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Abstract: In this article, wind-induced vibration re-
sponse of Vincent Thomas Bridge, a suspension bridge
located in San Pedro near Los Angeles, California, is sim-
ulated using a detailed three-dimensional finite element
model of the bridge and a state-of-the-art stochastic wind
excitation model. Based on the simulated wind-induced
vibration data, the modal parameters (natural frequen-
cies, damping ratios, and mode shapes) of the bridge are
identified using the data-driven stochastic subspace iden-
tification method. The identified modal parameters are
verified by the computed eigenproperties of the bridge
model. Finally, effects of measurement noise on the sys-
tem identification results are studied by adding zero-mean
Gaussian white noise processes to the simulated response
data. Statistical properties of the identified modal parame-
ters are investigated under an increasing level of measure-
ment noise. The framework presented in this article will
allow us to investigate the effects of various realistic dam-
age scenarios in long-span cable-supported (suspension
and cable-stayed) bridges on changes in modal identifica-
tion results. Such studies are required to develop robust
and reliable vibration-based structural health monitoring
methods for this type of bridge, which is a long-term re-
search objective of the authors.
∗To whom correspondence should be addressed. E-mail: jpconte@
ucsd.edu.

1 INTRODUCTION

Vibration-based structural health monitoring has been
the subject of significant research in structural engineer-
ing in recent years. The basic premise of vibration-based
structural health monitoring is that changes in structural
characteristics such as mass, stiffness, and energy dis-
sipation mechanisms influence the vibration response
characteristics of structures. Therefore, changes in dy-
namic features such as modal parameters and quantities
derived thereof are often used as damage indicators in
structural damage identification and health monitoring.
Salawu (1997) presented a review on the use of natural
frequency changes for damage detection. It is, however,
challenging if not impossible to localize the detected
damage (e.g., to obtain spatial information on the dam-
age) from changes in natural frequencies only. Pandey
et al. (1991) introduced the concept of mode shape cur-
vature for damage localization. In their study, both a
cantilever and a simply supported beam model were
used to demonstrate the effectiveness of using changes
in modal curvature as a damage indicator to detect and
localize damage. As another mode shape based dam-
age indicator, Pandey and Biswas (1994) proposed the
use of changes in the dynamically measured flexibility
matrix to detect and localize damage. They showed that
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the flexibility matrix of a structure can be easily and ac-
curately estimated from a few low-frequency vibration
modes of the structure. Methods based on changes in
identified modal parameters to detect and localize dam-
age in structures have also been further developed for
the purpose of damage quantification (i.e., estimation of
the extent of damage). Among these methods are strain-
energy based methods (Shi et al., 2002), the direct stiff-
ness calculation method (Maeck and De Roeck, 1999),
and sensitivity-based finite element (FE) model updat-
ing methods (Friswell and Mottershead, 1995; Teughels
and De Roeck, 2004). A comprehensive literature survey
on vibration-based structural health monitoring meth-
ods can be found in a number of recent publications
(Doebling et al., 1996; Farrar and Jauregui, 1998; Sohn
et al., 2003).

To develop a robust and reliable structural health
monitoring methodology, it is essential to investigate the
effects of realistic damage scenarios on structural modal
properties. Because it is inconvenient or impossible to
study the changes in structural modal parameters caused
by various damage scenarios and damage levels through
actual tests on a real structure during its service life, dy-
namic response simulation of the structure based on a
well calibrated and validated FE model thereof provides
an essential tool in structural health monitoring research.
In this article, a simulation platform is presented to sim-
ulate the wind-induced (ambient) vibration response of
Vincent Thomas Bridge (VTB) using a detailed three-
dimensional (3D) FE model of the bridge and a state-of-
the-art stochastic wind excitation model. The VTB is a
suspension bridge that crosses over the main channel of
Los Angeles Harbor in San Pedro, California. The bridge
was constructed in the early 1960s with an overall length
of approximately 1850 m, comprising the main span of
457 m and 154 m spans on either side. Generally, traf-
fic, wind, microtremors, and their combinations are the
main sources of ambient excitation for bridges. This ar-
ticle focuses on realistic simulation of the wind-induced
response of VTB and system identification of the bridge
based on its simulated wind response data.

Wind loads, including self-excited (caused by the in-
teraction between wind and structural motion) and buf-
feting forces (caused by the fluctuating wind velocity
field), are dependent on the geometric configuration of
the bridge deck section, the reduced frequency of the
bridge, and the incoming wind velocity fluctuations. In
the simulation, the self-excited forces are represented
in the time domain by means of convolution integrals
involving aerodynamic impulse functions and structural
motions. To simulate properly the stochastic character-
istics of buffeting forces, the longitudinal (along-wind
direction) and vertical spatially discrete wind velocity
fields along the bridge axis are simulated as two inde-

pendent stochastic vector processes according to their
prescribed power spectral density matrices. The spectra
of the longitudinal and vertical wind velocity fields are
assumed to remain constant along the bridge axis and
the coherence function of the wind velocity fluctuations
at two different positions along the bridge is taken as the
model proposed by Davenport (1968).

In the second part of the article, the dynamic prop-
erties of the bridge are identified using the data-
driven stochastic subspace identification method (Van
Overschee and De Moor, 1996) based on the low-
amplitude simulated wind-induced response of VTB.
The system identification results are verified by the com-
puted eigenproperties of the bridge FE model, which
allows us to assess the performance of the above output-
only system identification method when applied to wind-
excited long-span suspension bridges. To study the ef-
fects of measurement noise on the system identification
results, zero-mean Gaussian white noise processes are
added to the simulated output signals. Statistical prop-
erties (bias and coefficient of variation) of the identified
modal parameters are investigated under increasing lev-
els of measurement noise.

The framework presented in this article will allow us
to investigate systematically the effects of various re-
alistic damage scenarios in long-span cable-supported
bridges on changes in modal identification results ob-
tained from ambient vibration data. Such studies are re-
quired to develop robust and reliable vibration-based
structural health monitoring methods for this type of
bridge, which is a long-term research objective of the
authors.

2 AERODYNAMIC FORCES

2.1 Self-excited forces

The differential equations of motion of a bridge sub-
jected to aerodynamic forces with respect to the static
equilibrium position can be expressed as

M ẍ(t) + C ẋ(t) + K x(t) = F(t) = Fse(t) + Fb(t) (1)

where x(t), ẋ(t), and ẍ(t) = nodal displacement, velocity,
and acceleration response vectors, respectively; M, C,
and K = structural mass, damping, and stiffness matrices,
respectively; F = nodal load vector, and the subscripts se
and b denote the self-excited and buffeting aerodynamic
force components, respectively.

For harmonic structural motion, the self-excited forces
such as lift Lse, drag Dse, and pitching moment Mse (see
Figure 1) per unit span of the bridge are typically ex-
pressed as (Scanlan, 1978a; Simiu and Scanlan, 1996;
Chen et al., 2000a, 2000b)
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Fig. 1. Aerodynamic forces on bridge deck section.
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where ρ = air density; U = mean wind velocity; B =
bridge deck width; ω = circular frequency of vibration;
K = ωB/U = reduced frequency;H∗

i , A∗
i and P∗

i (i =
1, . . . , 6) = flutter derivatives; and h, p, and α = verti-
cal, lateral, and torsional displacement, respectively. It
should be noted that the formulation of the self-excited
forces in Equation (2) cannot be applied directly in
time domain simulation, as the flutter derivatives are
frequency dependent. For arbitrary structural motion,
the self-excited forces per unit span can be expressed in
terms of impulse response functions as (Lin and Yang,
1983; Chen et al., 2000a, 2000b)

Lse(t) = 1
2
ρU2

[∫ t
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where the f Xy(· · ·) terms in the integrands are the im-
pulse response functions of the self-excited forces, which
are associated with the aerodynamic force component
indicated by the subscript. To evaluate the self-excited
forces in the time domain based on Equation (3), it is nec-
essary to determine the aerodynamic impulse response
functions based on the experimentally determined flut-
ter derivatives. For this purpose, the self-excited forces
are taken to the frequency domain via Fourier transfor-
mation of Equations (2) and (3) as
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where F[ . . . ] = Fourier transform operator. Thus, the
relationship between aerodynamic impulse response
functions and flutter derivatives can be obtained by com-
paring Equations (4) and (5) term by term:
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Using the above equations, the self-excited forces can
be used in time domain analysis based on Equation (3)
once the flutter derivatives are obtained from wind-
tunnel experiments. The experimental flutter derivatives
in the above equations are usually obtained at a discrete
set of reduced frequencies K(ωk). Then, the rational
function approximation method known as Roger’s ap-
proximation is used to estimate the aerodynamic force
coefficients defined in Equations (6)–(8), also known as
aerodynamic transfer functions, as continuous functions
of the reduced frequency K (Roger, 1977; Chen et al.,
2000a; Lazzari et al., 2004). For example, let
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where CLh,i and dLh,k (dLh,k ≥ 0; i = 1, . . . , n and k =
4, . . . , n) = frequency-independent coefficients. The first
and second terms on the right-hand side of Equation (9)
represent the noncirculatory static-aerodynamics and
the aerodynamic damping, respectively; the third term
denotes the additional aerodynamic mass, which is usu-
ally negligible; and the rational terms represent the un-
steady components which lag the velocity term and allow
an approximation of the time delays through the posi-
tive values of parameters dLh,k. The value of n indicates

the level of accuracy in this approximation. Based on
Equation (9), the following relations can be derived:
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where v = 2π/K = reduced velocity. Therefore, the
frequency-independent coefficients CLh,i and dLh,k can
be determined through least squares fitting of flutter
derivatives obtained experimentally at discrete reduced
frequencies/velocities. The above rational function rep-
resentation of the aerodynamic transfer function for the
self-excited lift force component induced by the vertical
structural motion (see Equation (9)) can be extended
into the Laplace domain by introducing the Laplace pa-
rameter s = iω. Then, the self-excited lift force compo-
nent induced by vertical structural motion can be derived
by substituting the inverse Laplace transformation of
F [f Lh(t)](iω=s) into the corresponding component in
Equation (3) as
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The self-excited lift force components induced by lat-
eral and torsional structural motions can be obtained
similarly. Thus, the total self-excited lift force can be ex-
pressed as

Lse(t)

= Lse,h(t) + Lse,p(t) + Lse,α(t)

= 1
2
ρU2

[
CLh,1h(t) + CLh,2

B
U
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ṗ(t) + CLp,3
B2

U2
p̈(t)

+
n∑

k=4

CLp,k

∫ t

−∞
e− dLp,kU

B (t−τ ) ṗ(τ ) dτ
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Formulations for the self-excited drag force Dse(t) and
self-excited moment Mse(t) can be derived similarly.
These derivations are not shown here for the sake of
brevity.

2.2 Buffeting forces

The buffeting forces per unit span of the bridge are com-
monly expressed as (Scanlan, 1978b; Simiu and Scanlan,
1996; Chen et al., 2000a, 2000b)
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where CL, CD, CM = mean lift, drag, and moment coef-
ficients, respectively; C′

L = dCL/dα, C′
D = dCD/dα and

C′
M = dCM/dα (α = angle of attack of the wind); u(t) and

w(t) = wind velocity fluctuations in the longitudinal and
vertical directions, respectively; χLbu, χLbw, χDbu, χDbw,
χMbu, χMbw = aerodynamic admittance transfer func-
tions between wind velocity fluctuations and buffeting
forces. Their squared magnitudes are known as aerody-
namic admittance functions. Similar to the self-excited
forces in Equation (2), the buffeting forces in Equation
(13) cannot be used directly in time domain analysis, be-
cause the aerodynamic admittance transfer functions are
frequency dependent. From Equation (13), the buffeting
force spectra can be derived as
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where Suu(ω), Sww(ω) = power spectral density functions
of longitudinal and vertical wind velocity fluctuations,
respectively. It should be noted that the statistical cor-
relation between longitudinal and vertical wind velocity
fluctuations is neglected in deriving Equation (14). The
aerodynamic admittance functions are assumed to be
identical and approximated by the Liepmann function
(Liepmann, 1952) as

|χr (ω)|2 = 1
/ (

1 + πωB
U

)
(15)

where the subscript r refers to Lbu, Lbw, Dbu, Dbw,
Mbu, and Mbw. Equivalent wind power spectral density
functions are defined as

Seq
uu(ω) = Suu(ω)/(1 + πωB/U) (16a)

Seq
ww(ω) = Sww(ω)/(1 + πωB/U) (16b)

Thus, the buffeting forces can be obtained from the
equivalent wind velocity fluctuations simulated using the
equivalent wind power spectral density functions as
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2.3 Rational function approximation
of flutter derivatives

This section illustrates the rational function representa-
tion of self-excited force coefficients (see Equations (6)–
(8)) through least squares fitting of flutter derivatives
determined experimentally at discrete reduced frequen-
cies/velocities (see Equation (10)).

Because the aerodynamic coefficients of VTB are not
available, the flutter derivatives H∗

1 to H∗
4 and A∗

1 to A∗
4,

determined experimentally for the William Preston Lane
Bridge (WPLB) (J. D. Raggett, Personal communica-
tion, 2004) located in Baltimore, Maryland, are used for
VTB, which is similar in size and design. The remain-
ing dimensionless aerodynamic coefficients are taken as
(J. D. Raggett, Personal communication, 2004): H∗

5 =
H∗

6 = 0, A∗
5 = A∗

6 = 0 and P∗
2 = P∗

3 = P∗
4 = P∗

5 = P∗
6 = 0;

CL = 0, CM = 0, CD = 0.162 (CD is estimated as 2.5 times
the projected frontal area per unit length of the bridge
deck normalized by the deck’s width); C′

L
∼= K(H∗2

1 +
H∗2

4 )1/2 = 1.415, C′
M

∼= K(A∗2
1 + A∗2

4 )1/2 = 0.238 and C′
D =

0; and P∗
1 = −2CD/K.



378 He et al.

0 2 4 6 8 10 12
-4

-3

-2

-1

0

Reduced velocity, 2πU/Bω

0 2 4 6 8 10 12
-0.1

0

0.1

0.2

0.3

0.4

Reduced velocity, 2πU/Bω

0 2 4 6 8
-1

0

1

2

3

4

5

Reduced velocity, 2πU/Bω

0 2 4 6 8

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Reduced velocity, 2πU/Bω

A
2
*[Exp. data]

A
3
*[Exp. data]

A
2
*[Fitted curve]

A
3
*[Fitted curve]

H
2
*[Exp. data]

H
3
*[Exp. data]

H
2
*[Fitted curve]

H
3
*[Fitted curve]

A
1
*[Exp. data]

A
4
*[Exp. data]

A
1
*[Fitted curve]

A
4
*[Fitted curve]

H
1
*[Exp. data]

H
4
*[Exp. data]

H
1
*[Fitted curve]

H
4
*[Fitted curve]

Fig. 2. Rational function approximations of flutter derivatives for William Preston Lane Bridge (J. D. Raggett, Personal
communication, 2004).

In this study, two lag terms (i.e., n = 5) are used
in the rational representations (see Equation (9)). Fig-
ure 2 shows a comparison of the flutter derivatives esti-
mated from the rational function representations (e.g.,
see Equation (10)) and those measured in wind tunnel
tests for WPLB. The excellent agreement obtained in-
dicates that the self-excited forces on the bridge deck
section can be approximated by the rational functions
considered with very good accuracy.

3 SIMULATION OF WIND-INDUCED RESPONSE
OF VINCENT THOMAS BRIDGE

A detailed 3D FE model of VTB (see Figure 3) de-
veloped in the structural analysis software ADINA
(ADINA R&D Inc., 2002) was used in this study for

Fig. 3. Three-dimensional finite element model of Vincent Thomas Bridge.

the simulation of the wind-induced response of VTB.
This FE model is composed of 3D linear elastic (tension-
only) truss elements to represent the main suspension ca-
bles and suspender cables, 3D linear elastic membrane
and shell elements to model the reinforced-concrete
bridge deck, stringers supporting the deck on the floor
trusses, and beam-column elements to model the stiff-
ening trusses, the lateral braces between the stiffening
trusses and the tower shafts. The floor trusses were mod-
eled with 3D elastic beam-column and truss elements.
This FE model consists of approximately 8,900 nodes
and 9,400 elements, resulting in approximately 22,000 de-
grees of freedom (DOFs). The natural frequencies of the
low frequency vibration modes computed from this FE
model of VTB are given in Table 1 where they are com-
pared with (1) the corresponding natural frequencies
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Table 1
System identification results

Abdel-Ghaffar et al. (1992)

Natural frequency [Hz] Damping ratio (%) Identified freq. [Hz] Computed freq. [Hz]

Mode no. Identified Computed Identified Specified MAC Ambient Earthquake 2D Model 3D Model

1 0.214 0.231 3.8 1.8 0.961 0.216 0.209 0.197 0.201
2 0.226 0.226 2.3 1.8 0.711 0.234 0.224 0.221 0.224
3 0.357 0.364 0.9 1.6 0.928 0.366 0.364 0.348 0.336
4 0.455 0.459 2.6 1.7 0.988 0.487 0.448 0.459 0.443
5 0.514 0.511 2.1 1.8 0.995 0.494 0.513 0.455 0.438
6 0.576 0.571 0.5 1.8 0.994 0.579 0.562 0.549 0.527
7 0.687 0.684 1.5 2.0 0.994 N/A N/A N/A N/A
8 0.815 0.823 0.2 2.3 0.997 N/A N/A N/A N/A

previously identified from actual ambient vibration data
and earthquake records (Abdel-Ghaffar et al., 1992),
and (2) the corresponding natural frequencies com-
puted from other validated FE models of VTB (Abdel-
Ghaffar et al., 1992). This comparison shows that the
FE model of VTB used in this study captures reasonably
well the dominant low-frequency vibration modes of this
bridge.

In simulating the wind-induced response of VTB, the
aerodynamic forces are assumed to act along the bridge
deck only. The aerodynamic parameters are assumed to
be invariant along the bridge axis and the variation of
the aerodynamic characteristics due to static rotation
of the bridge deck (under gravity loads and aerostatic
forces due to mean wind velocity) is neglected for sim-
plicity. The aerodynamic parameters introduced in Sec-
tion 2.3 are used in the simulation. The buffeting forces
are simulated based on the simulated equivalent wind
velocity fluctuation time histories according to Equation
(17). The statistical correlation between longitudinal and
vertical wind velocity fluctuations is ignored so that the
spatially discretized wind velocity field is simulated as
the combination of two independent stochastic vector
processes. The simulation of the wind velocity fluctu-
ations, ueq(t) and weq(t), is performed using the spec-
tral representation method in conjunction with the fast
Fourier transform technique (Deodatis, 1996; Cao et al.,
2000). The wind spectra for the longitudinal and verti-
cal wind velocity fields are taken as Kaimal’s spectrum
(Kaimal et al., 1972) and Panofsky’s spectrum (Lumley
and Panofsky, 1964), respectively, defined as

Fig. 4. Locations of spatially discretized aerodynamic forces (“aerodynamic” nodes) along the bridge deck.

Suu(ω, z) = 200zu2
∗

4πU(z)
[

1 + 50ωz
2πU(z)

]5/3
(18a)

Sww(ω, z) = 3.36zu2
∗

4πU(z)

[
1 + 10

(
ωz

2πU(z)

)5/3
] (18b)

where u∗ = kU(z)/ln(z/z0) = shear velocity of the wind
flow in m/s; z0 = roughness length in m; k ≈ 0.4; and
U(z) = mean wind velocity in m/s at height z above the
ground level. In this study, z0 = 0.07 m, and the height
of the bridge deck above the ground is z = 60 m. The
mean wind velocity, U, is taken as 10 m/s (36 km/h) to
simulate wind-induced ambient vibrations under com-
mon low wind intensity. The coherence function of the
wind velocity fluctuations at two different locations of
abscissas x1 and x2 along the bridge deck is taken as
(Davenport, 1968; Cao et al., 2000)

Cohr (x1, x2, ω) = exp
(

−λω|x1 − x2|
2πU(z)

)
, ω > 0 (19)

where subscript r = u or w, λ = 10 for the longitudi-
nal wind velocity fluctuation and λ = 8 for the vertical
wind velocity fluctuation. The aerodynamic forces are
discretized at 27 locations along the bridge axis as shown
in Figure 4, implying that the longitudinal and vertical
stochastic wind velocity fields are discretized into two
independent vector processes of 27 components each.
Two-hour long wind velocity records are simulated with
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Fig. 5. Simulated longitudinal, ueq(t), and vertical, weq(t),
wind velocity fluctuations (U = 10 m/s).

a sampling time of 	t = 0.25 s. As illustration, Figure 5
shows a sample of the simulated longitudinal and verti-
cal wind velocity fluctuation at the center point of the
main span. The estimated (from simulated time histo-
ries) equivalent power spectral density function of the
longitudinal wind velocity fluctuation is compared in Fig-
ure 6 to the theoretical wind spectrum (see Equations
(16a) and (18a)) used to simulate the stochastic wind
velocity field. Similarly, Figure 7 shows a comparison
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Fig. 6. Comparison of estimated (from simulated data) and
exact longitudinal wind velocity spectrum.
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Fig. 7. Comparison of simulated and exact coherence
function of the longitudinal wind velocity fluctuation.

between exact and estimated (from simulated time histo-
ries) coherence functions of the longitudinal wind veloc-
ity fluctuations at two stations located 28.4 m apart. From
Figures 6 and 7, it is observed that the simulated wind ve-
locity field along the bridge follows closely the assumed
theoretical wind spectrum and coherence function.

It is assumed that the self-excited forces per unit span
at different locations along an “aerodynamic” element
of length L (corresponding to the tributary length of
the “aerodynamic” node located at the center of the
“aerodynamic” element) are fully correlated, while the
random fluctuation of the buffeting forces per unit span
along an “aerodynamic” element is accounted for. It is
assumed that the buffeting force components induced by
the longitudinal, u, and vertical, w, wind velocity fluctua-
tions are uncorrelated, because the statistical correlation
between u and w is neglected. Based on the above as-
sumptions, for example, the self-excited and buffeting
lift force components acting at an “aerodynamic” node
with tributary length L can be expressed as (Chen et al.,
2000a)

Le
se(t) = Lc

se(t)L (20a)

Le
b(t) = L

∫ t

0
[hLbu(t − τ )Lc

bu(τ ) + hLbw(t − τ )Lc
bw(τ )] dτ

(20b)

where the superscript c indicates the center location of
the “aerodynamic” element e; hLbu(t) and hLbw(t) are
impulse response functions, the Fourier transforms of
which, HLbu(ω) and HLbw(ω) satisfy the following rela-
tion:

|HLbr (ω)|2 = 1
L2

∫ L

0

∫ L

0
cohLbr (x1, x2, ω) dx1 dx2 (21)

in which r = u or w; and cohLbr(x1, x2, ω) denotes the co-
herence function of the lift buffeting force components
per unit span at two different positions x1 and x2 along
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Fig. 8. Simulated vertical displacement response of VTB at
center of main span.

the “aerodynamic” element, which is assumed to be the
same as that for the wind velocity fluctuations (see Equa-
tion (19)). The drag and moment buffeting force compo-
nents can be expressed in a similar way. The transfer
functions HLbr (ω) (r = u, w) in Equation (21) are also
approximated using rational functions for the purpose
of time domain analysis, for example,

HLbr (ω) =

⎡
⎢⎣C1 +

n∑
k=2

Ck
iω

dk
U
B

+ iω

⎤
⎥⎦ (22)

where the coefficients Ck and dk are determined through
least squares fitting.

The dynamic response of a suspension bridge depends
on the deformed bridge configuration and stress state un-
der gravity loads. Therefore, first a geometric nonlinear
static analysis is performed for the bridge under grav-
ity loads only, using an incremental-iterative solution
procedure. The aerodynamic wind forces (with buffet-
ing forces based on the fluctuating wind velocity fields
u(t) and w(t) and self-excited forces computed based on
the displacement field of the bridge relative to its static
equilibrium position under gravity loads only) are then
applied with initial conditions given by the bridge state
under gravity loads only. The dynamic equations of mo-
tion of the bridge under aerodynamic wind loads are
linearized (geometrically) about the displacement and
stress fields corresponding to gravity loads. Finally, these
linearized equations of motion are solved using the con-
stant average acceleration version of the Newmark time
stepping method with parameters δ = 0.5 and α = 0.25.
As an illustration, Figure 8 shows the simulated vertical
dynamic response of the bridge at the center of the main
span.

4 SYSTEM IDENTIFICATION OF VINCENT
THOMAS BRIDGE

4.1 Data-driven stochastic subspace identification

Data-driven stochastic subspace identification (SSI-
DATA) is one of the most advanced state-of-the-art
output-only system identification methods, which has
already been successfully applied for modal parameter
identification of long-span bridges based on ambient vi-
bration data. The SSI-DATA algorithm extracts a linear
state-space model of the system considered using output-
only measurement data directly (Van Overschee and De
Moor, 1996; Peeters and De Roeck, 2001). Compared
to two-stage time-domain system identification methods
such as covariance-driven stochastic subspace identifi-
cation (SSI-COV) (Van Overschee and De Moor, 1996)
and the natural excitation technique (NExT) (James
et al., 1993) combined with the eigensystem realiza-
tion algorithm (ERA) (Juang and Pappa, 1985), SSI-
DATA does not require any pre-processing of the data to
calculate auto/cross-correlation functions or auto/cross-
spectra of output data (i.e., SSI-DATA is a one-stage
system identification method). In addition, robust nu-
merical techniques such as QR factorization, singular
value decomposition (SVD), and least squares are in-
volved in this method. A brief review of this method is
presented next.

The discrete-time state-space representation of a lin-
ear time-invariant system of order n is defined as

z(k + 1) = Az(k) + Bu(k) (23a)

x(k) = Cz(k) + Du(k) (23b)

where A ∈ R
n×n, B ∈ R

n×l ,C ∈ R
m×n, D ∈ R

m×l = state
space matrices in discrete form; z(k) ∈ R

n = state vector;
u(k) ∈ R

l = load vector (vector of loading functions);
and x(k) ∈ R

m, a column vector of size m ( = number of
measured/output channels) which represents the mea-
sured system response at discrete time t = k(	t) along
m DOFs. In practical applications, the load vector in-
put function u is often unknown/unmeasured and only
the response of the structure is measured. In this case,
the discrete-time state-space model in Equation (23) is
extended to the following stochastic version:

z(k + 1) = Az(k) + w(k) (24a)

x(k) = Cz(k) + v(k) (24b)

where state matrices A and C are the same as in Equa-
tions (23): A = state transition matrix, which completely
characterizes the dynamics of the system through its
eigenproperties, and C = output matrix that specifies
how the inner states are transformed into the measured
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system response/output; w(k) ∈ R
n = process noise

due to external disturbances, modeling inaccuracies (i.e.,
missing high-frequency dynamics) and unknown input
excitation (undistinguishable from the external distur-
bances); and v(k) ∈ R

m = measurement noise due to
sensor inaccuracies and also unknown input excitation
(feed-through term). Both noise terms w(k) and v(k) are
assumed to be zero-mean, white vector sequences with
the following covariance matrix:

E

⎡
⎣

⎛
⎝ w(i)

v(i)

⎞
⎠ (

w( j)T v( j)T
)⎤
⎦ =

⎡
⎣ Q S

ST R

⎤
⎦ δi j (25)

where E[ . . . ] denotes the mathematical expectation op-
erator; δi j = Kronecker delta; and Q, R, S = process and
measurement noise auto/cross-covariance matrices.

The SSI-DATA procedure of extracting the state-
space matrices A and C from output-only data can be
summarized as follows: (1) Form an output Hankel ma-
trix and partition it into “past” and “future” output sub-
matrices. (2) Calculate the orthogonal projection matrix
of the row space of the “future” output submatrix into
the row space of the “past” output submatrix using QR
factorization. (3) Obtain the system observability ma-
trix and Kalman filter state estimate via SVD of the
projection matrix. (4) Using the available Kalman fil-
ter state estimate, extract the discrete-time system state-
space matrices as a least squares solution. To increase the
computational efficiency of the system identification pro-
cedure, only the reference “past” outputs (outputs from
the “reference” sensors) instead of all “past” outputs are
used to form the output Hankel matrix (Peeters and De
Roeck, 1999). Once the system state-space matrices are
determined, the modal parameters (natural frequencies
and damping ratios) of the N = n/2 vibration modes can
be obtained as

ωi = |ln(λ2i )/	t | and ξi = − cos(angle(ln(λ2i ))),

i = 1, 2, . . . , N (26)

where λi = i th eigenvalue of matrix A and 	t = sam-
pling time. It should be noted that λ2i−1 and λ2i (i = 1,
2, . . . , N) are complex conjugate pairs, each pair corre-
sponding to a vibration mode, that is, the natural fre-
quency and damping ratio obtained from λ2i−1 are the
same as those obtained from λ2i . The vibration mode
shapes are obtained as

φφi = C · T2i−1 (27)

Fig. 9. Virtual array of accelerometers along the bridge deck.

where Ti denotes the i th eigenvector of matrix A. Simi-
larly, T2i−1 and T2i (i = 1, 2, . . . , N) are complex conju-
gate pairs of eigenvectors, each pair corresponding to a
vibration mode.

4.2 System identification results

A simulated array of 42 channels (21 along each side
of the bridge deck) of vertical acceleration response
of the bridge subjected to wind excitation is used for
system identification. The simulated wind aerodynamic
forces correspond to a mean wind velocity U = 10 m/s
(36 km/h). Figure 9 shows the virtual accelerometer ar-
ray along the bridge deck. The simulated acceleration
records used in the identification process are 250-s long
with a sampling rate of 20 Hz, corresponding to 5,000
samples per record/channel and a Nyquist frequency
f Nyq = 10 Hz. In applying SSI-DATA, these simulated
acceleration data were first low-pass filtered using a fi-
nite impulse response (FIR) filter of order 512 with a
cut-off frequency at 1.0 Hz. Then, an output Hankel ma-
trix is formed including 100 block rows based on these
low-pass filtered vibration data. The 15 channels on the
east side of the main span are used as reference “past”
output channels.

The identified natural frequencies and damping ratios
are reported in Table 1 together with the corresponding
computed natural frequencies and specified damping ra-
tios of the VTB FE model used in this study. Table 1
also provides modal parameters obtained from previ-
ous system identification studies of VTB based on actual
ambient vibration data and earthquake records (Abdel-
Ghaffar et al., 1992). It is observed that there is an
excellent agreement between the identified natural fre-
quencies based on the simulated wind-induced response
data and those computed from the bridge FE model. The
difference between identified and analytically predicted
natural frequency is largest for the first mode, which
could be because the FE model of VTB used here has
three very closely spaced modes with natural frequen-
cies of 0.182, 0.226, and 0.231 Hz. The vibration mode
at 0.182 Hz could not be accurately identified based on
the simulated accelerometer data. The damping ratios
identified based on the simulated wind-induced response
data and the damping ratios specified in the FE model of
VTB are in a good agreement considering that the esti-
mation uncertainty of damping ratios is inherently larger
than that of natural frequencies.
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Fig. 10. Polar plot representation of vibration mode shapes identified using SSI-DATA.

It is important to mention that the identified nat-
ural frequencies and damping ratios also include the
contribution of the aerodynamic stiffness and damping
induced by the wind–structure interaction, which de-
pend on the reduced wind velocity (2πU/Bω), the ge-
ometrical configuration of the bridge section and the
approach wind flow. Due to wind–structure interaction,
the identified modal parameters (especially the damp-
ing ratios) of long-span cable-supported bridges under
wind loading can vary significantly with wind velocity
when approaching the flutter onset velocity. In a hybrid
experimental-analytical flutter analysis of the Jianyin
Bridge, a suspension bridge with a main span of 1,385
m and a streamlined closed box steel girder (36.8-m
wide and 3-m high), modal aerodynamic damping ra-
tios of some vibration modes reached values of approxi-
mately up to 10% (from corresponding structure modal
damping ratios of 0.5%) at the flutter onset wind ve-
locity (Ding et al., 2002). More studies about effects of
wind–structure interaction on dynamic characteristics of
long-span cable-supported bridges can be found in Mat-
sumoto et al. (1996), Miyata et al. (1997), Larsen (1998),
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Fig. 11. 3D representation of normalized vibration mode shapes identified using SSI-DATA.

Chen et al. (2000a, 2000b, 2001), Matsumoto et al. (2002),
and Chen and Kareem (2003).

The vibration mode shapes the identified using state-
space model based system identification methods such
as SSI-DATA are in general complex valued. Figure 10
represents in polar plots (i.e., rotating vectors in the com-
plex plane) the mode shapes of VTB identified using SSI-
DATA based on the simulated (wind-induced) ambient
vibration data. These polar plots have the advantage to
show directly the extent of the nonproportional damp-
ing characteristics of a vibration mode. If all complex
valued components of a mode shape vector are collinear
(i.e., in phase or 180 degrees out of phase), this vibra-
tion mode is said to be classically (or proportionally)
damped. On the other hand, the more these mode shape
components are scattered in the complex plane, the more
the vibration mode is nonclassically (or nonproportion-
ally) damped. However, measurement noise, estimation
errors, modeling errors, and aerodynamic damping can
also cause a truly classically damped mode to be identi-
fied as nonclassically damped. Figure 10 shows that most
of the vibration modes (modes #1, 4–8) identified in this
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Fig. 12. 3D representation of vibration mode shapes computed from the finite element model of VTB.

study are either perfectly or nearly classically damped.
A 3D representation of the normalized mode shapes of
the bridge deck for these identified vibration modes is
given in Figure 11. Normalization was performed by pro-
jecting all mode shape components onto their principal
axis (in the complex plane) and then scaling this pro-
jected mode shape vector for a unit value of its largest
component. The identified space-discrete mode shapes
were interpolated between the virtual sensor locations
using cubic splines along both sides of the bridge deck
and straight lines across the deck.

The modal assurance criterion (MAC) (Allemang and
Brown, 1982) is used to compare the identified and com-
puted (“exact”) vibration mode shapes. The MAC value,
bounded between 0 and 1, measures the degree of corre-
lation between corresponding identified and computed
mode shapes as

MAC(φφidentified, φφcomputed) = |φφ∗
identifiedφφcomputed|2

|φφidentified|2|φφcomputed|2
(28)

where ∗ denotes the complex conjugate transpose. A
MAC value of 0 indicates that the corresponding iden-
tified and computed mode shapes are completely un-
correlated, while a MAC value of 1 indicates perfect
correlation between them. The MAC values for all pairs
of identified and computed mode shapes are also given
in Table 1. For all vibration modes identified, except for
the second one, there is a very good-to-excellent agree-
ment between corresponding identified and computed
mode shapes. The high degree of nonclassical damping
identified for the second mode (see Figure 10) could be
the reason behind the low MAC value obtained for this

mode. Such high degree of nonclassical damping could
be true/physical (possibly due to wind–structure interac-
tion) or could be caused by estimation and/or modeling
errors. Three-dimensional representations of the mode
shapes computed from the FE model of VTB are shown
in Figure 12, which can be compared directly with their
identified counterparts in Figure 11.

To study the effects of measurement noise on the
system identification results, zero-mean Gaussian white
noise processes are added to the simulated bridge vi-
bration response data. Statistical properties (mean and
standard deviation) of the estimated modal parameters
are investigated for increasing levels of measurement
noise. For this purpose, a set of 100 identifications was

Table 2
Mean and coefficient of variation (COV) of the identified

natural frequencies normalized to their counterparts
identified based on noise-free data at different measurement

noise levels

2% noise 5% noise 10% noise

Mode COV COV COV
no. Mean (%) Mean (%) Mean (%)

1 0.9998 0.05 0.9994 0.06 0.9992 0.07
2 1.0003 0.07 1.0000 0.09 0.9998 0.10
3 1.0005 0.03 1.0006 0.03 1.0008 0.04
4 0.9998 0.04 0.9997 0.05 0.9996 0.06
5 0.9999 0.01 0.9999 0.01 0.9999 0.02
6 0.9994 0.01 0.9992 0.01 0.9991 0.02
7 1.0001 0.01 1.0001 0.01 1.0001 0.01
8 1.0006 0.01 1.0007 0.01 1.0009 0.02
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Table 3
Mean and coefficient of variation (COV) of the identified
damping ratios normalized to their counterparts identified
based on noise-free data at different measurement noise

levels

2% noise 5% noise 10% noise

Mode COV COV COV
no. Mean (%) Mean (%) Mean (%)

1 0.984 1.61 0.973 1.73 0.966 1.91
2 0.993 3.01 0.976 3.92 0.979 3.74
3 1.306 3.46 1.372 4.09 1.417 4.58
4 1.018 1.53 1.016 2.07 1.012 2.83
5 1.010 0.49 1.016 0.58 1.017 0.83
6 1.097 1.83 1.122 2.14 1.186 2.93
7 1.007 0.28 1.011 0.47 1.018 0.70
8 1.275 2.21 1.308 2.92 1.375 3.53

performed at each of three different measurement noise
levels (2%, 5%, and 10%). For a given output chan-
nel, the noise level is defined as the ratio (in percent)
of the root mean square (RMS) of the added noise pro-
cess to the RMS of the simulated acceleration response.
The added measurement noise processes are assumed
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Fig. 13. Statistics (mean, mean ± one standard deviation) over 100 trials of the identified natural frequencies normalized to their
counterparts identified based on noise-free data at different measurement noise levels.

statistically independent across the output channels and
over the 100 realizations considered. The statistics (mean
and coefficient of variation) over 100 trials of the identi-
fied natural frequencies and damping ratios normalized
to their counterparts identified based on simulated noise-
free data are reported in Tables 2 and 3, respectively,
for the three measurement noise levels considered. The
coefficient of variation of a random variable is defined
as the ratio of its standard deviation to its (absolute)
expected value (mean). In addition, mean and mean ±
one standard deviation of the identified natural frequen-
cies and damping ratios normalized to their counterparts
identified based on simulated noise-free data are rep-
resented graphically in Figures 13 and 14, respectively.
Based on the results reported in Tables 2 and 3 and plot-
ted in Figures 13 and 14, it is observed that both the
bias and coefficient of variation of the identified natu-
ral frequencies and damping ratios introduced by the
measurement noise increase with increasing noise level
as expected. However, bias and coefficient of variation
due to measurement noise remain very small (negligi-
ble) for the identified natural frequencies (see Table 2
and Figure 13). Although they are significantly larger for
the identified damping ratios (see Table 3 and Figure 14),
they remain relatively small as it is well known that the
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Fig. 14. Statistics (mean, mean ± one standard deviation) over 100 trials of the identified damping ratios normalized to their
counterparts identified based on noise-free data at different noise levels.

estimation uncertainty of damping ratios is inherently
larger than that of natural frequencies. It was also found
that the measurement noise considered has very small
(negligible) effects on the identified mode shapes.

5 CONCLUSIONS

Wind-induced ambient vibration of Vincent Thomas
Bridge (VTB), a long-span suspension bridge located
in San Pedro near Los Angeles, California, is simu-
lated using a detailed three-dimensional FE model of
the bridge and a state-of-the-art stochastic wind exci-
tation model including both buffeting and self-excited
forces. Based on these simulated ambient vibration data,
modal parameters of the low-frequency vertical vibra-
tion modes of VTB are identified using data-driven
stochastic subspace identification (SSI-DATA), a state-
of-the-art output-only system identification method. The
identified modal parameters are in good agreement with
the computed (“exact”) modal parameters obtained di-
rectly from the FE model of VTB, which themselves are
in good agreement with the corresponding modal pa-
rameters of VTB identified by other researchers using

actual ambient vibration data. This system identification
study also provides the opportunity to investigate the ac-
curacy of the modal identification results obtained using
SSI-DATA in the case of a large and complex (virtual)
structural problem for which the “exact” modal param-
eters (modal parameters of the FE model of VTB) are
known, which is usually not the case when system identi-
fication methods are applied directly to real-world struc-
tures and data.

The effect of measurement noise on the identified
modal parameters is investigated. Measurement noise is
simulated by adding statistically independent zero-mean
Gaussian white noise processes to the finite element sim-
ulated bridge response to wind excitation along a set of
degrees of freedom (virtual output channels). The sta-
tistical properties (mean and coefficient of variation)
of the identified modal parameters are investigated un-
der an increasing measurement noise level. Both bias
and coefficient of variation of the identified natural fre-
quencies and damping ratios introduced by the measure-
ment noise increase with increasing noise level as ex-
pected. However, bias and coefficient of variation due
to measurement noise remain very small (negligible)
for the identified natural frequencies. Although they are
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significantly larger for the identified damping ratios, they
remain relatively small as it is well known that the esti-
mation uncertainty of damping ratios is inherently larger
than that of natural frequencies.

The methodology and study presented in this article
provide a validated framework for studying the effects of
realistic damage scenarios in long-span cable-supported
(suspension and cable-stayed) bridges (e.g., corrosion-
induced losses in stiffness and strength of main cables
and suspenders at different locations along the bridge)
on modal identification results. These effects represent
the basis for developing robust and reliable vibration-
based structural health monitoring systems for long-span
cable-supported bridges.

ACKNOWLEDGMENTS

This study was supported by the National Science Foun-
dation under ITR Grant No. 0205720. The authors wish
to express their thanks to Dr. Jon D. Raggett, President
of West Wind Laboratory, Inc. and Dr. Xinzhong Chen
at Texas Tech University for providing the aerodynamic
parameters needed for the wind response simulation and
for very useful suggestions and insightful discussions re-
garding the stochastic wind excitation model. Any opin-
ions, findings, and conclusions or recommendations ex-
pressed in this article are those of the authors and do not
necessarily reflect those of the sponsor.

REFERENCES

Abdel-Ghaffar, A. M., Masri, S. F. & Niazy, A. S. M. (1992),
Seismic performance evaluation of suspension bridges, in
Proceedings of the 10th World Conference on Earthquake
Engineering, 4845–50.

ADINA R & D, Inc. (2002). Theory and modeling Guide Vol.1:
ADINA, Report ARD 02-7, ADINA R&D, Inc., Watertown,
MA.

Allemang, R. J. & Brown, D. L. (1982), A correlation coef-
ficient for modal vector analysis, in Proceedings of the 1st
International Modal Analysis Conference, Bethel, Connecti-
cut, 110–116.

Cao, Y., Xiang, H. & Zhou, Y. (2000), Simulation of stochastic
wind velocity field on long-span bridges, Journal of Engi-
neering Mechanics, ASCE, 126(1), 1–6.

Chen X. & Kareem, A. (2003), Aeroelastic analysis of
bridges: Effects of turbulence and aerodynamic nonlineari-
ties, Journal of Engineering Mechanics, ASCE, 129(8), 885–
95.

Chen, X., Kareem, A. & Matsumoto, M. (2001), Multimode
coupled flutter and buffeting analysis of long span bridges,
Journal of Wind Engineering and Industrial Aerodynamics,
89(7), 649–64.

Chen, X., Matsumoto, M. & Kareem, A. (2000a), Time domain
flutter and buffeting response analysis of bridges, Journal of
Engineering Mechanics, ASCE, 126(1), 7–16.

Chen, X., Matsumoto, M. & Kareem, A. (2000b), Aerodynamic
coupling effects on flutter and buffeting of bridges, Journal
of Engineering Mechanics, ASCE, 126(1), 17–26.

Davenport, A. G. (1968), The dependence of wind load upon
meteorological parameters, in Proceedings of the Interna-
tional Research Seminar on Wind Effects on Buildings and
Structures, University of Toronto Press, Toronto, 19–82.

Deodatis, G. (1996), Simulation of ergodic multivariate
stochastic processes, Journal of Engineering Mechanics,
ASCE, 122(8), 778–87.

Ding, Q., Chen, A. & Xiang, H. (2002), Coupled flutter anal-
ysis of long-span bridges by multimode and full-order ap-
proaches, Journal of Wind Engineering and Industrial Aero-
dynamics, 90(12), 1981–93.

Doebling, S. W., Farrar, C. R., Prime, M. B. & Shevitz, D.
W. (1996), Damage identification and health monitoring of
structural mechanical systems from changes in their vibra-
tion characteristics: A literature review, Los Alamos Na-
tional Laboratory Report No. LA-13070-MS, Los Alamos
National Laboratory, Los Alamos, New Mexico.

Farrar, C. R. & Jauregui, D. A. (1998), Comparative study of
damage identification algorithms applied to a bridge: I. Ex-
periment, Smart Materials and Structures, 7(5), 704–19.

Friswell, M. I. & Mottershead, J. E. (1995), Finite element model
updating in structural dynamics, Kluwer Academic Publish-
ers, Boston, MA.

James, G. H., Carne, T. G. & Lauffer, J. P. (1993), The natural
excitation technique for modal parameters extraction from
operating wind turbines, Report No. SAND92-1666, UC-261,
Sandia National Laboratories, Sandia, New Mexico.

Juang, J. N. & Pappa, R. S. (1985), An eigensystem realization
algorithm for modal parameter identification and model re-
duction, Journal of Guidance, Control and Dynamics, 8(5),
620–27.

Kaimal, J. C., Wyngaard, J. C., Izumi, Y. & Cote, O. R. (1972),
Spectral characteristics of surface-layer turbulence, Journal
of Royal Meteorological Society, 98(417), 563–89.

Larsen, A. (1998), Advances in aeroelastic analysis of suspen-
sion and cable-stayed bridges, Journal of Wind Engineering
and Industrial Aerodynamics, 74, 73–90.

Lazzari, M., Vitaliani, R. V. & Saetta, A. V. (2004), Aeroelastic
forces and dynamic response of long-span bridges, Interna-
tional Journal for Numerical Methods in Engineering, 60(6),
1011–48.

Liepmann, H. W. (1952), On the application of statistical con-
cepts to the buffeting problem, Journal of Aeronautical Sci-
ence, 19(12), 793–800.

Lin, Y. K. & Yang, J. N. (1983), Multimode bridge response to
wind excitations, Journal of Engineering Mechanics, ASCE,
109(2), 586–603.

Lumley, J. L. & Panofsky, H. A. (1964), The Structure of At-
mospheric Turbulence, Wiley-Interscience, New York.

Maeck, J. & De Roeck, G. (1999), Dynamic bending and torsion
stiffness derivation from modal curvatures and torsion rates,
Journal of Sound and Vibration, 225(1), 153–70.

Matsumoto, M., Kobayashi, Y. & Shirato, H. (1996), The in-
fluence of aerodynamic derivatives on flutter, Journal of
Wind Engineering and Industrial Aerodynamics, 60(1), 227–
39.

Matsumoto, M., Shirato, H., Yagi, T., Shijo, R., Eguchi, A. &
Tamaki, H. (2002), Effects of aerodynamic interferences be-
tween heaving and torsional vibration of bridge decks: The
case of Tacoma Narrows Bridge, Journal of Wind Engineer-
ing and Industrial Aerodynamics, 91(12), 1547–57.



388 He et al.

Miyata, T., Yamada, H. & Kazama, K. (1997), Discussion on
aeroelastic detail and control in the flutter occurrences of
long-span bridges, Journal of Wind Engineering and Indus-
trial Aerodynamics, 69, 839–49.

Pandey, A. K. & Biswas, M. (1994), Damage detection in struc-
tures using changes in flexibility, Journal of Sound and Vi-
bration, 169(1), 3–17.

Pandey, A. K., Biswas, M. & Samman, M. M. (1991), Damage
detection from changes in curvature mode shapes, Journal
of Sound and Vibration, 145(2), 321–32.

Peeters, B. & De Roeck, G. (1999), Reference-based stochas-
tic subspace identification for output-only modal analysis,
Journal of Mechanical Systems and Signal Processing, 13(6),
855–78.

Peeters, B. & De Roeck, G. (2001), Stochastic system identifi-
cation for operational modal analysis: A review, Journal of
Dynamic Systems, Measurement, and Control, 123(4), 659–
67.

Roger, K. L. (1977), Airplane math modeling methods for ac-
tive control design, Tech. Report CP-228, AGARD.

Salawu, O. S. (1997), Detection of structural damage through
changes in frequency: A review, Engineering Structures,
19(9), 718–23.

Scanlan, R. H. (1978a), The action of flexible bridges under
the wind. I: Flutter theory, Journal of Sound and Vibration,
60(2), 187–99.

Scanlan, R. H. (1978b), The action of flexible bridges under the
wind. II: Buffeting theory, Journal of Sound and Vibration,
60(2), 201–11.

Shi, Z. Y., Law, S. S. & Zhang, L. M. (2002), Improved damage
quantification from elemental modal strain energy change,
Journal of Engineering Mechanics, ASCE, 128(5), 521–29.

Simiu, E. & Scanlan, R. H. (1996), Wind Effects on Structures:
Fundamentals and Applications to Design, John Wiley and
Sons, New York.

Sohn, H., Farrar, C. R., Hemez, F. M., Shunk, D. D., Stinemates,
D. W. & Nadler, B. R. (2003), A review of structural
health monitoring literature: 1996–2001, Los Alamos Na-
tional Laboratory Report No. LA-13976-MS, Los Alamos
National Laboratory, Los Alamos, New Mexico.

Teughels, A. & De Roeck, G. (2004), Structural damage iden-
tification of the highway bridge Z24 by FE model updating,
Journal of Sound and Vibration, 278(3), 589–610.

Van Overschee, P. & De Moor, B. (1996), Subspace Identifica-
tion for Linear Systems, Kluwer Academic Publishers, Nor-
well, Massachusetts.


