always appears at a nearly frequency whereas mathematical poles tend to scatter around
the frequency range. The typical stabilization criteria are chosen as equal to 1% for the frequency and
5% for the damping between two runs at order n and n+1. The identified transfer function can then be
written in terms of stable modal parameters corresponding to physical poles

HDMPE(s) =
n
∑

k=0

( Rk

s2 + 2sξkωk + ω2

k

)

, (22)

where Rk denotes the complex modal amplitudes which can be calculated using the linear square problem
evaluated at each frequency ωi. The optimal order is automatically determined using the error criterion
ε between the measured (frfm) and the estimated (frfe) FRF obtained from the stable poles

ε =

L
∑

i=1

(‖frfe‖ − ‖frfm‖)
2

L
∑

i=1

(

‖frfm‖2
)

. (23)
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2.3 From modal parameters to state space model

The transfer function between the control u applied on the actuator and the output y measured on one
sensor can be written in a matrix format and without disturbance

H(s) =
y

u
= C (sId−A)−1

B, (24)

where s denotes the Laplace variable. This transfer function can also be written using the modal param-
eters summing up each vibration mode

H(s) =

n
∑

k=0

( Πa
kΠ

s
k

s2 + 2sξkωk + ω2

k

)

, (25)

where the numerator Πa
kΠ

s
k is a real quantity. The modal frequency and damping of equation (25) are

directly obtained using the denominator of equation (22) and can be used to define the dynamical system
matrix A.
The product value Πa

kΠ
s
k can be identify using the complex numerator Rk of equation (22) which can be

written using its modulus and phase

Rk = |Rk|
(

cos(ϕk) + j sin(ϕk)
)

, (26)

where ϕk denotes the phase angle. In the case of a lightly damped system with a diagonal damping matrix,
the phase angle can be supposed equal to ± π and the complex numerator becomes a real quantity

Rk = |Rk|cos(± π). (27)

The sign of the numerator is determined by the sign of the cosinus and consequently by the sign of the
real part of the numerator ℜ (Rk). The numerator can then be written

Rk = |Rk|sign
(

ℜ (Rk)
)

. (28)

Finally, the product of the actuator and sensor modal coordinates can be identified using

Πa
kΠ

s
k = |Rk|sign

(

ℜ (Rk)
)

. (29)

The actuator and sensors matrices are finally obtained with

B =

[

0n×1

|Rk|sign
(

ℜ (Rk)
)

n×1

]

2n×1

,

C =
[

11×n 01×n

]

1×2n
.

(30)

If the assumption about damping is not completely verified, the imaginary part of the complex numerator
is reflected in a phase shift on the real modal displacement. This phase shift may have an impact on the
control performances.

2.4 Controller and observer design

The modal control is classically design using a pole placement algorithm [23] for both the control gain
K and the observer gain L used in the Luenberger observer [24]. The control u is obtained from the
estimated state vector x̂ with

u(t) = −Kx̂(t). (31)

The dynamic of the controller without disturbance and including the observer is defined by

{

˙̂x(t) = Amx̂(t) +Bmu(t) + L
(

y(t)− ŷ(t)
)

ŷ(t) = Cmx̂(t)
, (32)

where ŷ is the estimated output vector. The subscription m denotes the matrix used in the observer and
build up using the DMPE identification.
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3 Application

The proposed method is applied to a suspended 250 x 380 x 3.5 mm rectangular plate composed of
Duralumin and presented in Figure 1(a). The structure is instrumented with one exciter HIAX19C01-8
and one collocated piezoelectric PZT sensor located behind the plate. This structure was chosen for
its rich non harmonic sound properties close to a bell plate sound. The acquisition and control loop
are carried out using a COALA system, presented in Figure 1(b), including a signal pre-amplifier, a
20W power amplifier and a real time control system based on the real time frame work Xenomai on a
BeagleBone Black [25].

Figure 1: Studied plate (a) and control system COALA (b).

3.1 RFP versus DMPE identification

In this section, we compare the identification procedures using the RFP and the DMPE algorithm. The
plate is excited with a swept sine applied on the actuator. The output is measured on the piezoelectric
sensor. The complex FRF between the actuator and the sensor is used to applied the two identification
algorithms.

3.1.1 RFP identification

A first identification is realized using the RFP algorithm on the single frequency range 100-1735 Hz. The
stabilization chart presented in Figure 2 is achieved for an order varying from n = 10 to n = 50. To
make it clearer, only the stable poles in frequency and damping marked by ’•’ are represented on the
chart. The optimal order is 24 and the identified modal parameters (frequency fk, modal damping ξk
and amplitudes Rk) are detailed in Table 1. Only three modes are identified but the algorithm do not
keep the numerical stability when the order increase more than 24.

Table 1: Modal parameters identified using the RFP algorithm on the frequency range 100-1735 Hz for n=24.

Mode fk [Hz] ξk [%] Rk

1 148.7 0.09 -2.1×104 - 6.6×103 j
4 690.3 0.04 -1.2×105 + 6.0×104 j
5 839.4 0.06 -1.9×105+ 1.4×105 j

As explained in the introduction, a solution to identify more modes consists in cutting the spectrum in
several frequency ranges that need only a few modes in the identification procedure. Results corresponding
to this second identification are detailed in Table 2. Six different frequency ranges are needed to identify
modes 1, 2, 3, 4, 5, 6, 7 and 8: 100-350 Hz for mode 1, 350-500 Hz for mode 2, 300-700 Hz for mode 3,
600-1000 Hz for modes 4 and 5, 1200-1745 Hz for modes 6 and 8 and finally 1370-1490 Hz for mode 7.
In this case, the identification procedure can not be automated and requires a lot of adjustments.

3.1.2 DMPE identification

A third identification is realized using the DMPE algorithm on the single frequency range 100-1735 Hz.
The stabilization chart is presented in Figure 2 (’+’ denotes the stable poles). The optimal order is 47
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Table 2: Modal parameters identified using the RFP algorithm on several frequency ranges.

Mode fk [Hz] ξk [%] Rk Frequency range Optimal order

1 148.7 0.15 -2.7×104 - 3.9×103 j 100-350 Hz 12
2 360.8 0.08 -5.8×104 - 5.8×103 j 350-500 Hz 12
3 477.4 0.15 -1.8×103 - 2.6×103 j 300-700 Hz 18
4 690.3 0.04 -1.2×105 + 6.3×104 j 600-1000 Hz 11
5 839.4 0.07 -2.0×105 + 1.5×105 j 600-1000 Hz 11
6 1327.2 0.05 -1.3×104 + 3.5×104 j 1200-1745 Hz 12
7 1382.0 0.03 -8.6×103 + 1.4×104 j 1370-1490 Hz 06
8 1467.9 0.05 -1.3×105 + 4.1×105 j 1200-1745 Hz 12

and 8 modes are identified. The modal parameters are detailed in Table 3. We see that the numerical
stability of the DMPE algorithm permits to easily increase the order of the identification on the single
frequency range to include more modes than using the RFP algorithm. These results are very similar
to those from the RFP algorithm applied on several frequency ranges. In this case, the identification
procedure can be automated and requires a minimum number of adjustable parameters: the frequency
and the order range to build the stabilization chart.

Table 3: Modal parameters identified using the DMPE algorithm on the frequency range 100-1735 Hz for

n=47.

Mode fk [Hz] ξk [%] Rk

1 148.7 0.13 -2.5×104 - 4.4×103 j
2 360.8 0.07 -5.7×104 - 5.2×103 j
3 477.7 0.22 -2.0×103 - 2.9×103 j
4 690.3 0.04 -1.2×105 + 6.4×104 j
5 839.4 0.07 -2.0×105 + 1.5×105 j
6 1327.2 0.05 -1.5×104 + 3.3×104 j
7 1382.0 0.03 -8.6×103 + 1.7×104 j
8 1467.0 0.05 -1.2×105 + 4.1×105 j

Figure 2: Transfer function (a) and phase angle (b) of the system ( ); stabilization chart obtained
from the RFP (•) and from the DMPE algorithm (+); synthesized FRF obtained from the RFP (- - -)
and from the DMPE ( ) modal parameters.
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3.2 Controller and observer design

The controller and the observer focus on the vibration modes with a maximum amplitude located in the
center of the plate: modes 1, 2, 4, 5 and 8 in Table 3. The other modes correspond to corner modes and
are not taken into account in this example. The numerical FRF obtained from the reduced state space
model with real modal amplitudes based on equation (30) is presented in Figure 3.
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−20

−10

0

10

20

20
lo
g 1

0
|H

( j
ω
) |

(a)
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−4
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−1
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1

2
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4

θ(
jω

)

(b)

Figure 3: Transfer function (a) and phase angle (b) of the system ( ) and numerical FRF (a) and
phase angle (b) obtained from the reduced state space model with real modal amplitudes ( ).

Poles 1, 2, 4, 5 and 8 whose frequencies are equal to 149, 361, 690, 839 and 1468 Hz respectively
are damped with a coefficient 10 applied on the real part. The control gain K1×2n = [01×n K2] and
the observer gain L2n×1 = [L1 L2]

t are conventionally calculated using a pole placement algorithm. The
actuator matrix Bm, the control and observer gains are detailed in Table 4. The poles of the uncontrolled
system corresponding to the eigenvalues of Am and the poles of the controlled system associated to the
eigenvalues of (Am −BmK) are shown on a pole chart in Figure 4.

Table 4: Actuator matrix, control and observer gains.

Mode Bm K2 L1 L2

1 -2.5×104 3.4×10−3 1.4×102 -4.9×103

2 -5.7×104 -2.3×10−3 2.0×102 3.1×103

4 -1.4×105 1.7×10−2 2.1×102 -1.0×105

5 -2.5×105 -3.4×10−2 4.0×102 3.5×105

8 -4.3×105 -3.6×10−2 4.9×102 6.5×105

3.3 Application with a collocated swept sine excitation

In this first step, a swept sine is applied to the actuator. The uncontrolled and controlled FRF of the
system are presented in Figure 5. A zoom on modes 4 and 5 for the numerical and for the experimental
FRF is presented in Figure 6 and 7 respectively. Frequency fkc and damping ξkc of the controlled system
are obtained using the DMPE algorithm applied on the controlled FRF. Values are detailed in Table 5.
The frequency shift induced by the controller is very low and remains under 1.1% for the controlled modes.
The increase of damping induced by the controller should be equal to 10. The controller performances
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are closed to this value for modes 1, 2, 4 and 5 but significantly worse for mode 8 with a coefficient of
increase only equal to 4.6. This can be explained by the value of its modal amplitudes. In the case of
mode 8, the imaginary part of the modal amplitude is higher than the real part and the phase shift of
the modal displacement is not properly taking into account. This error must have a significant impact
on the control performances.

Figure 4: Poles chart of the uncontrolled system (•) and of the controller (×).
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Figure 5: Experimental uncontrolled ( ) and controlled ( ) FRF (a) and phase angle (b) using
the DMPE modal model and a swept sine excitation.

3.4 Application with a non-collocated percussive excitation

In a second experimental case, the controller is tested with a percussive excitation, applied with a mallet
reproducing the gesture of a percussionist as indicated in Figure 1. The aim of this experiment is to
validate the control system in real life context, for any unknown and non repeatable excitation, as in a
musical context. The Experimental uncontrolled and controlled sensor signal y (t) using the DMPE modal
model and a mallet excitation are shown in Figure 8. The effect of the controller is clearly visible on the
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Figure 6: Numerical uncontrolled ( ) and controlled ( ) FRF (a) and phase angle (b) using
the DMPE modal model and a swept sine excitation, zoom on modes 4 and 5.
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Figure 7: Experimental uncontrolled ( ) and controlled ( ) FRF (a) and phase angle (b) using
the DMPE modal model and a swept sine excitation, zoom on modes 4 and 5.

time signal and shows the amount of damping induce by the controller. We can note that the amplitude
of the second percussive excitation is slightly larger than the first one, which explains that the amplitude
after control is also slightly larger. The spectrum of the sensor signal in dB for the uncontrolled and
controlled system is shown in Figure 9. These results show a large decrease of the amplitude of controlled
modes 1, 2, 4, 5 and 8. A subjective analysis of the authors’ perceived sounds showed that the metal
plate sounds like a wooden plate.
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Table 5: Frequency and damping of the controlled system and coefficient of the damping increase.

Mode fkc
[Hz] ξkc

[%]
ξkc

ξk
1 147.2 1.11 8.5
2 360.1 0.85 12.1
4 691.5 0.47 11.7
5 842.8 0.66 9.4
8 1473.5 0.23 4.6
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−2.0
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−1.0

−0.5
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Figure 8: Experimental uncontrolled ( ) and controlled sensor signal ( ) using the DMPE
modal model and a mallet excitation.
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Figure 9: Experimental uncontrolled ( ) and controlled spectrum in dB of the sensor signal ( )
using the DMPE modal model and a mallet excitation.

4 Summary

This paper deals with the use of the DMPE algorithm to design active modal control. The presented
procedure is particularly efficient and requires a minimum of adjustments. Moreover, the DMPE algo-
rithm is presented here in a simplified version with only positive frequencies and real polynomials. The
procedure is experimentally validated on a suspended rectangular plate firstly with a collocated swept
sine excitation and secondly with a non-collocated percussive excitation. For the identification procedure,
in the case of the RFP algorithm, it is necessary to cut the spectrum in several frequency ranges with only
a few modes. This procedure makes the controller design more complicated. In the case of the DMPE al-
gorithm, a single frequency range is sufficient to identify all the modes and the modal model identification
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can be largely automated. It also shows that the controller performances are closely linked to the modal
amplitude values. In the case of modal amplitudes with a large real part, the controller performances
are close to those numerically obtained. In the case of modal amplitudes with a large imaginary part,
the real modal model doesn’t take into account the phase shift and this error has a negative impact on
the controller performances. Future works will deal with the control of the phase shift to ensure the
performances of the controller even in the case of modal amplitude with higher imaginary part.
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