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Summary. A passive continuously distributed control of mechanical vibrations is proposed. The piezo- 
electric actuators are interconnected by a linear electric transmission line. We introduce coupling and 
internal resonance criteria to determine the optimal choices for electric parameters. These criteria can be 
found decomposing the differential operator appearing in the linear evolution equations according to a 
partition of the state vector into mechanical and electrical parts. The results we find allow for the design 
of an experimental set up. 

1 Introduction 

Today many research efforts are devoted to the structural control by electric devices; they are 

mainly based on the piezoelectric effect (see [1]-[4]). 

Several technological and theoretical problems arise: 

i) to control vibrations by means of  concentrated devices requires high actuator performan- 

ces (often not yet available) and high control power with risk of  electric discharges; 

ii) the electric wave-speed is too high compared to the mechanical wave-speed; this means 

that a real dynamical coupling between electric and mechanical waves (e.g., in a piezoelectric 

material) is not possible. 

Our paper is intended to overcome these two problems: 

i) by developing the ideas already discussed in [5] and [6], we introduce a transmission line 

connecting a series of  piezoelectric actuators distributed along the structure. The obtained 

synergy of  actuators seems to improve considerably their control performances: to do the job  

ten men are better than one alone even i f  this last is ten times stronger," moreover ten men com- 

municating and helping one another are better than ten men acting alone," 

ii) the speed of  electric waves can be easily controlled in electric transmission lines by a proper 

choice of  the line inductances and capacitances: the high capacitance of  modern PZT actu- 

ators allows to push the electric wave-speed into the mechanical range by means of  technically 

feasible line inductances. 

The device we propose has a double practical advantage: it requires lower performances to the 

PZT actuators and it produces an electro-mechanical interaction based on internal resonance 

phenomena between the modes of  the whole electro-mechanical system: this allows for a strong 

control action and short times to transfer the energy between electrical and mechanical forms. 

In Sect. 2 the balance equations for a one-dimensional continua endowed with an affine 

electro-mechanical structure are derived following the ideas developed in [7]: the mechanical 

configuration of  the beam and the charge distribution in the electric transmission lines are 
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chosen as state variables of the system; the mechanical contact actions, the inertial actions 

and the electric potential drops are introduced as dual quantities of the generalized velocity 

and deformation fields; balance equations and boundary conditions are finally obtained by 

means of the principle of virtual power (see [8]). 

Section 3 mainly concerns the analytical study of the general linear differential operator of 

the problem within the partition of the state vector into its mechanical and electrical parts. 

Criteria for the existence of electro-mechanical coupling are stated, and a representation of 

the solution by Volterra integral equations allows to understand the coupling mechanism and 

leads to the proper choice of the electrical parameters such as the line inductance and the line 

resistance producing internal resonance between electrical and mechanical vibrations. In par- 

ticular it is proven that mutual excitation between mechanical modes can occur also in the 

linear case through the electric charge vibrations. 

Finally, in Sect. 4 we illustrate the previous results by means of numerical simulations; a 

purely flexible beam clamped-clamped and electrically insulated is chosen as ad hoc example 

in a time-evolution problem. In this example the spectral properties of the involved differen- 

tial operator produce an interesting coupling pattern between electrical and mechanical 

modes. The results of Sect, 4 allow us to design an experimental set up aiming to prove the 

technological feasibility of the conceived passive piezoelectric damping. 

2 Balance equations and boundary conditions 

The mechanical behavior of beams is sometimes very complex. It has been proposed to model 

such a behavior introducing one-dimensional microstructured continua in which a set of 

directors describes the deformations of the beam sections (see [9]). The most relevant kinema- 

tical descriptor of the state of these sections is represented by the attitude which was intro- 

duced by Euler and Bernoulli [10]. However, no further conceptual effort is required when 

modelling sections constrained to undergo affine deformations [7]. In the present paper we 

introduce a further set of descriptors in order to model electrical transmission lines coupled to 

the beam by means of a set of distributed piezoelectric actuators. We will adapt to the electro- 

mechanical case the ideas developed in [1 1]. 

Let 13 be the one-dimensional base manifold, Or the two-dimensional point-shape manifold, Q 

an N-dimensional charges manifold, 7 9 the three-dimensional positions manifold and V P  its 

translation space. All the manifolds are supposed to be endowed with the euclidean metric. 

The configuration is a function: 

13 • ~ ---+ 79 • Q (g,y) ~ (x(g,y) ,  q(g)), (2.1) 

where q(~) represents the electrical charges stored in the [0, ~] segment of the transmission 

lines, and 

x(r y) = p(~) + e(r (y - o) (2.2) 

is the position of a beam point defined by p(~) = x(r o) which physically represents the posi- 

tion of an arbitrary point o on 5 c chosen as origin, and by P(r which is a linear embedding 1 

of V S  in V79 representing the attitude and the affine stretching of the beam fibers. More pre- 

cisely, Vr E 13, x(r .) is an affine application of 5 c in 79, invertible on its image 5~ := x(r 5 c) 

so that P(r E IsoLin(V5 c, VS~) 2. 

1 We mean a linear application V Y  -+ V P  which is invertible on its image. 
2 We use the notation introduced in [12]: LIN is the set of linear applications, IsoLIN the set of linear inver- 
tible applications, gYM and SKw respectively the set of symmetric and skewsymmetric linear applications. 
We will label by SYM A and SKW A the symmetric and skewsymmetric parts of A. 
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A motion is a one-parameter family of configurations: 

(~-, y, 7) ~-+ [x(q, y, v), q(~, 7)] ---- [p(~, 7) + P(~, T) (y -- O), q(~, T)]. (2.3) 

For any pair of time instants (t, -r) it is useflfl to consider the following equations: 

x(~-) - p(7) = P(T)P( t )  -1 [x(t) - p(t)], (2.4) 

describing the evolution of the fiber vectors. The time derivative of Eq. (2.4) gives us the velo- 

city of the point: 

• = 15 + 15P-1 (x - p) = w + W ( x  - p), (2.5) 

so we are led to define the generalized velocity field as 

(w, W, co):= (lb, ISP -1, dl). (2.6) 

We note that ~o = dl is a set of electric current fields. Also we remark that the tensor 

W := IbP -1 c IsoLiN (VS~,t, VS~,~) maps the plane copy of the beam fiber at time t in the 

copy at time r; we can extend its action to the whole translation by means of the condition: 

W n(q, ~-) := - W  T n(~, T), (2.7) 

being n(~, 7) the unit normal to VSC~,~. 

We choose as descriptor of the time-rate of the generalized deformation the following field: 

(d, D, A, 3) := ( w ' -  (SKW W ) p ' ,  W',  sYMW, to'), (2.8) 

which vanishes for every velocity field mechanically rigid and with spatially constant current 

fields. Here the prime means the derivative with respect to q. 

We call internal actions its dual quantity (s, S, 2], ~) in the expression of the internal 

power P~: 

Pi = f ( s . d  + S . D  + 2 ~ . A + a . 3 )  d~, (2.9) 
/3 

where "." denotes the inner product in the set of vectors or tensors (see, e.g., [12]). While s 

and S represent the standard contact force and couple, the dual quantities 1~ and a represent 

the contact double force exerted on the beam fiber and the set of local electric potential drops, 

respectively. 

The balance equations can be evaluated assuming that for any generalized velocity field 

the power Pe expended by the external actions, (b, B,fl), equals the internal power: 

Pi = f ( s .  d +  S - D  + l ~ . A + a . h ) &  = f ( b . w + B - W + f l . e o ) &  = Pe. (2.10) 
/3 B 

Substituting Eq. (2.8) in Eq. (2.10), integrating by parts and recalling that 3 a .  Ab = A �9 a A b 

for every A 6 SKw, we get: 

f [ ( s ' +  b ) . w  + (S' + ~  + p 'A s + B) .  W +  (a' + f l ) - t o  ld~ = Is. w +  S. W +  a-tO]o~, 
g 

that must vanish for every regular velocity field (w, W, m). As a consequence for every ~ E B: 

s ~ + b = 0 ,  (sKwS) ~ + p ~ A s + s K w B = 0 ,  
(2.11) 

(sYMS) ~ + I ! ~ + s Y ~ B = 0 ,  a ~ + f l = 0 ,  

3 a A b = a | 1 7 4  
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and for ~ E 013: 

[ s .w  + S.  W + a .  ~]~ = 0. (2.12) 

Equations (2.11.1 3) and (2.12) evaluated for ~o = 0 are the standard balance equations of 

a one-dimensional continuum endowed with affine structure. Equations (2.11.4) and (2.12) 

evaluated for (w, W) = (0, 0) give a formulation of Tellegen theorem (see [13]). The problem 

will be complete when the constitutive relations for (s, S, E, a) and (b, B, fl) are assigned. 

3 Electro-mechanical coupling criteria 

In the following we will limit our attention to the linearized model and rearrange in vectors 

(labeled by a tilde) the strict components of the infinitesimal displacement fi, of the deforma- 

tion field ~], and of the internal and external actions (g and 1~). The compatibility Eqs. (2.8) 

can be linearized getting 

a = G(u),  (3.1) 

where G is the linear differential operator which determines the time-rate generalized defor- 

mation field. The linear constitutive equations can be written in the form: 

g : KG(fi) ,  1~ : - M u ,  (3.2) 

where K and M are the symmetric positive definite stiffness and inertia matrices; moreover 

we will assume that M is diagonal. Recalling Eq. (2.10) we get 

f [KG(fi) �9 G(•)] d{ : f [GAKG(a) . .3 d< = - f [iV[i]. ~1 d{, V~, (3.3) 
B B B 

so that the linearized balance equations in terms of infinitesimal displacement fields become 

L(fi) + i] = 0, (3.4) 

where L := M-1GAKG. 

3.1 Modal analysis of partitioned operator L 

We study Eq. (3.4) partitioning fx in its mechanical and electrical components and we label 

respectively by m and e indices quantities of mechanical and electrical nature. For sake of 

simplicity we consider fi as a two-dimensional vector. 

Let ~4 be the Hilbert space: 

A := • Ae, (3.5) 

where .A~ and Ae are subspaces of L2(/3), the space of R-valued square-integrable functions 

defined on B verifying suitable homogeneous boundary conditions, endowed with the usual 

inner product (D, ~>} := f([]~>)&; let u, ii c .A and let L be a self-adjoint positive definite 
B 

differential operator on A. We consider the following evolutionary problem: 

L(u) + i i  = 0, u(0) = u0, u(0) = u0. (3.6) 
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The parti t ion (3.5) induces the following decomposit ions of  the state vector u and of Eq. 

(3.6.1): 

u = {v, "/}, y E A r n ,  7 E ,.,4+, (3.7) 

+ + : 0, + L++r + = 0, (3.8) 

where the operators  L,~,~ and L ~  are self-adjoint and L,~+ is the adjoint of  L~,~ because of  the 

selfadjointness of  L. 

Equations (3.8) lead us to regard v as the m-response to m inertial actions but also to the 

e-action of L~+('7) and viceversa for % Let us determine in a more expressive form this depen- 

dence; as a consequence of the spectral representations theorem of  self-adjoint oparators  (see 

[14]), for every a E Am, b E .An and r ~ R we have 

r;+~(a) = f .Xv@, mA} m~ dl~x, (3.9) 
s;+ 

b = L~+(b) = f (b ,  ev) ev d#., (3.10) 
s~ 

where (s~, dp~) and (Se, d#v) are the spectral measure spaces respectively for Lm~ and L~,  

while m~ and e,. are the corresponding sets of  spectral vectors. 

Let us define the functions 

vA -- (v, ma),  (3.11) 

% _ (% %), ( 3 . 1 2 )  

dependent on the time variable only, and the scalar numbers 

A~, = (mA, L,~+(ev)), (3.13) 

AvA = (e., Lern(mA)), (3.14) 

A with Aa, = A,A due to L ~  = L ~ .  

Equations (3.8) can be written as 

S.+ S+ S+ S~,+ 

which - as mx and e.  are bases of.A.~ and Me respectively - are equivalent to 

s+ (3.16) 

~'7~ + ;~ + f A~vA d#~ = O, V~ r S~. 
s,. 

Equation ( 3 . 1 6 )  clearly shows that  the influence on the mode mA exerted by the mode ev is 

measured by 

AAv = fmaL~++(e,) dq, (3.17) 
B 

that we can regard as a modal  e -~ m coupling matrix. In an absolutely similar way A,a repre- 

sents the modal  m ~ e coupling matrix; it is now easy to formulate the following: 

Criterion of electro-mechanical coupling 

A necessary condition for the presence of  electro-mechanical energy exchange between e~ and 

ma modes is 

fL.~+(e.) mad;  = fL+.~(m~) ev & r 0. (3.18) 
B 13 
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3.2 Coupling representation by integral Volterra kernels 

In order to test the coupling properties of  Eq. (3.6), we search the solution corresponding to 

purely mechanical initial data: 

v~ = v2,0, t~ = t),o VA E S,~, (3.19) 

"r~ = 0, "9~ = o v .  c &. (3.20) 

We get 
t 

cos r cos - -  sin w), (t - t) A),,7, (t) d#,  dr, 

0 Sr 

t 

where w~ :=  . /X,  w~ :=  x/~,  and Ca :=  arctan (Oao/(wavao)). 
Introducing Eq. (3.21.2) to (3.21.1): 

v x ( t )  - vao  cos (w~t + Cx) 
C08 ~ k  

(3.21) 

t { 

+ / s i n ~ a ( t - { ) / A A ~ f  w~ / 1 A,.v~ (7) d,• dr d#~, d{, (3.22) 
, /  

o & o &~ 

for every A ~ S.~. 

Applying Fubini's theorem to the second member integral and changing the integration 

order where it is possible, we get 

t t 

f / [/At:A~--- ~ / s i n  zva(t-{  ) sin w,({-7)d{dlx~]Vk(r)d#kdT. (3.23) 

0 S~ S~ r 

The term in the square brackets can be evaluated to get 

f A~vAv~ ~ sin ~v(t - ~-) - ~ sin w~(t - T) 
d#~, (3.24) 

J iXTA~ ~ ~UA 2 - -  GUIj 2 

S~ 

so we are led to recognize (3 .22)  as  a system of Volterra integral equations of the second kind: 

t 

~ ( t )  = A(t )  + f f k~,~.(t, ~-) ~(~) d ~  d~-, (3.2S) 

in which fa(t) represents the standard cosinusoidal evolutions of  the mechanical modes, and 

the integral is the representation of  the effects of  the back and forth exchange of  energy with 

the electrical system 4. 

4 The solution of the system of equations (3.25) can be easily derived by the following constructive itera- 
t 

tive scheme (see [15]): v~(~ = fx(t), vx(~)(t) = f~(t) + fkx,• r)v• if f(t) is continuous in 
0 

[0, T] aad the kernel k(t, r) is continuous for t r [0, T] and r E [0, t] (which is verified trivially for 
Eq. (3.24)). 
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We remark that Eq. (3.25) shows that the evolution of the mechanical mode A (eigenfunc- 

tion of the operator Lm~) can be influenced by the evolution of all mechanical modes. 

Because of this property mechanical modal excitation can occur via electro-mechanical energy 

exchange. 

The structure of the kernel ka,~ defined in Eq. (3.24) plays a crucial role to determine the 

kind of coupling involved: two mechanical modes X and • can influence one another if and 

only if the number A~A,~ is non-vanishing (i.e., they have a non-vanishing coupling with 

almost one electrical mode u). 

Moreover, Eq. (3.24) shows that for w ,  ~ wa the Volterra kernel ka,~ becomes resonant; 

this fact is easily checked by recalling that 

lira ~A sin ~ ( t  - 7") - ~ sin ~),(t - 7) _ 1 [sin ~,x(t - 7) 

s ~ u ~ A  ZXTA 2 - -  "KTu 2 2 L ~A 

1 
+ ( 7  - t )  c o s  - 

(3.26) 

This fact leads us to expect a strong coupling in the time-evolutions of A (mechanical) and u 

(electrical) modes when the corresponding pulsations u: are close. Finally, in order to have a 

dimensionless number measuring the coupling, as consequence of the positive definiteness of 

L, we introduce the coupling coefficients as the numbers: 

2AA~ < 1. (3.27) 

Equation (3.27) follows f rom / Lu ,  u) > 0 for u = {m~, e~} and for u = {m~, -e~}. The sub- 

sequent numerical simulations prove that the closer the number c~ is to 1, the bigger is the 

coupling between A and u modes. 

4 Applications 

The model described in the previous sections can be used to study the behavior of several 

electro-mechanical systems. In the papers [5] and [6] truss modular beams controlled by 

distributed PZT actuators were considered. In the present paper we address to the dynamical 

control of a continuous beam. 

4.1 System description 

In order to prove the feasibility and the efficiency of the distributed PZT control, we consider 

an experimental set up s made of an aluminum beam coupled with a set of piezoelectric patch 

actuators spatially distributed on its upper surface (see Fig. 1). 

The Aluminum beam, we consider in the numerical simulations, is 60 cm long, 2.3 cm 

large and 3 mm thick. We will regard it as a Bernoulli-Navier purely flexible beam. 

The actuators are connected in series as shown by Fig. 2 by means of impedances, in such 

a way that a transmission line is formed. The line capacitance is constituted by the actuators 

only. The beam is clamped-clamped, while the transmission line connecting the actuators is 

electrically insulated. 

5 which is being realized in a laboratory of the "Universitfi dell' Aquila". 
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actuator k actuator k+l Ae.~el_ ~ e 2 

Aluminum beam 

Fig. 1. Beam and actuators setting 

line impedances 

PZT actuators 

I I 

Fig. 2. Electric line scheme (gray boxes for PZT actuators) 

In our simulations we consider the physical properties of  commercial  actuators (namely 

ACX QuickPack actuators) in bonded configuration: this means that  the actuators are sup- 

posed to supply non-vanishing forces and vanishing couples when subjected to voltages. 

4.2 Identification of continuum constitutive parameters 

Let us choose as vector of  kinematical descriptors 

fi = {V, r } ,  (4.1) 

being V the transverse displacement of  the beam section and /7 the charge stored in the 

segment [0, r of  the actuators transmission line. Limiting our analysis to the case of  a purely 

flexible beam the strict components  of  the deformation time-rate are given by 

a = { & 3 ,  ~} = ( v " ,  v ' }  ~ r = (4.2) 
0 E3' ' 

where 6 Dla = "d" is the field of  beam curvature time-rate and ~ = / ~ '  is the field of  currents in 

the PZT actuators. Their dual actions will be 

= {&3, ~}, (4.3) 

physically representing the bending moment  field Sla and the potential drop field cr at the 

extreme points of  the PZT actuators. 

Due to their positioning over the beam, these actuators supply a bending moment  when 

subjected to voltage fields and vice versa: this coupling effect can be mathematical ly represent- 

6 Here the tensor D is represented in the basis shown in Fig. i. 
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ed in a coupled constitutive relation between the internal actions ~ and the deformation fields 

= KG(fi),  K = . (4.4) 

We will assume that 

Km~ = E I  § km~92, If,~e = kmefl = kemfl = K ~ ,  K~ = kee, (4.5) 

being E the Young modulus of the aluminum beam, I the moment of inertia of its section and 

~3 = 1.65 mm the distance of the patch actuators from the center axis of the beam. The quanti- 

ties k ~ ,  k.~ = k~.~ and kh~ are respectively the axial stiffness, the electro-mechanical coupling 

constants and the admittance for unit length of the actuators as read from the ACX catalogue 

(i.e,, k ~  = 2.105 N, kme = kern = 0.4105 V, ke~ = 2.2105 m/Farad). 

Moreover, recalling that the electrical "inertial" actions physically represent the lines 

potential drop, we can write Eq. (3.2.2) as 

( ~  0 )  (4.6) 1~ = -{~o9, h Y } ~ M  = h ' 

where Q is the linear mass density of the beam and h is the line inductance. With the stated 

constitutive relations, Eq, (3.4) becomes 

K~,~V Iv  + K ~ F "  + ~9  = O, - K e m V "  - KeeF" + h/~ = 0. (4.7) 

In order to apply the results of Sect. 3 we compute a dimensionless form of Eqs. (4�9 

introducing 

V F 

where lb is the total length of the beam considered and q := ~lb2/h is the reference charge 

leaving unchanged the symmetry of the spatial differential operator involved. Finally for the 

time derivatives the pulsation 

~5 = (4.73)2 ~/K~I ~, (4.9) 

of the first mode of the clamped-clamped uncoupled beam is used. 

In dimensionless coordinates the operator L introduced by (3.4) becomes 

~2 lb~ ~)21b2 h [] 
�9 ( 4 . 1 0 )  

L = K~ D Ill KeeO [~ n 

~2162 h ~2 h 2 

4.3 Numerical simulations 

We consider in this section the spectra S~ and S~ of the operators L , ~  and Lee associated 

with Eq. (4.10) and the boundary conditions specified in Sect. 4.1. These spectra are discrete 

sets {..A..}, {..u.. } of real positive numbers which we can order using natural numbers�9 

Once remarked that the electric spectrum is a function of the line inductance, we estimate 

the critical line inductances h~,  maximizing the electro-mechanical mode couplings, assuming 

vanishing K ~  and solving the equation w~(h) = ~a as is suggested by Eq. (3.26). In this way 
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we can cons t ruc t  a mat r ix  of  critical values for line induc tance  such that  the electrical pulsa- 

t ion  is closest to the mechanica l  one; for the examined  system we get 

h* = 

�9 4.19 . . .  8.38 . . .  12.57'  

0.76 . .. 2.28 . .. 3.80 . .. 

�9 .. 0.78 . . .  1.55 . . .  2.36 

0.23 . . .  0.70 . . .  1.17 . . .  

. . .  0.31 . . .  0.63 . .. 0.94 

0 . 1 0  . . .  0.31 . . .  0 . 5 1  . , .  

H/m, (4.11) 

whose entry hi j  means  the induc tance  maximiz ing  coupl ing  o f / - m e c h a n i c a l  with j-electrical  

modes,  and  some dots  are used when the necessary coupl ing  cond i t ion  (3.18) is no t  verified. 

In  Fig. 3 we plot  the spect rum of  L as a func t ion  of  the line induc tance  h. The ob ta ined  set 

of  curves shows a veering p h e n o m e n o n  in the ne ighbo rhood  of  every critical line inductance .  

The  veering regions are character ized by circles. The  intersect ions of  spectral curves occur 

only  when cA~ = 0, i.e., when  the necessary coupl ing  cond i t ion  is no t  verified. In  Fig. 4 the 

mat r ix  of  coupl ing  coefficients ca, is shown;  b lack  means  1, white 0, and  the in tensi ty  of  gray 

is p ropor t iona l  to the es t imated value. 

Several numer ica l  s imula t ions  are per formed to ob t a in  t ime evolut ions  of  the first four  

mechanica l  and  four  electrical modes  cor respond ing  to the init ial  data:  

v l  = 1, vi = O, 7 j  = O, i = 2 , . . . 4 ,  j = 1 , . . . 4  

of  the moda l  coefficients. 

In  Fig. 5 h = h~2, and  the line is assumed to be non-dissipat ive.  We observe that:  

i) only odd mechanica l  and  even electrical modes  are excited, as suggested by the coupl ing  

matr ix  shown in Fig. 4; 

ii) the ampl i tudes  of  v ibra t ions  decrease with increasing modes;  

iii) the mechanica l  v ib ra t ion  of  the third mode  is excited via the excitat ions of  the (even) elec- 

trical ones. 
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Fig. 3. Veering of eigenfrequencies (normalized with respect to co) at the critical line inductances 
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Fig. 5. Time evolution simulation (h = h~2, non-dissipative line) 

In Fig. 6, h = h~2 , but the transmission line is assumed to be dissipative, its resistance being 

101D/m (for more details about the optimal choice of  the line resistance we refer to [5] and 

[6]). The vibration of  the first mechanical mode is damped as follows: the even electrical 

modes (2 and 4 are shown in the figure) are excited; as a consequence the odd mechanical 

modes (1 and 3 in the figure) are also excited; the line resistance dissipates the electrical energy 

which cannot be pulled back in the mechanical form. 



48 S. Vidoli and F. dell'Isola 

_o.~I~v~ ~ ~ ~  . . . . . . . . . . . .  
-1 

0 

0.5 

0 

20 40 60 80 I00 120 

-0.5 i 

-1 
0 20 40 60 80 I00 120 

0 002 I l 0 

0 ,00  AA~AAAAAn . . . . .  ,./. 

_o.oo~VVV~.~v~ . . . . .  
-0.002 

0 20 40 60 80 i00 120 

oil 
-0.5 

0 20 40 60 80 I00 120 

o.5 I 

o i -0.5 

0 20 40 60 80 I00 120 

0.4 

0.2 

-0 

-0 
-0. 

0 20 40 60 80 i00 120 

0. 

- 0 . 5 [  
-1 

0 20 40 60 80 I00 120 

O. Ol 7TIF7 

- o . o z  I /~v V-  
-0.015 ]~ 

0 20 40 60 80 100 120 

Fig. 6. Time evolution simulation (h = h~2, dissipative line) 

_o_:[NVlVVlvvvwv~,~,vvvvvvvNiNlltlltl 
0 50 I00 150 200 250 300 

-0 ,5  
-I 

0.5 
<~ 0r 

-0.5' 

0 50 I00 150 200 250 300 0 

00IL~ �9 o ~ Ah^ . . . .  ~A o . s  

oo~l.,,vvvvNiNiivvlvvv,~...v~vvvv ~ o[ -~. -0 .5  

0 50 I00 150 200 250 300 

I I 

~ l 
-~ 

0 50 i00 150 200 250 300 

0 50 i00 150 200 250 300 

50 i00 150 200 250 300 

0 50 i00 150 200 250 300 

0 50 i00 150 200 250 300 

Fig, 7, Time evolution simulation (s = hi4, non-dissipative line) 
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Fig. 8. Time evolution simulation (h = h { 4  , dissipative line) 

Figure 7 shows numerically that the line inductance h = h~4 couples mainly mechanical 

mode 1 with electrical mode 4. Comparing Fig. 7 with Fig. 5, we remark that the amplitudes 

of  vibration of  modes are modulated with different periods when different critical inductances 

are chosen: the amplitude period when h = h~4 is greater. This is a measure of time elapsed in 

the energy flow from mechanical to electrical form. 

In Fig. 8, h = h~4, and the line is assumed dissipative (40X2/m is now the value of optimal 

line resistance). Comparison with Fig. 6 shows that the damping ratio is now smaller; this fact 

could be expected observing the shape of  the veering region associated in Fig. 3 and the value 

of the coupling coefficient associated (lm-4e) in Fig. 4. 

5 Concluding remarks  

A one-dimensional microstructured continuum has been introduced to model beams coupled 

to electrical transmission lines by PZT actuators; we have found the evolutions equations for 

the electro-mechanical system considered in the case of  linear constitutive relations; the spatial 

differential operator governing the problem has been partitioned according to the partition of  

the state vector into a mechanical and electrical part. This analysis led to the formulation of  a 

necessary coupling condition between mechanical and electrical modes and to the statement 

of an internal resonance condition. These results were used in Sect. 4 in order to prove that 

bending waves can be damped and controlled also by means of  standard second-order electric 

transmission lines of  distributed piezoelectric actuators. 

Moreover it has been proven that electro-mechanical coupling can lead to self-excitation 

of  mechanical modes also in linear systems. 
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