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SUMMARY: In this paper a new frequency domain technique is introduced for the modal 

identification of output-only systems, i.e. in the case where the modal parameters must be 

estimated without knowing the input exciting the system. By its user friendliness the 

technique is closely related to the classical approach where the modal parameters are 

estimated by simple peak picking. However, by introducing a decomposition of the spectral 

density function matrix, the response spectra can be separated into a set of single degree of 

freedom systems, each corresponding to an individual mode. By using this decomposition 

technique close modes can be identified with high accuracy even in the case of strong noise 

contamination of the signals. Also, the technique clearly indicates harmonic components in 

the response signals. 

INTRODUCTION 

Modal identification of output-only systems is normally associated with the identification of 

modal parameters from the natural responses of civil engineering structures, space structures 

and large mechanical structures. Normally, in these cases the loads are unknown, and thus, 

the modal identification has to be carried out based on the responses only. Real case 

examples on some civil engineering structures can be found in Ventura and Horyna [1] or 

Andersen et al. [2]. 

The present paper deals with a new way of identifying the modal parameters of a structure 

from the responses only when the structure is loaded by a broad-banded excitation. 

The technique presented in this paper is an extension of the classical frequency domain 

approach often referred to as the Basic Frequency Domain (BFD) technique, or the Peak 

Picking technique. The classical approach is based on simple signal processing using the 

Discrete Fourier Transform, and is using the fact that well separated modes can be estimated 
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directly from the power spectral density matrix at the peak, Bendat and Piersol [3]. Other 

implementations of the technique make use of the coherence between channels, Felber [ 4] . 

The classical technique gives reasonable estimates of natural frequencies and mode shapes if 

the modes are well separated. However, in the case of close modes, it can be difficult to 

detect the close modes, and even in the case where close modes are detected, estimates 

becomes heavily biased. Further, the frequency estimates are limited by the frequency 

resolution of the spectral density estimate, and in all cases, damping estimation is uncertain or 

impossible. 

Even though the classical approach has limitations concerning accuracy in the identification 

process, the classical approach has important advantages when compared to other 

approaches. It is natural to compare with classical two-stage time domain approaches such as 

the Polyreference technique, V old et al [5], the Ibrahim Time Domain tehcnique, Ibrahim and 

Milkulcik [6], and the Eigensystem Realization Algorithm, Juang and Papa [7], or to compare 

with the new one-stage time domain identification tehcniques know as the Stochastic 

Subspace Identification algorithms, Van Overschee and De Moor [8]. The main advantages 

compared to these other techniques is that the classical approach is much more user-friendly, 

it is faster, simpler to use, and gives the user a "feeling" of the data he or she is dealing with. 

The fact that the user works directly with the spectral density functions helps the user in 

figuring out what is structural just by looking at the spectral density functions. This reinforces 

the users understanding of the physics and thus provides a valuable basis for a meaningful 

identification. 

The technique presented in this paper is a Frequency Domain Decomposition (FDD) 

technique. It removes all the disadvantages associated with the classical approach, but keeps 

the important features of user-friendliness and even improves the physical understanding by 

dealing directly with the spectral density function. Further, the technique gives a clear 

indication of harmonic components in the response signals. 

In this paper it is shown that taking the Singular Value Decomposition (SVD) of the spectral 

matrix, the spectral matrix is decomposed into a set of auto spectral density functions, each 

corresponding to a single degree of freedom (SDOF) system. This result is exact in the case 

where the loading is white noise, the structure is lightly damped, and when the mode shapes 

of close modes are geometrically orthogonal. If these assumptions are not satisfied, the 

decomposition into SDOF systems is approximate, but still the results are significantly more 

accurate than the results of the classical approach. 

THEORETICAL BACKGROUND OF FREQUENCY DOMAIN DECOMPOSTION 

The relationship between the unknown inputs x(t) and the measured responses y(t) can be 

expressed as, Bendat & Piersol [9] : 

(1) 

WhereGxx(jw)is the r x r Power Spectral Density (PSD) matrix of the input, ris the 

number of inputs, Gyy(Jw)is the m x m PSD matrix of the responses, m is the number of 
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responses, H(jm) is the mxr Frequency Response Function (FRF) matrix, and "-"and 

superscript T denote complex conjugate and transpose, respectively . 

The FRF can be written in prutial fraction, i.e. pole/residue form 

n R R 
H(jm) = L k + k 

k=I jm- J.k jm- J.k 
(2) 

where n is the number of modes, J.k is the pole and Rk is the residue 

(3) 

where iflk, 1 k is the mode shape vector and the modal participation vector, respectively. 

Suppose the input is white noise, i.e. its PSD is a constant matrix, i.e. G xx (jm) = C, then 

Equation (1) becomes 

(4) 

where superscript H denotes complex conjugate and transpose. Multiplying the two partial 

fraction factors and making use of the Heaviside partial fraction theorem, after some 

mathematical manipulations, the output PSD can be reduced to a pole/residue form as follows 

n A A B B 
G (jm) = L k + k + k + k 

YY k=t }w - J.k }w-:tk - }w -:tk - }w - :tk 
(5) 

where Ak is the k th residue matrix of the output PSD. As the output PSD itself the residue 

matrix is an mxm hermitian matrix and is given by 

(6) 

The contribution to the residue from the k th mode is given by 

(7) 

whereak is minus the real part of the pole J.k = - ak + jmk . As it appears, this term becomes 

dominating when the damping is light, and thus, is case of light damping, the residue 

becomes propmtional to the mode shape vector 

- T T 
Ak oc RkCRk = (PkYk Cykiflk 

= dkiflk<Pl (8) 
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where d k is a scalar constant. At a certain frequency m only a limited number of modes will 

contribute significantly, typically one or two modes. Let this set of modes be denoted by 

Sub(m). Thus, in the case of a lightly damped structure, the response spectral density can 

always be written 

(9) 

This is a modal decomposition of the spectral matrix. The expression is similar to the results 

one would get directly from Equation (1) under the assumption of independent white noise 

input, i.e. a diagonal spectral input matrix. 

IDENTIFICATION ALGORITHM 

In the Frequency Domain Decomposition (FDD) identification, the first step is to estimate the 

power spectral density matrix. The estimate of the output PSD GyyCiOJ) known at discrete 

frequencies m= mi is then decomposed by taking the Singular Value Decomposition (SVD) 

of the matrix 

(10) 

where the matrix Ui = [uil,ui2 ,K ,uim] is a unitary matrix holding the singular vectors uiJ, 

and Si is a diagonal matrix holding the scalar singular values siJ. Near a peak corresponding 

to the k th mode in the spectrum this mode or may be a possible close mode will be 

dominating. If only the k th mode is dominating there will only be one term in Equation (9). 

Thus, in this case, the first singular vector u il is an estimate of the mode shape 

(11) 

and the corresponding singular value is the auto power spectral density function of the 

corresponding single degree of freedom system, refer to Equation (9). This power spectral 

density function is identified around the peak by comparing the mode shape estimate ~ with 

the singular vectors for the frequency lines around the peak. As long as a singular vector is 

found that has high MAC value with ~ the corresponding singular value belongs to the 

SDOF density function . 

From the piece of the SDOF density function obtained around the peak of the PSD, the 

natural frequency and the damping can be obtained. In this paper the piece of the SDOF PSD 

was taken back to time domain by inverse FFT, and the frequency and the damping was 

simply estimated from the crossing times and the logarithmic decrement of the corresponding 

SDOF auto correlation function . 

In the case two modes are dominating, the first singular vector will always be a good estimate 

of the mode shape of the strongest mode. However, in case the two modes are orthogonal, the 

first two singular vectors are unbiased estimates of the corresponding mode shape vectors. In 
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Figure 1. Geometry of 2 storey-building model. Measurement points are indicated by arrows 

case the two modes are not orthogonal, typically the bias on mode shape estimate of the 

dominant mode will be small, but the bias on the mode shape estimate of the weak mode will 

be strong. Thus, one has to estimate the mode shapes for the two close modes at two different 

frequency lines, one line where the first mode is dominant, and another frequency line where 

the second mode is dominant. 

EXAMPLE, SIMULATION OF A 2-STOREY BUILDING 

In this example the response of a two-storey building is simulated used a lumped parameter 

system with 6 degrees of freedom. The measurements are assumed to be taken so that the 

rigid body motions of the floor slaps can be estimated. The geometry and the measurement 

points are shown in Figure 1. 

This structure has two sets of close modes. The first two modes are bending modes, and the 

model was calibrated in such a way, that these two bending modes were close, but not very 

close. The third mode is a torsion mode, and the fourth and fifth modes are again close 

bending modes . The model was calibrated in such a way that the fourth and fifth modes were 

very close, nearly repeated poles. 

The response was simulated using a vector ARMA model to ensure that the simulated 

responses were covariance equivalent, Andersen et al. [10]. The model was loaded by white 

noise, and the response was analysed using the identification technique introduced above. 

The simulated time series had a length of 10000 data points and three cases were considered: 

no noise, 10% noise and 20% noise added. 

The singular values of the spectral density function matrix are shown in Figure 2. As it 

appears, the close modes are clearly indicated in this plot. Using the FDD identification 

procedure described above, the natural frequencies and damping ratios were identified with 
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Figure 2. Singular values of the power spectral density matrix of the response 

high accuracy, se Table 1 for the natural frequencies and Table 2 for the damping values. As 

it appears, the technique is not sensitive to the noise. Also the mode shape estimates were 

very close to the exact results. Note especially the mode shapes for the two nearly repeated 

modes (the fourth and the fifth) in Figure 5. 

T bl 1 E . a e . stimate dN atura lF requenc1es 

Exact Withou 10% 20% 

t noise noise noise 

(Hz) (Hz) (Hz) (Hz) 

18.686 18.676 18.661 18.665 

21.054 20.930 20.927 20.938 

38.166 38.188 38.188 38.206 

55.055 55.036 55.011 54.999 

55.121 55.1 29 55.133 55.125 

T bl 2 E . a e stlmate dD ampmg R. at! os 

Exact Withou 10% 20% 

t noise noise noise 

(%) (%) (%) (%) 

2.13 2.22 2.19 2.33 

1.89 1.97 1.98 1.97 

1.04 1.12 1.11 1.13 

0.72 0.61 0.61 0.55 

0.72 0.76 0.76 0.77 
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Figure 3. Estimated mode shapes for the first and the second mode (building bending). 

Figure 4. Estimated mode shape for the third mode (building torsion). 

Figure 5. Estimated mode shapes for the fourth and the fifth mode (building bending) . 
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INDICATION OF HARMONICS 

As explained earlier, the frequency domain decomposition (FDD) technique presented in this 

paper decomposes the spectral density into a set auto spectral density functions each one 

corresponding to one of the single degree of freedom system representing the corresponding 

mode. If a harmonic is present, this corresponds a local amplification of the auto spectral 

density function of all the SDOF systems, i.e. all - or nearly all - of the singular values in the 

spectral plot will show a peak at the frequency where the harmonic is present. This result 

holds also in the case of a quasi-stationary harmonic, i.e. in the case of a harmonic with a 

slowly varying frequency. 

Thus, if one observes, that not only the first singular value has a peak at a certain frequency , 

but most of the other singular also have a peak at that same frequency, then this is strong 

indication, that the peak does not represent a structural response, but a harmonic. An example 

of the application of this feature of the FDD technique is given in Brincker et al [15] . 

If a structural mode is close to the harmonic, the harmonic does not destroy the mode shape 

estimate. However, one should be careful not using the amplified values of the SDOF bell 

(amplified by the harmonic) when using the inverse Fourier transform to estimate frequency 

and damping in the time domain. This will heavily bias the frequency and damping estimate. 

CONCLUSIONS 

In this paper a new frequency domain identification technique denoted Frequency Domain 

Decomposition (FDD) has been introduced. 

The technique is based on decomposing the power spectral density function matrix using the 

Singular Value Decomposition. It has been shown that this decomposes the spectral response 

into a set of single degree of freedom systems, each corresponding to one individual mode. 

The technique has been illustrated on a simulation example with noise and close modes. The 

results clearly indicate that the present technique is able to estimate close modes with high 

accuracy and that the technique is not sensitive to noise. 

In the case of close modes that are not orthogonal, the mode shape of the dominant mode is 

still well estimated. However, if the other mode is not dominating a any frequency, other 

ways of estimating the mode shape for such a mode must be introduced. 

The technique has been applied successfully to several civil engineering cases, Brincker et al. 

[11] , [12] and to several cases of identification in mechanical engineering where the the 

structure was loaded by rotating machinery, Brincker et al. [13] , Mpller et al. [14] and 

Brincker et al. [1 5]. 

The technique clearly indicates the presence of harmonics in the response signal, i.e. without 

further indication the user directly separates harmonic peaks from structural response peaks. 
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