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bending stiffnesses of top and bottom face sheets, respectively,
in.-1bf (m-N) (See appendix A)

bending stiffness of panel, in.-1bf (m-N) (see appendix A)

transverse shear stiffness for isotropic panel, 1bf/in. (N/m)

t,. + t. \2

orthotropic transverse shear stiffnesses in x and y directions,
respectively, 1bf/in. (N-m) (see appendix A)
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incomplete elliptic integral of the first kind

shear modulus of material from which core of sandwich panel is
fabricated, 1bf/in.? (N/m?)

orthotropic shear moduli of sandwich core in x and y directions,
respectively, 1bf/in.2 (N/m?)
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MODAL DENSITY ESTIMATES FOR SANDWICH PANELS:
THEORY AND EXPERIMENT!
Larry L. Erickson

Ames Research Center
SUMMARY

Formulas are presented that can be used to estimate the average modal
densities of sandwich beams and flat or cylindrically curved sandwich panels.
Numerical results, presented in terms of general parameters, indicate the rela-
tive importance of transverse shear flexibility, orthotropic shear moduli of
the core, face bending stiffness, rotary inertia, and panel curvature over a
wide frequency range. Modal densities determined experimentally from resonance
tests of flat rectangular sandwich panels having orthotropic cores are close to
the modal densities estimated by theory except at frequencies near that of the
fundamental mode. In this low-frequency range the theoretical estimates are
not valid.

INTRODUCTION

Predicting the vibratory response of structures to random environmental
loads that are distributed over a wide frequency range (e.g., rocket engine
and turbulent boundary-layer noise) presents considerable difficulties. In
the conventional approach to vibration analysis the response is expressed as a
series, the terms of which involve the structure's free vibration mode shapes
and resonance frequencies. Unfortunately, for most practical structures the
mode shapes and resonance frequencies, especially those occurring at the
higher frequencies, are difficult to obtain. As a consequence, there has been
an effort during the past few years to develop a new approach to multimodal
vibration problems that avoids the difficulties of expanding the response in
terms of the mode shapes (see, e.g., refs. 1 and 2). 1In this approach, some-
times referred to as ''statistical energy analysis,'" average response levels in
various frequency bands are estimated without knowledge of the mode shapes and
resonance frequencies. Instead, what is required is a knowledge of the type
(e.g., flexural) and number of structural vibration modes occurring in a given
frequency interval. The number of modes per unit frequency is called the
"modal density" of the structure.

Because a structure's modal density is relatively independent of the
boundary conditions, statistical energy analysis shows promise of becoming a

lpart of the information presented herein was published under the title
"Modal Densities of Sandwich Panels: Theory and Experiment,'" in the Shock and
Vibration Bulletin, Bull. 39, Pt. 3, U.S. Dept. of Defense, Jan. 1969,
pp. 1-16.



useful analysis technique for estimating average response levels of multimodal
structural vibrations. This approach has been used to study a number of prac-
tical vibration problems including launch vehicle response to acoustic pres-
sure fields (refs. 3 and 4), noise vibration transmission in space vehicles
(ref. 5), vibration transmission into an instrument package (ref. 6), and
sound transmission through a partition (ref. 7). In each case, the modal den-
sities of the structures were required in the analysis. For example, one of
the more useful response quantities is acceleration spectral density, which is
directly proportional to modal density.

Equations have been derived for the modal densities of several structural
elements and can be found in references 8 and 9. A portion of the results in
reference 9 pertains to flat and doubly curved sandwich panels, and it is
shown there that the transverse shear flexibility of a panel can have a signif-
icant effect on the panel's modal density. However, the results of refer-
ence 9 apply only to sandwich panels with isotropic cores and whose faces
behave as membranes (i.e., the face bending stiffness is neglected). Since
the cores of lightweight sandwich panels often have shear orthotropy (e.g.,
honeycomb), there is a practical need for equations that account for the
effect of core orthotropy on the modal density. In addition, it is known from
sandwich-panel buckling theory that for small wavelengths of deformation the
face bending stiffness can become important (ref. 10).

In the present investigation, modal density estimates are obtained analyt-
ically for sandwich beams and for flat or cylindrically curved sandwich panels.
The effects of the core's transverse shear flexibility, including orthotropic
shear moduli parallel to the faces, face bending stiffness, and rotary inertia,
are examined. Numerical results are presented in graphic form.

In addition, experimental results obtained from resonance tests of flat
rectangular sandwich panels having orthotropic honeycomb cores are presented.
In these tests, up to 80 consecutive vibration modes per panel were excited
and identified. The experimentally determined modal densities are compared
with the modal densities predicted by theory.

THEORY AND ASSUMPTIONS

Panel

The structural elements considered are a flat or cylindrically curved
sandwich panel and a sandwich beam. The coordinate system and geometry of the
curved sandwich panel are shown in figure 1. The panel is of length a and
circumferential width b, and has a constant radius of curvature R. Each
face sheet is isotropic, homogeneous, and of uniform thickness. The thickness,
Young's modulus, and mass density of the top face sheet may be different from
the thickness, modulus, and density of the bottom face sheet. The core may
possess. orthotropic shear moduli (Gg,, ch) and is of uniform thickness h..



The modal density estimates obtained herein are based on three frequency
equations that relate the panel natural frequencies (w rad/sec) to various
physical characteristics of the panel and to the number of half-waves m and n
that form in the x and y directions, respectively. The first of these
equations, which is derived from the theory of reference 11 (see appendix B),
is

@i e e @ o) ) o

where p2 = [m/(a/b)]2 + n2. In this equation, the physical and geometric
properties of the panel are described by the following dimensionless
quantities:

1. The length-width ratio a/b
2. The curvature parameter C, which is proportional to 1/R

3. The rotary inertia parameter X, which is proportional to the panel's
mass density moment of inertia

4. The shear flexibility parameters r4 and Ty, which are proportional
to l/GCX and l/ch, respectively

The reference frequency wg; is the fundamental frequency of a flat,
simply supported, semi-infinite sandwich panel with length b (a/b = ) as
predicted by classical plate theory (shear and rotary inertia neglected); u is
Poisson's ratio of the faces and is assumed to be the same for both faces.

In equation (1), the bending stiffness of the faces about their own middle
surface has been neglected. The second frequency equation accounts for the
face bending stiffness but does not incorporate the effects of rotary inertia
or curvature. This equation, obtained from reference 12 is

(@2 ] [(al;_b)z . nz]z(T F ) @

where T is the ratio of the sum of the face bending stiffnesses to the panel
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bending stiffness. For identical faces of thickness tg = tfl = tfz’ T
becomes simply

_ 1 te/he 2
e 3-<1 + tf/hc) (32)

The quantity ¢ 1is due to the orthotropic shear flexibilities of the core,
characterized by the ratio vy = ch/ch, and is given by

1+( = [(a/b) " ]2

2 (a/b) + n?
2
1+ (l“%"g)ry[KE%E) + 2;}

The third frequency equation accounts for both the face bending stiffness
and panel curvature but does not incorporate the effects of rotary inertia or
orthotropic shear moduli of the core. This equation, obtained from the curved
panel buckling solution of reference 10, is

o V2 n 2, 2( 1 ) C2[n/ (a/b)1"
— ) = =) *+ n T+ — : + (4)
<“’0> Ka/b) } 1 + r{[m/(a/b)]? + n2} {[m/(a/b)]% + n2}?

Note: The last term in equations (11) and (13) of reference 10 contains a
misprint, which has been corrected in equation (4)?2 above.

T
c= + yn (3b)

SLIE

It should be noted that equations (1), (2), and (4) are consistent.
Equations (1) and (2) are identical when the effects of rotary inertia, curva-

ture, and face bending stiffness are simultaneously neglected (X = C = 1t = 0).
Equations (1) and (4) are identical in the case of an isotropic core

(rx = ry = r) when rotary inertia and the face bending stiffness are simulta-
neously neglected (X = 7 = 0). Equations (2) and (4) are identical in the
case of an isotropic core (ry = Ty =1, Y = 1) when the panel curvature is

neglected (C = 0).

The basic assumptions made in the theories on which equations (1), (2),
and (4) are based are:

1. Core and faces show linear, elastic behavior.

2. The transverse deflection of the panel comprises deformations due to
both transverse shearing forces and bending moments.

*The symbols C, r, and t in this report are called Zp/m?, ¥, and S,
respectively, in reference 10.
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3. The bending stiffness of the core is negligible compared to the over-
all bending stiffness of the panel, allowing the panel's flexural deformations
to be described by an isotropic bending stiffness Dg.
4. Axial and circumferential inertia loadings are neglected.

5. Transverse shear strains in the faces and all normal strains in the
z direction are neglected.

6. The cores are homogeneous; thus, for cellular type cores such as
honeycomb the wavelengths of vibration must be at least several times the cell
size.

7. For the cylindrically curved panel, three additional assumptions are:

a. The total panel thickness is small compared to the radius of
curvature.

b. The effect of the transverse shearing force Qy is neglected in
the equation of circumferential equilibrium.

¢. The moment-distortion (curvature) relations are the same as for
the flat panel.

Although the natural frequencies predicted by equations (1), (2), and (4)
are valid only for simply supported panels, the equations for modal density are
applicable to panels having other boundary conditions: Once the frequency
range of the lowest several modes is exceeded, the boundary conditions gener-
ally have a negligible effect on the number of modes existing in a given fre-
quency interval. This has been observed experimentally for flat panels and
cylindrical shells that were essentially rigid in shear (refs. 13, 14, and 15).
For mathematical arguments, see references 16 and 17.

Modal Density Formulation

For a given panel configuration (a/b, C, X, ry, Ty, T, H, and wy, fixed)
equation (1), (2), or (4) represents a set of constant frequency curves in the
m/(a/b), n plane. Figure 2 is a typical curve. Each combination of m and n
represents the only mode that occurs in an area 1[1/(a/b)] in the first quad-
rant of the m/(a/b), n plane. The total area occupied by the N modes
bounded by the curve m/wo = constant is approximately N[1/(a/b)]. This area

0

is also given, approximately, by (1/2) 2pz(w,e)de, where 6 is defined in

C
figure 2 and 02 = [m/(a/b)}% + n? is determined in terms of w and 6 from
equation (1), (2), or (4). The limits of integration are such that p2 is
real and positive in the region 0 < 6 < (n/2). As in reference 16, the approx-
imate number of modes existing below the specified frequency w = constant is
then expected to be asymptotically equal to

5]
N =22 72,20, 6)de
25,



The average number of modes AN existing in a frequency band Aw about
the center frequency w defines the average modal density AN/Aw. This, then,

is approximated by
6 de de
AN _dN _1a 2 3p2(w,9) 2 2 _ L2 -
o dw 73[1;1 e U CTEC 2l il CRA M

where Leibnitz's rule has been used. For the panel configurations considered
herein the last two terms in the above equation turn out to be zero.

If classical plate theory is used to predict the modal density of a flat
sandwich panel, the frequency independent value dN/dw = (w/4)(a/b)(1/wg) is
obtained (ref. 17). On the basis of this theory, the modal density is seen to
depend only on the panel's lateral dimensions, bending stiffness, and mass per
unit area (wgy = (nz/bz)/Ds/M). For comparison with this classical plate
theory value, the sandwich panel modal density estimates presented herein are

all expressed in the dimensionless form

02 9p2(w/w_,0)
- dn ~3f — % " 4o (5)
m
0

(m/8) (a/b) d(w/wy) 8 (w/wg)
1

From the results that follow it can be noted that the right-hand side of
equation (5) is independent of the panel length and width. These lateral
dimensions appear only on the left-hand side of the equation, and since the
term (a/b) (1/wg) is proportional to the product ab, the modal density AN/Aw
is directly proportional to the surface area of the panel. Although equa-
tions (1), (2), and (4) were derived on the basis of a rectangular planform,
the modal densities obtained from them should be applicable to panels with
other shapes of surface area S by replacing the rectangular area ab with
the area S (ref. 17).

ANALYSIS

To calculate the modal density from equation (5) requires that
9p2/3 (w/wo) be expressed analytically as a function of w and 6. Unfortu-
nately, p2 appears as a cubic term in equations (1) and (4) and as a quartic
term in equation (2), and thus is not readily obtained analytically. However,
for the isotropic core (ry = Ty = r) equations (1) and (2) can be solved
exactly for sz/a(w/wo). Also, for an isotropic core, equation (4) can be
used to obtain an approximate solution giving the combined effect of shear
flexibility, panel curvature, and face bending stiffness. This is done in the
following sections. It is then shown, by neglecting the face bending stiff-
ness, that the isotropic results can be applied to panels with moderately
orthotropic cores if "effective' shear flexibility and curvature parameters
are used. Finally, an approximate solution is obtained for a flat panel,
which gives the combined effect of orthotropic shear moduli and face bending
stiffness.

6
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Flat Sandwich Panel With Isotropic Core

Face bending stiffness neglected- The frequency equation for this case is
obtained from equation (1) by setting C = 0 and ry = Ty = T, which results in
two separate factors either of which is a solution if set equal to zero.

_ 2
oo i (Y]

@Y o - YY) - - )]

These equations are equivalent to those obtained in reference 18 and for a
given value of p? yield three values of w?2. The vibrations corresponding
to the two higher frequencies, given by equation (6a) and the larger frequency
root of equation (6b), are described in reference 18 as the thickness-twist
and thickness-shear modes, respectively. The lower frequency vibration, given
by the smaller frequency root of equation (6b), corresponds to a primarily
flexural type of motion. This "bending set" of modes usually is of most
interest in structural response problems and is described by

202 = (r + x)(z)‘*’;)2 +/[(7r+ x)(a‘i’o-)z]z +4(%)2|:1 - rx<£)2] (7

Since p?2 is independent of 6 (i.e., the curve w = constant is a circle in
the m/(a/b), n plane), the limits of integration in equation (5) are 67 = 0
and 8, = w/2. Integration yields the following estimate for the modal density
of a flat sandwich panel having an isotropic core:

1
o

(6a)

|
(=)

(6b)

~

(n/4) (a/b) d(w/wp)

®o /14 /M1 - X/1)12[r(w/we)]?

1 dN (]. . é)( w 1+ (1/2) [1 - (X/?V)]Z[r(w/wo)]Z
r
(83)

The variation in modal density with r(w/wg), as given by equation (8),
is shown in figure 3 for X/r = 0 (i.e., rotary inertia neglected) and
x/r = 0.279. For r = 0 (infinite shear stiffness) the frequency-independent,
classical plate theory value for modal density is obtained. When shear flex-
ibility is not neglected (r > 0), the modal density increases with increasing
frequency and with increasing shear flexibility. The value X/r = 0.279 cor-
responds to the extreme case of a solid homogeneous panel whereas X/r < 0.1
is more typical of sandwich panel construction. Since the two curves in fig-
ure 3 differ at most by about 6 percent, it is concluded that for the small
values of X/r wusually encountered in sandwich panels, the effect of rotary
inertia on the modal density is negligible in comparison to the effect of shear
flexibility.



The curves given by equation (8) are asymptotic to the curve

1 dN W
(/8 (a/b) d(w/wg) 2(1” wo) | (9)

and for r(w/wy) > 3.this straight line approximates the solid curve of fig-
ure 3 to within 1 percent. However, equation (9) implies that the modal den-
sity AN/Aw becomes independent of the face material properties at large
values of r(w/wg). This physically unrealistic result arises because equa-
tion (8) does not account for the bending stiffness of the panel faces.

Effect of face bending stiffness- In view of the results of the previous
section it is assumed here that rotary inertia can be neglected. Equation (2)
can then be used to determine the effect of face bending stiffness on the
modal density. For an isotropic core, equation (2) can be written as

w 2 1
r—=10%/1 + —mM— 10
Wo 1+ rp? (10)

which is independent of g. Use of equation (5) yields

1 dN 1 /1 + rp?

T a w 3 (w/wgp)

7% ¢ (E;> 302 L+ o1+ 1p2) {1 - 5 e
201 + o) [1 + (1 + rpz)]

|t

2

(11)

for the estimate of modal density. The variation in modal density with
r(w/wy) is obtained from equations (10) and (11) by treating T as a param-
eter and the quantity rp2 as a variable. For the case of identical face
sheets, this variation is shown in figure 4 for various values of the face to
core thickness ratio tg/he. It is seen that neglecting the face bending
stiffness (tf/he = 0 curve) leads to an overestimate of the modal density by
an amount that increases with increasing frequency and with increasing ratios
of face to core thickness. However, for many sandwich configurations tg/hg
is on the order of 0.1 or less and often the quantity x/w, is so small that
a frequency of several thousand Hertz is required to produce a value of
r(w/wy) on the order of 1.0. Thus, there are many practical situations where
the face bending stiffness can be neglected when computing the modal density.

When the face bending stiffness should be taken into account, the follow-
ing simple equation is useful



-~
- -

) N ) 2r(w/wo)
(n/4) (a/b) d(w/wy) /ﬁ + T[Zr(m/wo)]2

(12)

For r(w/wg) > 3 and tg/he < 0.2 (identical face sheets), this result predicts
modal density values that are within about 1 percent of the values given by
thg exact solution. (Eq. (12) is obtained from egs. (10) and (11) by taking
e >> 1.)

Flat Sandwich Beam

The differential equations in appendix B can be applied to a flat beam
whose length b is in the y direction if all terms that involve the x
coordinate are dropped. This has the effect of eliminating the thickness-
twist solution and all terms involving m/(a/b) from the bending and thickness-
shear solutions. Thus, the frequency equation for the beam 'bending' modes
can be obtained directly from the panel "bending' solution by setting the
m/ (a/b) terms equal to zero. The modal density is then simply obtained from
dN/d(w/wg) = dn/d(w/wg) .

Face bending stiffness neglected- This case is obtained by setting
m/(a/b) = 0 in equation (7). Differentiating with respect to w/wy yields

VI O &)

Wo >
g /+(1-_ ) 2) .
—wﬁ. /—w;‘/l+—— ri /4+(——>2(r%2

The variation in modal density with frequency, as given by equation (13),
is shown in figure 5 for various values of the shear flexibility parameter =
and for two values of X/r. As in the case of panels, realistic values of
X/r give essentially the same results as X = 0 (rotary inertia neglected).
The r = X = 0 curve corresponds to classical beam theory, which predicts that
modal density decreases with increasing frequency. When shear flexibility is
accounted for (r > 0), equation (13) predicts that the beam modal density is
nearly constant over a wide frequency range. However, this result is valid
only for conditions where the face bending stiffness is unimportant.

Effect of face bending stiffness- If rotary inertia is neglected,
equation (2) can be used to determine the effect of the face bending stiffness
on a beam's modal density by letting m/(a/b) = 0. The result is

L2 S 1 (14)
Yo 1+ mn?




dN - 1 V1 + gn?

T dw/ug) 2 ' N (15)
d(ﬁ) __dn_o_ m /1 o+ (1 + rn?) {1 - 2('1 2)[?1 a '2)]}
+ Irn + T + TN

The variation in modal density with frequency as given by equations (14)
and (15) is shown in figure 6 for several values of r and with a face-to-
core thickness ratio of 0.05 (identical face sheets). Comparison of the
curves in figure 6 with the corresponding curves in figure 5 reveals that neg-
lect of the face bending stiffness again leads to an overestimate of the
modal density by an amount that increases with increasing frequency. The
face bending stiffness is also seen to have a smaller effect on beams with
stiff cores (small 1) than on beams with more flexible cores (larger r).

Figures 5 and 6 both indicate a large rise in modal density as w/w,
approaches zero. However, it must be remembered that the equations presented
for modal density are estimates that have been obtained by representing the
number of modes by a continuous function of frequency. Such a representation
is not really meaningful at frequencies near that of the fundamental mode
w/wy = 1 as there are usually too few modes involved. This is illustrated in
figures 5 and 6 by the line labeled N > 6. For frequencies to the left of
this line only five modes exist. Thus, the large rise in modal density as
w/w, > 0 is physically unrealistic. A similar situation occurs in the modal
density estimates for curved panels.

Curved Sandwich Panel With Isotropic Core
Face bending stiffness neglected- When the parameter C 1is retained in

equation (1), the effects of panel curvature can be determined. For an iso-
tropic core (r = r, = ry), the "bending set' of modes is described by

X

2
202 = (r + X)(Ji> - rC%2 cos™(0)
Wo

+ /[(r - X)(ff)—)2 - ?CZ cos;(g)]2+ 4. [(;%)?- Cé 0054(9)] (16)

The modal density is then given by

N R (O
QRN >f iy

1l _dN 2
T a w m
A (g

(17)



where

17 4

if

and

w/w 2 — ] 2

o) X 2 w X
()69 ief - /A AT
are both satisfied; otherwise 6; = 0.

When X = r = 0 (rotary inertia and shear flexibility neglected), equa-
tion (17) can be expressed in terms of the complete elliptic integral of the
first kind (ref. 16). For nonzero values of X and r, equation (17) is
expressible as a hyperelliptic integral. Some hyperelliptic integrals can be
reduced to the sum of elliptic integrals; however, the results presented
herein were obtained by numerically integrating equation (17). These results
are presented in figure 7, where the variation in modal density with (w/wg)/C
is shown for various values of the product rC. The numerical results shown in
figure 7 are all for X = 0 (rotary inertia neglected).3 However, in view of
the relatively insignificant effect of rotary inertia on the modal densities
of the beam and flat panel, it is likely that the curves in figure 7 would be
only slightly altered by realistic values of X/r.

The peaks in modal density about w/wy, = C (the so-called 'ring fre-
quency') are due to a concentration of modes occurring near this frequency and
is most pronounced for the r = 0 case. However, the sharp spike is due to
the singularity in equation (17) at w/w, = C (when X = 0) and is physically

SFor X = 0 and (w/wg)/C < 1, the integrand of equation (17) diverges at
61, but for (w/wp)}/C # 1, the integral is convergent. In the numerical inte-
gration of equation (17) the contribution of the integrand in the neighborhood
of 6 was approximated by replacing the integrand with the first three terms
of its Taylor series representation. For r = X = 0, the results obtained in
this manner agree within 0.5 percent of the results given by the elliptic
integral solution.
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unrealistic. A better estimate for the peaks in modal density about the ring
frequency can be obtained by directly calculating the number of curved panel
modes ANc occurring there from the frequency equation

u

(_w_)z ) [(Wmf) * nz] ,_© (32%) | (18)

2 2
N ORI COR
(Eq. (18) is obtained from eq. (16) or (4).)

For r = 0, the results of such calculations for the interval
0.95C < w/wo < 1.05C are presented in table 1 for various degrees of curvature
(a/b was taken equal to 4/m). The number of modes ANg that the correspond-
ing flat panel has in the same frequency interval is also shown for comparison.

TABLE 1.- COMPARISON OF CURVED AND FLAT PANEL MODAL DENSITIES AT THE
RING FREQUENCY (r = X = 0)

Curvature . Number of modes in
parameter Frequency interval frequency interval AN
C 0.95C < w/u, < 1.05C Flat panel | Curved panel| ANg
50 47.5 > 52.5 5 5 1.0
75 71.25 > 78.75 6 8 1.33
100 95 > 105 10 13 1.30
200 190 + 210 21 27 1.29
300 285 * 315 29 43 1.48
400 380 > 420 39 55 1.41
500 475 - 525 49 76 1.55
750 712.5 * 787.5 76 115 1.51
1000 950 - 1050 101 155 1.53

For 300 <C < 1000, the actual peak in curved panel modal density is about
1-1/2 times that of the flat panel value. This result is indicated in fig-
ure 7. For 75 < C < 300, a somewhat smaller increase is evident. For C

less than about 50 the effect of curvature is so small that the panel essen-
tially behaves as if it were flat, not only at 0.95 < (w/wgy)/C < 1.05 but over
the entire frequency range.

Except in the r = 0 case, figure 7 obscures the fact that when w/uw,
exceeds C the curved panel modal density becomes asymptotic to that of the
corresponding flat panel (C = 0). This behavior is more clearly seen by
replotting figure 7 in terms of r(w/w,) for fixed values of rC as shown by
the solid curves in figure 8. The curve labeled rC = 0 denotes the flat
panel solution. Because of the singularity in equation (17), the modal den-
sities at w/w, = C were estimated from equation (18) in the same manner as
was done for r = 0. There is essentially no difference, at or above the ring
frequency, between the curved and flat panel results whenever the product rC

is greater than two.
12



Useful approximations to the solid curves in figure 8 are given by the
equation

(
-l —

sin /r(w/w.)/rC w/w

2r E‘”— '/ 72 ° for Co <1

0
1 dN _ _ S (19)
(n/4) (a/b) d(w/wy) /

w/w

2r 2 for °51

\ wo ¢ /

Results from equation (19) are shown by the dashed curves in figure 8. It is
seen that this simple approximation to the solution of equation (17) is fairly
accurate for values of rC greater than about 3 if r(w/w,) is greater than
about rC/3. (Eq. (19) is obtained by taking rp2 >> 1 and X = 0 in eq. (16)

with 6; = cos™! vV (w/wy)/C and 6, = 1/2 in eq. (5).)

Effect of face bending stiffness- Since equation (17) does not account
for the face bending stiffness, it undoubtedly overestimates the modal density
at the larger values of r(w/wy). (The curves in fig. 7 correspond to
0 < r(w/wp) < 10.) At the larger values of r(w/wy) an approximate solution
giving the combined effect of panel curvature and face bending stiffness can
be obtained from equation (4) by neglecting 1 with respect to rp2 as-in the
derivation of equations (12) and (19). This leads to

) N 2r (w/wo) /"/2 de
o F 20
(n/4) (a/b) d(w/wgy) /ﬁ + 1[2r(0/wg)]? A (m/2) /1 - 82 cos* o (202)
1

where
52 = 1(2rC)? (20b)
1+ T[Zr(w/wo)]2
and
w/ w
0 if C° > 1
0 (20c)
] =
cos ! w/ if w/mo <1
C C

By making the substitution t = cos? o, equation (20a) takes the form
of equation 254.00 of reference 19 and can be expressed as follows.

13



For 6 < 1:

. o 2r (w/65) Flor,k) )
(n/4)(a/b) d(w/wo) /17, T[2r(w/wo)12 2 J1+ 68
where
26
ki= /155
and ? (21a)
- . w/wo
5 if c > 1
$1= -
. _1/[(m/wo)/c1(1 + 8) o
S T S[w/ug/ClT if 2 < 1 )
For 6 > 1:
1 aN_ 2r (w/ w;) F(¢2,k2) 4 h
(r/4) (a/b) d(w/wg) /17 t12r(a/ug) ]2 /2 T35
where L
(21b)
1+ 8
ko = /o5
and B
/28 (w/ug)/C]
GRS S (TN V(] J

In equations (21a) and (21b), F(¢,k) is the incomplete elliptic integral of
the first kind.

The variation in modal density with r(w/w,) as given by equations (21)
is shown by the solid curves in figures 9(a) through 9(c¢) for values of rC
equal to 3, 5, and 10, respectively. Each figure is for identical face sheets
with a face-to-core thickness ratio of tg/he = 0.1.

The exact solution for the modal density based on the entirety of equa-
tion (4) has not been obtained. Without having this exact solution, the
errors introduced by the approximation rp? >> 1, on which equations (21) are
based, cannot be firmly established. However, for C = 0 (flat panel) and
T = 0 (face bending stiffness neglected), equations (21) reduce to the approx-
imate solutions given by equations (12) and (19), respectively. The latter
two approximate solutions were shown to agree well with the corresponding
exact solutions (eqs. (11) and (17), respectively) over certain parameter
ranges. This suggests that the solution given by equations (21) may also be
a fairly reliable estimate of the modal density for the same range of
parameters.

14
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In the case of the flat panel, the effect of the face bending stiffness
is relatively small for r(w/wg) < 5 and tg/h, < 0.1 (see fig. 4). Thus, if
the ring frequency is in this range (rC < 5), the modal density below the ring
frequency would be expected to be significantly affected by the curvature and
only slightly affected by the face bending stiffness. The approximate solu-
tion given by equations (21) does predict this behavior as can be seen from
figures 9(a) and 9(b) (rC = 3 and 5, respectively). Below the ring fre-
quency the approximate solution (solid curve) closely follows the exact solu-
tion (dot-dashed curve) for the curved panel without face bending stiffness
given by equation (17). Above the ring frequency, the approximate solution
closely follows the exact flat panel solution (dashed curve) given by
equation (11).

Next, consider the ring frequency in the frequency range where the face
bending stiffness of the flat panel becomes important (rC > 5 for tg/h. = 0.1).
In this situation, the modal density below the ring frequency would be
expected to increase at a less rapid rate than given by equation (17). This
too is predicted by equations (21) as shown in figure 9(c) (rC = 10) by the
increased separation between the solid and dot-dashed curves in the range
5 < r(w/wgy) < 10. Above the ring frequency (r(w/wg) > 10 in fig. 9(c)), the
approximate solution again approaches the exact flat panel solution.

As a further check on the solution given by equations (21) the modal
density for rC = 10 was determined directly from equation (4) by counting the
actual number of modes occurring in intervals of A[r(w/wg)] = 1.0. The
values for the modal density obtained in this manner are shown by the circular
symbols in figure 9(c) and are quite close to the estimate (solid curve) given
by equations (21). (The parameter values used for this computation were
a/b = 1.27, C = 200, r = 0.05, and tg/h, = 0.1.)

Effect of Core Orthotropy

Face bending stiffness neglected- When the effects of face bending stiff-
ness and rotary inertia are neglected, the equation governing p? for a
curved sandwich panel having an orthotropic core is obtained from equation (1)

by setting X = 0. This yields

G.+ 1 ; o :%'02):Kf*— [(j%)z - ¢c2 COS“(S)] (1 . rypZ)}

+ ry(Y ; 1) {1 - Hoow o+ [ ii)z - C2 cos”(e)} (1 -2 ;11)}02 cos?(8) = 0 (22)
(o]

Except when y = 1 (isotropic core), equation (22) is cubic in p? and

no attempt is made to solve it in this form. However, an indication of the
effect of <y can be obtained by considering the conditions

>> 1 - T.p2 >> 1 (23)

Y y°
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Under these conditions p? is approximately equal to

r [(w/wg)? - C% cos™(8)]
A >0 (24)

p? =
y{l - [(y - 1)/y]sin?(8)}

Substituting into equation (5), and noting that 6; = 0 and 6, = n/2, yields

1 dN . f}L W
(774) (a/b) dalog) ~ ° </;)(wo) (2%)

Comparison of this result with equation (9) suggests that the isotropic
results can perhaps be applied to panels with orthotropic cores if r is
replaced with an effective shear-flexibility parameter T = r,/vy. However,
it is also likely that C will have to be replaced with an effective curva-
ture parameter since equation (25) is not valid where the effects of curvature

are expected to be most pronounced (w/w, < C)."

This idea was examined by solving equation (22) for w/wo in terms of m
and n:

(Jﬂ)z _ in/(a/0)]% + 0?32 | C2[m/(a/b)]" (26)
e 1+ ¢ {[m/(a/b)1% + n2}?

where ¢ 1is the same as in equation (3b).

For specified values of a/b, Tys Ys W and C, the number of modes N
existing below any frequency w/w, can be calculated from equation (26) and
a plot of N vs. w/wg, 1is readily constructed as shown in figure 10. The pos-
sibility of duplicating this plot (hence the modal density) by calculating N
from the isotropic frequency equation (eq. (18)) with r Treplaced by some
Topg and with C replaced by some Cgff was then considered; that is, from

C2eeln/ (a/b) 1"
(27)

2

(ii)z _ __ {Im/(a/b)]% + n?}?
Yo 1+ reff{[m/(a/b)]2 +n2}  {[m/(a/b)]? + n?}

The two curves in figure 10 were obtained from the exact equation
(eq. (26)) and show that, for r //Y held constant, a decrease in vy (stif-
fening of core in circumferentia{ direction) causes a decrease in the cumula-
tive number of modes. This same effect is produced by eqaution (27), for
regf held constant, if Ceff is made to increase as y decreases. For

“The inequality p2 > 0 expressed by equation (24) cannot be satisfied at
6 =6, if w/wy < C.
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values of vy from 0.4 to 2.5 (representative of honeycomb cores) with

1 < a/b < 2.55, ry/JV' up to 0.125, and C wup to 500, it was found that the
plots of N vs. w/w, obtained from equation (26) were duplicated quite well
by equation (27) if rgge and Copg were taken as

ry T‘_z DS
= L - - 28a
Teff = /7= 1 QxDQy (28a)
w/w
_C s ° < 0.9
(.Y)O.IS C (28b)
C L o=
eff
w/wO
Cc if > 0.9

If the above expressions for roef and Copp are used, equation (27)
(empirical) predicts modal densities that are within 5 percent of the results
predicted by equation (26) (exact) for a flat panel and also for a curved
panel when (w/wy)/C is greater than 0.9. In the range 0.1 < (w/wy)/C < 0.90,
the accuracy of equation (27) depends on 7rggeC. For reffC < 2, the average
error in the modal density is less than 5 percent; as 7rTeffC 1increases to 5,
the average error increases to about 10 percent, and for rTefrfC = 10, the
average error is about 15 percent. Typical results are shown in figures 11(a)
and 11(b). Figure 11(a) shows exact plots of N vs. w/wg for C = 0 and '
C = 100 with r, = 0.00707, v = 1/2, and a/b = 2.55. The corresponding plots
obtained from equation (27) with r.¢f and Ceeg defined by equations (28) are
shown in figure 11(b).

The form of equation (27) is exactly the same as equation (18). Thus,
when rotary inertia and face bending stiffness effects are small, the modal
density estimates obtained for panels having isotropic cores appear applicable
to panels having moderately orthotropic cores such as honeycomb by simply
replacing r and C with the quantities Tggf and Cggg, respectively, defined
by equations (28). Note that the "effective'" shear stiffness is the geometric
mean of the two orthotropic stiffnesses.

Another check on the validity of this empirical approach is that for a
flat panel, equations (27) and (28) predict the variation in N with w/wg
to be unaffected by a 90° core rotation. This has been verified by using
equation (26) (the exact equation) to show that, for the range 0.4 < y < 2.5,
plots of N vs. w/wy are indeed unaffected by such a rotation. A typical
example is shown in figures 12(a) and 12(b). Figure 12(a) is for a flat panel
(C = 0) with r,, = 0.00707, vy = 1/2, and a/b = 1.27. Figure 12(b) corresponds
to the same flat panel but with the core rotated 90° (r, = 0.01414, y = 2).
The resulting curves of N vs. w/wgy are virtually identical.

Effect of face bending stiffness- In the case of a flat panel an approxi-
mate solution giving the combined effect of orthotropic core shear moduli and
face bending stiffness on the modal density can be obtained by neglecting
certain terms in equation (2). If the conditions given by equations (23) are
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satisfied, then by order-of-magnitude considerations, equation (2) simplifies
to the approximation

2
[ - 2 2 _(.L\_ =
ryTet + [1+ (v 1)cos? 6}p I&'(mo) 0 (29)

Solving for apz/a(w/wo), substituting into equation (5), and noting that
61 = 0 and 6, = w/2, yields

1 N 2ry(w/wo) /ﬂlz e
(n/4) (a/b) d(w/wo) /2 o /%[2ry(w/wo)]2 + [1+ (v - 1)cos? 8]2

(30)
Making the substitution t = -(y - 1)cos? 6 reduces equation (30) to
the form of equation 259.00 of reference 19 so that the solution is
1 dN N ( w /4 K(k)
Gy arby atruyy (et an )8 37 (31)
where
ry g2 Dg w
I‘eff = ﬁ = b—2 W
B = — 2Y~——‘— T T } (32)
(17 v (zreer ) [ [v o v (orese 32)']
o V5
2ke =1 - 1-+T<2r ——) B
eff g y

and K(k) is the complete elliptic integral of the first kind.

The terms in equation (31) that involve the orthotropic shear moduli are
B and roep. Both of these terms, and therefore the modal density given by
equation (31), are unaffected by a 90° rotation of the core. This is shown in
figure 13 by the dashed curves labeled vy = 1/2 or 2, vy = 1/4 or 4, and
y = 1/8 or 8. The solid curve is for an isotropic core (y = 1) and is
obtained from the exact solution (eq. (11)). All the curves shown in fig-
ure 13 are for identical faces with a face-to-core thickness ratio of
tg/he = 0.1.

Note that equation (31) depends on both / DQxDQy and y = Dg /DQy'
X

It is only when the face bending stiffness is negligible that the effect of
an orthotropic core on the modal density of a flat panel can be described
solely in terms of the effective shear stiffness D = /Dq,Dq,-

Qeff ~ v "x Xy
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For y = 1 (isotropic core), equation (31) reduces to equation (12).
This suggests that for the moderately small range of vy usually encountered
in honeycomb cores (0.4 < y < 2.5), equation (31) should be fairly accurate if
tg/he < 0.2 and reff(w/wg) > 3 are both satisfied.

EXPERIMENT

Few experimental data are available in the literature on the mode shapes
and natural frequencies of vibrating sandwich panels, especially for frequen-
cies substantially above that of the fundamental mode. Although about 35
modes were excited in each of the two panels tested in reference 12, the panel
configurations and frequency range were such that the maximum value obtained
for regg(w/wy) was about 0.25. At this small value of roff(w/wgy), the shear
flexibility of the core theoretically has a relatively small effect on the
modal density (see fig. 3). Thus, it was necessary to conduct some experi-
ments that would cover a higher range in reff(w/wgy) for the purpose of
obtaining results that could be compared with theory.

Apparatus

Sandwich panels- The specimens tested consisted of four flat, rectangular
sandwich panels constructed from aluminum honeycomb cores bonded to stainless
steel face sheets with a structural adhesive. The effective length and width
of each panel (measured between the boundaries of the panel support fixture)
were a = 28.5 in. (72.4 cm) and b = 24.0 in. (61.0 cm), respectively.

Table 2 lists the pertinent core and face properties along with the resulting
panel parameters. The weight of the bonding material was lumped with the
weight of the faces to produce an effective face density called (pf)eff.

Values of the core shear moduli were calculated from the following
equations (ref. 20)

_% [+ (u/vicos nl?
Foofs 1+ /w2

s 1 + (u/v)cos? n \

OLp =55 Pc T+ /v

(33)

Gs (u/v)sin2 n

61 = 55 Pc T+ /vy

~

The quantities Gg = 3.85x10° 1b/in.2 (26.5 GN/m?) and pg = 2.50x107"%
1b-sec2/in.% (2.67 Mg/m3) are the shear modulus and density of the honeycomb
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TABLE 2.- DESCRIPTION OF TEST PANELS
Length: a = 28.5 in. (72.4 cm), each panel
Width: b = 24.0 in. (61.0 cm), each panel
Materials
Panels 1 and 2: Faces of 302 stainless steel sheet
Cores of 1/8-5052 - 0.002 aluminum honeycomb
Panels 3 and 4: Faces of 321 stainless steel sheet
Cores of 0X-3/16-5052 - 0.0007P overexpanded aluminum honeycomb
Core properties Face properties
Pe ch ch hc (pf)eff Ef H tf
P
el 1pesec? ‘ , 1bf-sec?
in ¥ kg/m®| 1b£f/in.2 | MN/m? | 1bf/in.2 | MN/m? | in. cm in. Mg/m3 [1b£/in2{ TN/m2 in, mm
1 1.21x107° 129 | 131x103 903 |53.0x103 | 365 | 0.502 |1.28 |80.3x107> | 8.58 | 26x106 |0.18 | 0.245 10.0154 | 0.391
2 1.21x107° | 129 | 53.0x103| 365 |131x10% | 903 ' 0.502 |1.28  81.4x107> | 8.70 26x105 {0.18 | 0.245 |0.0154 | 0.391
3 0.316x107°' 33.8| 21.7x103 | 150 .23.9x103 | 165 0.503 [1.28 80.3x10™° | 8.58 28x106 [0.19 i0'245 io.0203‘0.516
4 0.316x107° 33.8 23.9x10% | 165 21.7x103 150 0.503 '1.28 ;81.1><10_5 8.67 28x10° ;0.19 1 0.245 10.0203 0.516
. ‘ ‘ ! : t
Panel parameters
Panel | a/b | tg/hg Yo’ T ef X/reff Y
rad/sec
1 1.19 |0.0307 738 0.0221 | 0.0449 |2.47
2 1.19 [0.0307 734 0.0221 | 0.0450 |0.405
3 1.19 10.0404 843 | 0.114 0.00993 [0.908 |
4 1.19 '0.0404 840 i 0.114 l0.00993 1.10
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Sketch (a) Geometry of
‘ honeycomb cells.

material, respectively; u, v, and n are
defined in sketch (a2). The honeycomb shear
modulus in the longitudinal (L) direction of
the core is designated Gj and the shear
modulus in the transverse (T) direction of
the core is designated Gr. The first and
second of equations (33) are lower and upper
bounds, respectively, to the longitudinal
modulus and the arithmetic average of these
values was used for Gj.

Experimental values of shear moduli obtained from single-block shear

1 tests of the overexpanded cores used in panels 3 and 4 were supplied by the

honeycomb manufacturer.

However, these tests showed considerable scatter with

values of /GpGr from 21 to 31 percent lower than the result obtained from

equations (33).

Since values of shear moduli obtained from block shear tests

are known to be generally low in comparison with values obtained from theory
and other test methods (ref. 21), it is felt that the theoretical values used

herein are more accurate than the experimentally obtained values.

For the

normally expanded cores used in panels 1 and 2, the handbook value of /EIET
was within 2 percent of the theoretical result used.

For the cores used in panels 1 and 2, n = 43° and u/v =
72° and u/v =

cores used in panels 3 and 4, n =

1.6. For the

1.2. The approximate geometry

of the honeycomb cores and the orientation with respect to each panel is shown

in figure 14.
of the core.
core rotation.

3 in. (762 cm)

/I/4-inch (0635 cm) bolt holes (typical)

(762 cm) >/\/

Sketch (b) Panel mounting fixture,

) /—Ponel
.ﬁi——-f-.. ﬁ)voﬁmm
1/32-in. (0794 mm) (?g‘é"gm) dia pump

thick rubber washer

| Shaker motion

Sketch (¢) Vacuum cup attachment.

Panels 1 and 2 were nearly identical except for a 90° rotation
The primary difference between panels 3 and 4 was also a 90°

Support and excitation system-
The panel mounting fixture consisted
of two aluminum frames bolted to the
outer 3 in. (7.62 cm) of the panel
perimeter to provide a partially
clamped edge condition (see
sketch (b)). Each steel bolt was
torqued to 175 in.-1b (19.8 m-N). To
prevent crushing of the core, the
outer 3 in. (7.62 cm) of honeycomb
cells were filled with a liquid
aluminum potting material.

The fixture was supported by a
wooden frame, and the panel was
excited from below by a small (25-1b
force (111 N)) permanent magnet
shaker. The shaker was coupled to
the panel surface by means of a small
vacuum cup to avoid the fastening of
attachment points to the panel (see
sketch (c¢)). This arrangement proved
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to be quite satisfactory for transmitting motion to the panel and it allowed
the excitation point to be easily changed.

Instrumentation- The shaker was driven by the amplified signal of a
variable frequency oscillator. A hand-held vibration pickup was used to
detect the panel motion. The frequencies of the oscillator and vibration
pickup signals were measured by an electronic frequency counter. These
signals were also monitored on an oscilloscope in the form of Lissajous

figures.

Test Procedure

For each panel, between 70 and 80 consecutive modes of vibration were
excited by varying the frequency and location of the applied excitation. The
mode shape at each resonance was visualized by the formation of Chladni fig-
ures produced by the collection of sand particles (16 mesh size) along node
lines. A few of these sand patterns are shown in figure 15. For some of the
higher frequency resonances, the Chladni figures were not sharply defined. In
these cases, the phase differences between the oscillator signal and the vibra-
tion pickup signals were used to detect the node lines. In some instances,
two or more modes occurred at nearly the same frequency, and careful position-
ing of the excitation point was required to produce distinct Chladni figures.

Test Results

Frequencies are given in table 3 for the four test panels corresponding
to the maximum resonance response for the modes listed. The mode number m
in the x direction (n in the y direction) indicates m - 1 (n - 1) lines
of zero deflection between the panel boundaries x =0 (y = 0) and x = a
(y = b). For panels 1 and 2 the ratio Gj/Gp was equal to about 2.5, which
caused corresponding higher modes of these two panels to occur at signifi-
cantly difference frequencies. For panels 3 and 4, G /Gy was nearly unity,
and corresponding modes for these panels occurred at nearly the same
frequency.

COMPARISON OF THEORY AND EXPERIMENT

The experimental values of {1/[(n/4)(a/b)]}[AN/A(w/wy)] and their varia-
tion with rorr(w/wy) are shown in figures 16(a) and 16(b) for panels 1 and 2,
respectively, and in figures 16(c) and 16(d) for panels 3 and 4, respectively.
The horizontal lines indicate the intervals of reff(w/wg) used to compute the
corresponding data points. The solid curve in each figure is the theoretical
estimate for modal density given by equation (8) with r Treplaced by Teff.
For all four panels, the quantity X/regf 1s much less than one; therefore,
theoretically, the effect of rotary inertia is negligible. For the range of
Teff(w/wy) and tg/h. covered by the experiments, the theoretical effect of
the face bending stiffness is also negligible.
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TABLE 3.- EXPERIMENTAL RESONANCE FREQUENCIES, H,
[Panels 1 and 2 heavy line encloses modes for which reff(w/wg) < 1.1; panels
3 and 4, reff(w/wg) < 3.0]

m/n 1 2 3 4 5 6 7 8 9 10 11

1 294 713 | 1130 | 1890 | 2470 |3070 | 3720 | 4360 | 5020 | 5660 |6330
2 615 950 | 1425 | 1960 | 2590 {3230 | 3850 | 4460 | 5140 | 5770
3 11018 | 1360 | 1750 | 2280 | 2780 {3390 | 3950 | 4610 | 5280 | 5910
4 11600 {1840 | 2200 | 2620 | 3180 {3790 | 4310 | 4920 | 5520

Panel 1 5 12162 | 2460 | 2815 | 3130 | 3630 |4130 | 4750 | 5300 | 5900
6 2980 | 3170 | 3440 | 3750 {4200 |4720 | 5220 | 5740
7 |3716 | 3870 | 4010 | 4370 | 4780 |5230 | 5750 | 6220
8 14470 | 4660 | 4930 | 5090 | 5460 ]5890
9 |5260 | 5430 | 5630 | 5820 | 6160
10 |6070
1 300 726 | 1180 | 2260 | 3060 {3960 | 4900 | 5940
2 530 991 | 1560 | 2350 | 3170 |3990 | 4970
3 940 | 1300 | 1780 | 2450 } 3270 {4120 | 5080
4 11340 | 1690 | 2120 | 2700 | 3530 {4360 | 5150
5 |1870 | 2020 | 2520 | 3080 | 3790 {4570 | 5370

Panel 2 6 (2290 | 2510 | 2890 | 3440 [4090 4820 | 5630
7 12750 | 2930 | 3360 | 3840 | 4470 5150 5980
8 |3220 | 3420 | 3800 | 4250 4800 |5540
9 |3710 | 3960 | 4240 [ 4610 | 5220 |5870

10 |4200 | 4421 | 4680 | 5170 | 5630
11 |4610 | 4910 | 5070 | 5640 | 6070
12 (5130 | 5360 | 5590 | 6080
13 |5700 | 5800 | 6100

1 280 674 940 |} 1360 {1760 (2140 | 2520 | 2910 | 3290 | 3640
443 760 | 1070 | 1430 | 1810 [2200 | 2630 | 3020 | 3360
3 810 990 | 1300 | 1570 | 1930 |2310 | 2700 | 3080 | 3430
4 11010 [ 1230 | 1500 | 1770 | 2110 {2440 | 2800 | 3140 | 3500
5 [1330 | 1530 | 1750 | 1980 | 2310 {2580 | 2930 | 3280
Panel 3 ? 1760 | 1830 | 2020 | 2220 | 2500 {2780 | 3130 | 3440
8
9

2000 | 2140 | 2290 | 2490 | 2700 {3000 | 3350
2360 | 2440 | 2560 | 2750 | 2960 {3210 | 3540
2650 | 2710 | 2890 | 3060 | 3230 [3540
10 |2950 | 3050 | 3200 | 3300 | 3500
11 |3300 | 3390 | 3460
12 3590

1 288 638 951 | 1380 | 1780 |2140 | 2540 | 2910 | 3310 | 3670

437 754 11060 | 1430 | 1820 |2200 | 2620 | 3060 | 3380
3 784 990 | 1260 | 1580 | 1940 |2300 | 2700 | 3100 | 3460
4 981 | 1220 | 1480 {1780 | 2100 |2450 | 2800 { 3130 | 3590
5 |1310 | 1540 | 1720 | 2010 [ 2310 |2630 | 2940 | 3310

Panel 4 ? 1780 (1820 | 2000 | 2230 | 2530 {2810 | 3140 | 3480
8

2030 | 2130 | 2290 | 2490 | 2720 }3010 [ 3360
2340 | 2430 | 2580 | 2760 | 2970 [3240 ] 3530
9 12630 { 2700 | 2870 [ 3030 | 3260 }3500
10 {2930 | 3050 | 3210 | 3340 } 3540 {3730
11 [3270 | 3390 | 3460 | 3620
12 {3650 | 3700
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Comparison of the results presented in figure 16 indicates that the
theory gives a fairly good estimate of the average modal density except at the
smaller values of reff(w/wg). The values of rger(w/wy) at which the compar-
ison becomes poor correspond to the frequency range in the vicinity of the
fundamental mode where relatively few modes occur. In this frequency range,
the continuous frequency representation of a discrete number of modes is
unrealistic. For example, the first two test points in figure 16(c) represent
a total of only five modes. In contrast, the last test point in figure 16(c)
represents a total of 24 modes. (Note that this is six times the number of

modes predicted by classical plate theory.)

Panels 3 and 4 are nominally identical, the major difference being about
a 20 percent variation in y. However, comparison of figures 16(c) and 16(d)
shows that the experimental results obtained from panel 3 fall very close to
the theoretical curve at nearly every point while the results from panel 4 are
more scattered. This is due to a 'clumping'" of more than the average number
of modes (as predicted by theory) in one frequency interval while an adjacent
frequency interval has fewer than the average number of modes. (This clumping
effect is also seen in figs. 12(a) and 12(b), for example, at 170 <w/w0 <180.)
Depending on the size of frequency interval chosen, this clumping may or may
not produce noticeable variations in modal density from the average. The
theory gives only the average modal density and does not predict variations
from this average.

It should also be noted that the test panels were fastened in a semi-
clamped configuration while the theory was based on simple support boundary
conditions. The fairly good agreement between the experimental and theoret-
ical results lends support to the implicit assumption that the modal density
of sandwich panels, like single-layered panels, is relatively independent of
the boundary conditions.

CONCLUSIONS

Theoretical estimates were obtained for the modal densities of sandwich
beams and flat or cylindrically curved sandwich panels. The relative impor-
tance of transverse shear flexibility and orthotropic shear moduli of the core,
bending stiffness of the faces, rotary inertia, and panel curvature as they
affect modal density was evaluated. Experimental values of modal density were
obtained from resonance tests of flat rectangular panels having orthotropic
cores. From the results of the investigation the following conclusions are

noted:

1. Failure to account for the transverse shear flexibility of the core
can lead to a significant underestimation of the modal demnsity.

2. The effect of rotary inertia is generally negligible compared to the
effect of transverse shear flexibility.
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3. For many practical sandwich configurations and frequency ranges, the
effect of the face bending stiffness can be neglected.

4. For flat rectangular panels having orthotropic cores, a 90° rotation
of the core material with respect to the faces has no effect on the average
modal density.

5. Where face bending effects are small, the results obtained for flat
and cylindrically curved sandwich panels having isotropic cores can be applied
to panels having moderately orthotropic cores, such as honeycomb, by introduc-
ing an effective shear modulus and an effective curvature parameter. The
effective shear modulus is simply the geometric mean of the two-face parallel
shear moduli.

6. The agreement between modal densities predicted by theory and modal
densities determined from experiment was generally good except at frequencies
near that of the fundamental mode where the theory is not applicable.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Dec. 2, 1969
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APPENDIX A

PANEL STIFFNESS AND INERTIAL PROPERTIES

Nonidentical faces Identical faces
3 3
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‘ 2
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*dy, dp, and e are given in symbols list and were obtained from equation (18) of reference 22.




APPENDIX B

DERIVATION OF EQUATION (1)

The differential equations governing the panel vibrations are obtained
from the small deflection theory of reference 11 by adding transverse and
rotary inertia terms.

'\
3Qx aQy E' __y 3w 32w _
3% "3y "Rz’ L M 7=0
. Y R ax* at2
2 2
__o%w_ 3% 8§_+ 1 [P L1-u 97Q,
ax dy> oax> Ds DQx x> 2 5y?
2
+ 1 l+an}’ +1-82 8_w__Qx =0$‘ (B1)
D 2 3x 3y "Dgpp2 \3X D
QY X
2 2
Cetw ot Yy 1 (Y 1w TY
sx? oy sy’ Ds DQy 3y? 2 552
2
1+ % 132 fow Y\
"D 7 3% oy b..2\3y ~D. )= °
Q 7 Dsat® \*Y Tq
X y J

In equations (Bl), x and y specify the coordinates of a point in the
panel's middle surface (fig. 1) and t denotes time. The operator v4 is
defined by V™ 4(v4w) = v*(V""w) = w where V% = 3"/3x" + 23%/6x? 09y2 +3%/ay".

The motion described by these equations is that a straight line perpen-
dicular to the undeformed middle surface (z = 0) remains straight and of con-
stant length after deformation but not necessarily perpendicular to the
deformed middle surface. This inclination in the x (or y) direction from a
right angle is the average shear angle QX/DQX (or Qy/DQy) produced by the

resultant transverse shear force Q, (or Qy) per unit width.
For simply supported edges parallel to the x axis at which the support

is applied over the entire thickness, the boundary conditions are (ref. 23)

w=M,=—"—=0 (B2)
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where the moment My (acting about the x axis) is given by

1

3Q

My

2w
’Ds[ v
oy

The boundary conditions along the edges parallel to the

by interchanging y and x.

Expressions for the lateral deflection and shear angles that satisfy the

boundary conditions are

" Dy oy
Qy

Y

32w 1

|

9X

2

BQX
DQX ax

y axis are obtained

(B3)

[ 4

s ™ :
w(x,y,t) = A' sin BTX sin Eﬂz—elwt
a b
Qx B! mrx . nry iwt
B——-(x,y,t) = P ©0s —— sin 5 e
Qx Qx f (B4)
Qy C' mux nry iwt
=Z%— (x,y,t) = =—— sin ——= cos —ZL e
DQ DQ a b
y y w
where m and n are integers designating the number of sinusoidal halfwaves
in the x and y directions, respectively, and w is the panel frequency
(rad/sec).

The differential equations (Bl) are also satisfied by the above forms for
w, Q./Dy , and Q,/D, provided that
X/ 7Qy y Ry

@) - ) o .
Gl @] @ - @) e
@] ()G fomlee

e CORRIEN]|

(B5)

Expanding the determinant yields equation (1).
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APPENDIX C

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International Systems of Units (SI) was adopted by the Eleventh
General Conference on Weights and Measures, Paris, October 1960, in Resolution
No. 12 (ref. 24). Conversion factors for the units used herein are given in
the following table:

U.S. Conversion
Physical quantity |customary factor SI Unit
" unit (*)

Length in. 0.0254 Meters (m)

Force 1bf 4.448 Newtons (N)

Moment in.-1bf 0.113 Meter-Newtons (m-N)

- 2

Density lhf_igi_ 1.069x107 Kilograms per cubic meter (kg/m3)
in.
1bf 3 2

Modulus 5 6.895x10 Newtons per square meter (N/m<)
in.

*Multiply value given in U.S. Customary Unit by conversion factor to obtain
equivalent value in SI unit.

Prefixes to indicate multiple of units are as follows:

Prefix Multiple
tera (T 1012
giga (G) 10°
mega M) 106
kilo (k) 103
centi (c) 1072
milli  (m) 1073
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Figure 1.-
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Figure 2.- Modes bounded by a constant frequency curve.
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Figure 3.- Effect of shear flexibility and rotary inertia on the modal
density of a flat sandwich panel; isotropic core; face bending
stiffness neglected.
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Figure 4.- Effect of shear flexibility and face bending stiffness on
the modal density of a flat sandwich panel; isotropic core; rotary
inertia neglected.
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Figure 5.- Effect of shear flexibility and rotary inertia on the modal
density of a sandwich beam; face bending stiffness neglected.
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Figure 6.~ Effect of shear flexibility and face bending stiffness on
the modal density of a sandwich beam; rotary inertia neglected.
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Figure 7.- Modal densities of cylindrically curved sandwich panels;
isotropic core; face bending stiffness neglected.

14 EXACT SOLUTION (EQ. (I7),
x/r =0)

2 —— APPROXIMATE SOLUTION
(EQ. (19))

Figure 8.- Asymptotic behavior of cylindrically curved sandwich panel
modal density; isotropic core; face bending stiffness and rotary

inertia neglected.
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Figure 9.- Combined effect of curvature and face bending stiffness on sandwich
panel modal density; isotropic core; rotary inertia neglected; tg/h. = 0.10.
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Figure 10.- Effect of core orthotropy on cumulative number of modes
for a cylindrically curved panel as predicted by equation (26);
rotary inertia and face bending stiffness neglected; a/b = 1.27.
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Figure 11.- Comparison of cumulative number of modes for sandwich
panels as predicted by exact and empirical frequency equations;

rotary inertia and face bending stiffness neglected; a/b = 2.55,
vy = 0.5.
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Figure 12,- Comparison of cumulative number of modes for two flat
sandwich panels which have orthotropic cores differing in
orientation by 90°; rotary inertia and face bending stiffness
neglected; a/b = 1.27; ry//; = 0.01.
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Figure 13.- Combined effect of orthotropic core shear moduli and face
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(b) Mode (4, 4) - 1780 Hz.

Figure 15.- Some Chladni figures on panel 4 showing modes (m, n).
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