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Abstract

This paper introduces modal independence logic MIL, a modal logic that can explicitly
talk about independence among propositional variables. Formulas of MIL are not
evaluated in worlds but in sets of worlds, so called teams. In this vein, MIL can be seen
as a variant of Väänänen’s modal dependence logic MDL. We show that MIL embeds
MDL and is strictly more expressive. However, on singleton teams, MIL is shown to be
not more expressive than usual modal logic, but MIL is exponentially more succinct.
Making use of a new form of bisimulation, we extend these expressivity results to
modal logics extended by various generalized dependence atoms. We demonstrate
the expressive power of MIL by giving a specification of the anonymity requirement
of the dining cryptographers protocol in MIL. We also study complexity issues of
MIL and show that, though it is more expressive, its satisfiability and model checking
problem have the same complexity as for MDL.

Keywords: dependence logic, team semantics, independence, expressivity over finite
models, computational complexity.

1 Introduction

The concept of independence is ubiquitous in many scientific disciplines such as
experimental physics, social choice theory, computer science, and cryptography.
Dependence logic D, introduced by Jouko Väänänen in [14], is a new logical
framework in which various notions of dependence and independence can be
formalized and studied. It extends first-order logic by so called dependence
atoms

=(x1, . . . , xn−1, xn),

expressing that the value of the variable xn depends (only) on the values of
x1, . . . , xn−1, in other words, that xn is functionally dependent of x1, . . . , xn−1.
Of course, such a dependency does not make sense when talking about single
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assignments; therefore dependence logic formulas are evaluated for so called
teams, i. e., sets of assignments. A team can for example be a relational
database table, a collection of plays of a game, or a set of agents with fea-
tures. It is this team semantics, together with dependence atoms, that gives
dependence logic its expressive power: it is known that D is as expressive as Σ1

1,
that is, the properties of finite structures that can be expressed in dependence
logic are exactly the NP-properties.

In a slightly later paper Väänänen [15] introduced dependence atoms into
(propositional) modal logic. Here, teams are sets of worlds, and a dependence
atom =(p1, . . . , pn−1, pn) holds in a team T if there is a Boolean function that
determines the value of pn from those of p1, . . . , pn−1 in all worlds in T . The
so obtained modal dependence logic MDL was studied from the point of view
of expressivity and complexity in [13].

In this article we introduce a novel modal variant of dependence logic called
modal independence logic, MIL, extending the formulas of modal logic ML by
so-called independence atoms

(p1, . . . , p`)⊥(r1,...,rm)(q1, . . . , qn),

the meaning of which is that the propositional sequences ~p and ~q are indepen-
dent of each other for any fixed value of ~r. Modal independence logic thus has
its roots in modal dependence logic MDL [15] and first-order independence logic
[8]. In modal independence logic, dependencies between propositions can be
expressed, and thus, analogously to the first-order case, MDL can be embedded
as a sublogic into MIL, and it is easy to see that MIL is strictly more expressive
than MDL.

The aim of this paper is to initiate a study of the expressiveness and the
computational complexity of modal independence logic. For this end, we first
study the computational complexity of the satisfiability and the model checking
problem for MIL. We show that, though MIL is more expressive than MDL, the
complexity of these decision problems stays the same, i. e., the satisfiability
problem is complete for nondeterministic exponential time (NEXP-complete,
[13]) and the model checking problem is NP-complete [6]. In order to settle
the complexity of satisfiability for MIL, we give a translation of MIL-formulas
to existential second-order logic formulas the first-order part of which is in the
Gödel–Kalmár–Schütte prefix class. Our result then follows from the classical
result that the satisfiability problem for this prefix class is NEXP-complete [3].
We will also show that the same upper bound on satisfiability can be obtained
for a whole range of variants of MIL via the notion of a generalized (modal)
dependence atom (a notion introduced in the first-order framework in [11]).

The expressive power of MDL was first studied by Sevenster [13], where he
showed that MDL is equivalent to ML on singleton teams. In this paper we
prove a general result showing that MIL, and in fact any variant of it whose
generalized dependence atoms are FO-definable, is bound to be equivalent to
ML over singleton teams. Interestingly, it was recently shown in [5] that a so-
called extended modal dependence logic EMDL is strictly more expressive than
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MDL even on singletons.
To demonstrate the potential applications of MIL, we consider the dining

cryptographers protocol [4], a classic example for anonymous broadcast which
is used as a benchmark protocol in model checking of security protocols [1].
We show how the anonymity requirement of the protocol can be formalized in
modal independence logic, where—unlike in the usual approaches using epis-
temic logic—we do not need to use the Kripke model’s accessibility relation to
encode knowledge, but to express the “possible future” relation of branching-
time models. In addition to demonstrating MIL’s expressivity, we also derive
a succinctness result from our modeling of the dining cryptographers: While
MIL and ML are equally expressive on singletons, MIL is exponentially more
succinct.

2 Modal Independence Logic

Definition 2.1 The syntax of modal logic ML is inductively defined by the
following grammar in extended Backus–Naur form:

φ ::= p | p | φ ∧ φ | φ ∨ φ | 3φ | 2φ.

The syntax of modal dependence logic MDL is defined by

φ ::= p | p | =(~q, p) | φ ∧ φ | φ ∨ φ | 3φ | 2φ,

where p is a propositional variable and ~q a sequence of propositional variables.
The syntax of modal independence logic MIL is defined by

φ ::= p | p | ~p⊥~r~q | φ ∧ φ | φ ∨ φ | 3φ | 2φ,

where p is a propositional variable and ~p, ~r, ~q are sequences of propositional
variables. The sequence ~r may be empty.

It is worth noting that the negation of dependence logic, and that of MDL,
is not the classical negation but a so-called ”game theoretic” negation that still
satisfies the usual De Morgan laws. As now customary with team semantics,
we think of negation as a defined operation and restrict attention to formulas in
which negation only appears in front of proposition symbols (formulas ¬=(~q, p)
are logically equivalent to falsum and hence can also be dispensed without
loss of generality [15]). A more detailed account of the role of negation in
dependence logic can be found in [10].

A Kripke structure is a tuple M = (W,R, π), where W is a non-empty
set of worlds, R is a binary relation over W and π : W → P(V) is a labeling
function for a set V of propositional variables. A team is a (possibly empty) set
T ⊆W . As usual, in a Kripke structure M the set of all successors of T ⊆W
is defined as R(T ) = {s ∈ W | ∃s′ ∈ T : (s′, s) ∈ R}. Furthermore we define
R〈T 〉 = {T ′ ⊆ R(T ) | ∀s ∈ T ∃s′ ∈ T ′ : (s, s′) ∈ R}, the set of legal successor
teams.
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Definition 2.2 Let ~p = (p1, . . . , pn) be a sequence of variables and w,w′ be
worlds of a Kripke modelM = (W,R, π). Then w and w′ are equivalent under
π over ~p, denoted by w ≡π,~p w′, if the following holds:

π(w) ∩ {p1, . . . , pn} = π(w′) ∩ {p1, . . . , pn}.

Definition 2.3 (Semantics of ML, MDL, and MIL) Let M = (W,R, π) be a
Kripke structure, T be a team over M and φ be a formula. The semantic
evaluation (denoted as M, T |= φ) is defined inductively as follows.

M, T |= p ⇔ ∀w ∈ T : p ∈ π(w)
M, T |= p ⇔ ∀w ∈ T : p 6∈ π(w)
M, T |= φ1 ∧ φ2 ⇔ M, T |= φ1 and M, T |= φ2
M, T |= φ1 ∨ φ2 ⇔ ∃T1, T2 : T1 ∪ T2 = T,M, T1 |= φ1 and M, T2 |= φ2
M, T |= 3φ ⇔ ∃T ′ ∈ R〈T 〉 : M, T ′ |= φ
M, T |= 2φ ⇔ M, R(T ) |= φ
M, T |= =(~q, p) ⇔ ∀w,w′ ∈ T : w ≡π,~q w′ implies w ≡π,p w′
M, T |= ~p1⊥~q ~p2 ⇔ ∀w,w′ ∈ T : w ≡π,~q w′ implies ∃w′′ ∈ T :

w′′ ≡π,~p1 w and w′′ ≡π,~p2 w′ and w′′ ≡π,~q w

Note that for modal logic formulas φ we have M, {w} |= φ iff M, w |= φ
(where in the latter case, |= is defined as in any textbook for usual modal logic).
In fact it is easy to see that without dependence or independence atom, our
logic has the so called flatness property, stating that team semantics and usual
semantics essentially do not make a difference:

Lemma 2.4 For every ML-formula φ and all models M and teams T , M,T |=
φ iff M,w |= φ for all w ∈ T .

Another simple observation is that the empty team satisfies all formulas.

Lemma 2.5 For every MIL-formula φ and all models M , M, ∅ |= φ.

Team semantics and independence atoms together will lead to a richer ex-
pressive power, as we will prove in Section 6. However, we will also show that
over teams T consisting of one world only, ML and MIL have the same expressive
power.

Definition 2.6 Formulas ϕ and ϕ′ are equivalent on singletons, if for every
model M and every w ∈M , we have M, {w} |= ϕ if and only if M, {w} |= ϕ′.

Note that on singleton teams, the independence atom trivially always eval-
uates to true. However, using the modal operators 2 and 3, a formula that is
evaluated on singleton teams as a starting point clearly is able to talk about
nontrivial teams as well. An example for this is the formula constructed in
Section 5: The formula is evaluated on a singleton team—the starting point
of the protocol—but specifies independence properties for much larger teams,
namely subsets of all possible protocol outcomes.
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3 Complexity Results

In this section we will study the computational complexity of the model check-
ing and the satisfiability problem for MIL. In [8], it was observed that in first-
order team semantics, =(~p, q) is equivalent to q ⊥~pq. This observation clearly
carries over to MIL, and hence in particular shows that MIL is a generalization
of MDL.

Lemma 3.1 LetM be a model and T a team overM, let ~p and q be variables.
Then M, T |= =(~p, q) if and only if M, T |= q ⊥~pq.

We now define the two decision problems whose complexity we wish to
study, namely the model checking and the satisfiability problem for modal
independence logic.

Problem: MIL-SAT

Input: MIL formula φ

Question: Does there exists a Kripke model M and a team T 6= ∅
with M, T |= φ?

Problem: MIL-MC

Input: Kripke model M, team T and MIL formula φ

Question: M, T |= φ?

The corresponding problems for modal dependence logic are denoted by
MDL-SAT and MDL-MC.

It is easy to see that model checking for MIL is not more difficult than model
checking for MDL, namely NP-complete.

Theorem 3.2 MIL-MC is NP-complete.

Proof. The lower bound follows immediately from Lemma 3.1 and NP-
completeness of MDL-MC [6]. The upper bound follows from a simple extension
of the well-known model checking algorithm for modal logic, see Algorithm 1.2

Next we will consider the complexity of the satisfiability problem MIL-SAT
for modal independence logic. From Lemma 3.1 and the hardness of MDL-SAT
for nondeterministic exponential time [13] we immediately obtain the following
lower bound:

Lemma 3.3 MIL-SAT is NEXP-hard.

In order to show containment in NEXP, we need to recall the following
classical result. Recall that the so-called Gödel–Kalmár–Schütte prefix class
[∃∗∀2∃∗, all] contains sentences of FO, in a relational vocabulary without equal-
ity, which are in prenex normal form and have a quantifier prefix of the form
∃∗∀2∃∗.
Proposition 3.4 ([3]) Satisfiability of formulas in prefix class [∃∗∀2∃∗, all]
can be decided in NTIME(2O(n/ logn)).

Next we will show that MIL-SAT ∈ NEXP with the help of Proposition 3.4.
We will first define a variant of the standard translation of ML into FO that
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Algorithm 1 NP algorithm for MIL-MC

1: function milmc(M, T, φ)
2: if φ = 2ψ then
3: return milmc(M,ψ,R(T ))

4: if φ = 3ψ then
5: existentially guess T ′ ∈ R〈T 〉
6: return milmc(M,ψ, T ′)
7: else if φ = ψ1 ∧ ψ2 then
8: return milmc(M,ψ1, T ) and milmc(M,ψ2, T )
9: else if φ = ψ1 ∨ ψ2 then

10: existentially guess T1 ∪ T2 = T
11: return milmc(M,ψ1, T1) and milmc(M,ψ2, T2)
12: else if φ = p then
13: for s ∈ T do
14: if p 6∈ π(s) then
15: return false
16: return true
17: else if φ = p then
18: for s ∈ T do
19: if p ∈ π(s) then
20: return false
21: return true
22: else if φ = ~p ⊥~r ~q then
23: for s ∈ T do
24: for s′ ∈ T do
25: if π(s′) ∩ ~r = π(s′) ∩ ~r then
26: found ← false
27: for s′′ ∈ T do
28: agreeP ← π(s′′) ∩ ~p = π(s) ∩ ~p
29: agreeQ ← π(s′′) ∩ ~q = π(s′) ∩ ~q
30: agreeR ← π(s′′) ∩ ~r = π(s) ∩ ~r
31: if agreeP and agreeQ and agreeR then
32: found ← true
33: if not found then
34: return false
35: return true

maps MIL-formulas to formulas of monadic existential second-order logic. For a
Kripke structure (W,R, π), and a team T ⊆W , we denote by (W, {Ai}i, R, T )
the first-order structure of vocabulary {R, T} ∪ {Ai}i∈N encoding (W,R, π) in
the obvious way.

Lemma 3.5 For any formula φ ∈ MIL there is a sentence φ∗ of monadic
existential second-order logic of the form

∃Y1 . . . ∃Ym∀x∀y∃z1 . . . ∃zkθ, (1)
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where θ is quantifier-free, and such that for all (W,R, π) and T it holds

(W,R, π), T |= φ⇔ (W, {Ai}i∈N, R, T ) |= φ∗.

Proof. We first define an auxiliary translation φ 7→ φ′ for which correctness is
obvious and then indicate how to go from φ′ to φ∗.

(i) Suppose φ is pi. Then φ′ is defined as

φ′ := ∀x(T (x)→ Api(x)).

(ii) Suppose φ is pi. Then φ′ is defined as

φ′ := ∀x(T (x)→ ¬Api(x)).

(iii) Suppose φ is ψ1 ∨ ψ2. Then φ′ is defined as

φ′ := ∃Y1∃Y2(∀x(T (x)↔ (Y1(x) ∨ Y2(x))) ∧ ψ′1(T/Y1) ∧ ψ′2(T/Y2)).

(iv) Suppose φ is ψ1 ∧ ψ2. Then φ′ is defined as

φ′ := ψ′1 ∧ ψ′2.

(v) Suppose φ is 3ψ. Then φ′ is defined as

φ′ := ∃Y (∀x(T (x)→ ∃z(Y (z) ∧ E(x, z)) ∧ (Y (x)→
∃u(T (u) ∧ E(u, x))))∧ ψ′(T/Y )).

(vi) Suppose φ is 2ψ. Then φ′ is defined as

φ′ := ∃Y (∀x∀y(((T (x) ∧ E(x, y))→ Y (y)) ∧ (Y (x)→
∃z(T (z) ∧ E(z, x))))∧ ψ′(T/Y )).

(vii) Suppose φ is ~p1⊥~p2~p3. Then φ′ is defined as

φ′ := ∀x∀y((T (x) ∧ T (y) ∧ EQ~p2(x, y))→
∃z(T (z) ∧ EQ~p2(x, z)∧ EQ~p1(x, z) ∧ EQ~p3(y, z))),

where EQ~pi(v, w) is a shorthand for the formula∧
p∈~pi

Ap(v)↔ Ap(w).

It remains to define the translation φ 7→ φ∗. This translation is defined by
modifying the above clauses by essentially moving all quantifiers to the left of
the formula, and by possibly renaming some of the bound variables. We will
indicate these modifications by considering the case of disjunction. The other
cases are analogous. Assume that ψ∗1 and ψ∗2 are defined already:

ψ∗i = ∃Ȳi∀x∀y∃~ziθi,
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where θi is quantifier free, and ψ∗i ≡ ψ′i. By renaming of bound variables, we
may assume that Ȳ2 = Y3 . . . Yk, and Ȳ1 = Yk+1 . . . Ym, and that ~z1 and ~z2 do
not have any common variables either. Then (ψ1 ∨ψ2)∗ is defined by replacing
ψ′i by ψ∗i in the definition of (ψ1 ∨ ψ2)′ (see clause iii), and by extending the
scopes of the quantifiers:

(ψ1 ∨ ψ2)∗ := ∃Y1 . . . ∃Ym∀x∀y∃~z2∃~z1((T (x)↔ (Y1(x) ∨ Y2(x))∧
θ1(T/Y1) ∧ θ2 (T/Y2)).

2

Theorem 3.6 MIL-SAT is in NEXP.

Proof. Let φ ∈ MIL. Then φ is satisfiable by a Kripke model M and a
team T 6= ∅ if and only if φ∗ ∧ ∃wT (w) is satisfiable. This follows from the
previous lemma and the fact that there is a 1-1 correspondence with Kripke
structures (W,R, π), and teams T for φ and {R, T} ∪ {Ai}1≤i≤n-structures
(W, {Ai}1≤i≤n, R, T ), where n is large enough such that all pi appearing in φ
satisfy i ≤ n.

Recall now that φ∗ has the form

∃Y1 . . . ∃Ym∀x∀y∃z1 . . . ∃zkθ,

hence φ∗ ∧ ∃wT (w) is logically equivalent to

∃Y1 . . . ∃Ym∀x∀y∃z1 . . . ∃zk∃w(θ ∧ T (w)),

which is satisfiable if and only if the first-order sentence

∀x∀y∃z1 . . . ∃zk∃w(θ ∧ T (w)) (2)

of vocabulary {Y1, . . . , Ym} ∪ {R, T} ∪ {Ai}1≤i≤n is satisfiable. The sentence
(2) is contained in prefix class [∃∗∀2∃∗, all], hence the satisfiability of it, and
also of φ∗ ∧ ∃wT (w), can be decided in time NTIME(2O(|φ∗|)). The claim now
follows from the fact the mapping φ 7→ φ∗ can be computed in time polynomial
in |φ|. 2

Corollary 3.7 MIL-SAT is NEXP-complete.

It is interesting to note that Theorem 3.6 and Lemma 3.1 directly imply
the result of Sevenster [13] that MDL-SAT is contained in NEXP. On the other
hand, it seems that the original argument of Sevenster does not immediately
generalize to MIL.

Corollary 3.8 MDL-SAT is NEXP-complete.

4 Generalized Dependency Notions

MIL can be seen as an extension of modal logic with team semantics by the
independence atom—let us denote such an extension by ML(⊥). Similarly,
we can extend modal logic with other atoms, so-called generalized dependence
atoms, which we define now.
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Definition 4.1 Let M = (W,R, π) be a Kripke model and T = (w1, . . . , wm)
be a team over M. Then for any propositional variable p, T (p) is defined as
the tuple (s1, . . . , sm), where si for 1 ≤ i ≤ m is defined as:

si =

{
1 wi ∈ π(p)

0, otherwise.

For a set of propositions ~q = (q1, . . . , qk), we define T (~q) analogously as
(T (q1), . . . , T (qk)).

Similar to Kuusisto’s [11] definition of generalized first-order dependence
atoms we give a definition of generalized modal dependence atoms. In the
following, a set of matrices D is invariant under permutations of rows, if for
every matrix M ∈ D, if M ′ is obtained from M by permuting M ’s rows, then
M ′ is an element of D as well.

Definition 4.2 Let D be a set of Boolean n-column matrices that is invariant
under permutation of rows. The semantics of the generalized dependence atom
defined by D is given as follows:

Let M be a Kripke model, T be a team over M and p1, . . . , pn atomic
propositions. Then

M, T |= D(p1, . . . , pn) ⇐⇒ 〈T (p1), . . . , T (pn)〉 ∈ D.

The width of D is defined to be n.
Note that for simplicity we do not distinguish in notation between the logical

atom D and the set D of Boolean matrices.

The Boolean matrix 〈T (p1), . . . , T (pn)〉 contains one column for each of the
variables p1, . . . , pn; each row of the matrix corresponds to one world from T .
The entry for variable pi and world w ∈ T is 1 if and only if the variable pi
is satisfied in the world w. We require that D is invariant under permutation
of rows in order to ensure that whether M, T |= D(p1, . . . , pn) holds does not
depend on the ordering of the worlds in T that is used in computing the tuple
T (p).

In the following we will mainly be interested in generalized dependence
atom definable by first-order formulae. For this purpose let D be an atom of
width n as above, and φ be a first-order sentence over signature 〈A1, . . . , An〉.
Then φ defines D if for all Kripke models M = (W,R, π) and teams T over
M,

M, T |= D(p1, . . . , pn) ⇐⇒ A |= φ,

where A is the first-order structure with universe T and relations AAi for 1 ≤
i ≤ n, where for all w ∈ T , w ∈ AAi ⇔ pi ∈ π(w).

We say that a generalized dependence atom D is FO-definable if there exists
a FO-formula φ defining D as above. Strictly speaking, the dependence atoms
considered in the literature are families of dependence atoms for different width,
e. g., the simple dependence =(p1, . . . , pn) is defined for arbitrary values of n.
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Let us say that such a family is (P-uniformly) FO-definable if there exists a
family of defining first-order formulae φn such that φn defines the atom of
width n and the mapping 1n 7→ 〈φn〉 is computable in polynomial time; that
is, an encoding of formula φn is computable in time polynomial in n. Note that
in particular this implies that |φn| = p(n) for some polynomial p.

As examples let us show how to define some well-studied generalized de-
pendence atoms as follows.

=(~p, q) ⇔ ∀w∀w′ ((
∧

1≤i≤nApi(w)↔ Api(w
′))→ (Aq(w)↔ Aq(w

′)))

~p ⊆ ~q ⇔ ∀w∃w′ (
∧

1≤i≤nApi(w)↔ Aqi(w
′))

~p | ~q ⇔ ∀w∀w′ (
∨

1≤i≤nApi(w)↔ ¬Aqi(w′))

The latter two so-called inclusion and exclusion atoms were introduced by
Galliani in [7]. In particular all above atoms are FO-definable. The indepen-
dence atom ~p1⊥~q~p2 is also FO-definable in the obvious way. 1

We use ML(D) to denote the extension of ML by a generalized dependence
atom D. We will next show that our complexity upper bounds from Section 3
can be generalized to cover ML(D) for certain FO-definable dependence atoms
D. For model checking, we simply use the fact that first-oder formulas can be
verified in polynomial time and obtain the following corollary:

Corollary 4.3 Let D be a P-uniformly FO-definable generalized dependence
atom. Then ML(D)-MC is in NP.

For the satisfiability problem, we generalize the proof of Theorem 3.5 in
case (vii) to dependence atoms which are definable by a [∃∗∀2∃∗] formula.

Corollary 4.4 Let D be a generalized dependence atom that is P-uniformly
FO-definable by a (family of) first-order formula(e) in the prefix class [∃∗∀2∃∗].
Then ML(D)-SAT is in NEXP.

5 Example: The Dining Cryptographers

The dining cryptographers [4], a standard example for anonymous broadcast,
is the following problem: A group of cryptographers {c0, . . . , cn−1} with n ≥
3 sit in a restaurant, where ci sits between ci−1 and ci+1. (Indices of the
cryptographers are always modulo n, and i always ranges over 0, . . . , n − 1).
After dinner, it turns out that someone already paid. There are only two
possibilities: Either one of the cryptographers secretly paid, or the NSA did.
Naturally, they want to know which of these is the case, but without revealing
the paying cryptographer if one of them paid. They use the following protocol
(in the protocol, ⊕ defines the exclusive-or of two bits, where b1 ⊕ b2 = b1 +
b2 mod 2):

1 Since the FO-formula φ may only depend on the width, we restrict ourselves to occurrences
of ~p1⊥~q~p2 where |~p1| = |~p2| = |~q|, if these sets are nonempty, which we can always assume
without loss of generality by repeating variable occurrences, the case that one of these sets
is empty can then be encoded into widths that are not multiples of 3 in a straightforward
manner.
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• For each i, let pi be 1 iff ci paid. Each ci knows the value of pi, but not of
pj for j 6= i. There is at most one i with pi = 1. The protocol computes the
value p0 ⊕ p1 ⊕ · · · ⊕ pn−1, which is the same as p0 ∨ p1 ∨ · · · ∨ pn−1.

• Each adjacent pair {ci, ci+1} computes a random bit bit{i,i+1}.

• Each ci publicly announces the value announcei = pi⊕ bit{i,i−1}⊕ bit{i,i+1}.

• Then, p0 ⊕ p1 ⊕ · · · ⊕ pn−1 = announce0 ⊕ announce1 ⊕ · · · ⊕ announcen−1.

The protocol clearly computes the correct answer, the interesting aspect is
the anonymity requirement : No cryptographer ci should learn anything about
the values pj for j 6= i except for what follows from the values pi or the result
(if ci or the NSA paid then cj did not). The protocol models anonymous
broadcast, since the message “1” is, if sent, received by all cryptographers, but
the sender remains anonymous. We formalize this using modal independence
logic. We start by capturing the protocol in the following Kripke model:

q0

pNSA p0 p1 . . . pn−1

0
.
.
.
0
0

0
.
.
.
0
1

. . .

1
.
.
.
1
1

0
.
.
.
0
0

0
.
.
.
0
1

. . .

1
.
.
.
1
1

0
.
.
.
0
0

0
.
.
.
0
1

. . .

1
.
.
.
1
1

0
.
.
.
0
0

0
.
.
.
0
1

. . .

1
.
.
.
1
1

The protocol starts in q0, the model then branches into states pNSA, p0, . . . ,
pn−1, depending on whether the NSA or some ci paid. Each of these states
has 2n successor states, for the 2n possible random bit values, these states are
final. The relation R is as indicated. We use the following variables:

• pNSA and pi are true if the NSA, resp. cryptographer ci paid, i.e., in the
states denoted with the same name as the variable and in their successors.

• each of the n variables bit{i,i+1} is true in the states where the bit shared
between ci and ci+1 is 1.

• each announcei is true in all final states which satisfy pi⊕bit{i,i−1}⊕bit{i,i+1}
(this encodes that the cryptographers follow the protocol).

For each ci, we define the set ~ki of the variables whose values ci knows
after the protocol run as ~ki :=

{
pi, bit{i,i−1}, bit{i,i+1}

}
∪ {announcej | j 6= i}.

Clearly, ci also knows the value announcei, but since this can be computed
from pi, bit{i,i−1} and bit{i,i+1}, we omit it from ~ki.

The formula expressing the anonymity requirement consists of several parts,
one global part and then, for each combination of cryptographers, a local part.
We start with the global part, which merely expresses that none of the individ-
ual bits that some cryptographer knows determines the value of any pi on its
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own, with the exception that if pi = 1, then of course cryptographer ci knows
that pj = 0 for all j 6= i. The global part ϕg is as follows:

ϕg =
∧

v∈{bit{i,i+1},announcei},
k∈{0,...,n−1}

33(v ∧ pk) ∧33(v ∧ pk) ∧33(v ∧ pk) ∧33(v ∧ pk)

∧
∧
i 6=j 33(pi ∧ pj) ∧33(pi ∧ pj) ∧33(pi ∧ pj)

The first line of the formula requires that, for every variable v of the
bit{i,i+1} or announcei-variables, and every cryptographer ck, every combi-
nation of truth values of v and pk appears. This encodes that the value of a
single variable v does not give away any information about the value of any pk.
The second line is a similar requirement for the value pi: If ci paid, then she
knows that cj did not pay, for i 6= j. However, the combination “pi ∧ pj” for
i 6= j should be the only one not appearing. Hence the formula requires that
all other combinations appear in some final state. The global part ϕg hence
ensures that each individual bit that ci knows does not tell him whether cj
paid, unless of course i = j or pi = 1.

The more interesting part is to encode that even the combination of the
above bits does not lead to additional knowledge; this is where the independence
atom is crucial. We introduce some notation to enumerate the variables in ~ki:

• for each i, let ~ki =
{
vi1, . . . , v

i
n+2

}
,

• for j ≤ k, let V ij→k =
{
vij , . . . , v

i
k

}
,

• let V ij = V ij→j .

We now use modal independence logic to express that if each single variable
from ~ki does not tell ci anything about the value of pk, then their combination
does not, either. This is achieved with the following formula:

ϕi,k = 22
(
(V i1⊥pkV i2 ) ∧ (V i1→2⊥pkV i3 ) ∧ · · · ∧ (V i1→n+1⊥pkV in+2)

)
.

This formula requires that for each j, each pair of variable assignments I1 to
V i1→j−1 and I2 to V ij that is “locally compatible” with some truth value P (pk)—
in other words, neither of these assignments by itself implies that the actual
value of pk is not P (pk)—is also compatible with that value for the combination
of I1 and I2, i.e., there is some state satisfying I1 ∪ I2 ∪ P (where the notion
of a state satisfying a propositional assignment is defined as expected and the
union of these assignments is well-defined since their domains are disjoint).

As a consequence, the formula requires that for each I : ~ki → {0, 1} and each

P : {pk} → {0, 1}, if for each v ∈ ~ki, there is a world w such that w |= I
∣∣
{v}

and w |= P , then there is a world w such that w |= I ∪ P .
The following proposition formally states that our above-developed formulas

indeed express the anonymity property of the protocol as intended. From a
single cryptographer ci’s point of view, it says that every observation I which
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can arise when ci follows the protocol, as long as some cryptographer different
from ci paid for the dinner, then for every k different from i, both possibilities—
ck paid for the dinner, or ck did not pay—cannot be ruled out by the observation
I. We say that an assignment I : ~ki ∪ {announcei} → {0, 1} is consistent if i
follows the protocol, i.e., if I(announcei) = I(pi)⊕ I(bit{i,i−1})⊕ I(bit{i,i+1}).
Note that in the models we are interested in, only consistent assignments appear
in final states.

Proposition 5.1 If a Kripke model M = (W,R, π) satisfies the formula ϕg ∧∧
i,k∈{0,...,n−1},i6=k ϕ

i,k at the world q0, then the team T = R(R({q0})) satisfies

the following condition: For each i 6= k ∈ {0, . . . , n− 1} and each consistent

I : ~ki ∪{announcei} → {0, 1} with I(pi) = 0 and ⊕n−1j=0 I(announcej) = 1, there

are worlds wI1 , w
I
2 ∈ T with wI1 |= I, pk and wI2 |= I, pk.

We omit the easy proof; the proposition immediately follows from the se-
mantics of the independence atom.

Our discussion only treats the anonymity property of the protocol. For a
complete treatment, one also has to address other aspects as e.g., correctness,
we omit this discussion here.

Note that in comparison to express the anonymity requirement using epis-
temic logic (see, e.g., [1,12]), we do not use the relation of the Kripke model
to represent knowledge, but to express branching time. In particular, our ap-
proach only uses a single modality.

6 Expressiveness

We now compare the expressiveness of MIL and classical modal logic, which we
abbreviate with ML. We show that MIL is strictly more expressive than ML
on teams (simply because MIL is not downwards closed, i.e., from M, T |= ϕ
and T ′ ⊆ T , it does not follow that M, T ′ |= ϕ), but that their expressiveness
coincides on singleton teams. However, on singletons, MIL is exponentially more
succinct than ML. We then study the expressiveness of MIL with a generalized
dependence atom as introduced in Section 4 instead of the independence atom.

6.1 Expressiveness of MIL and ML

Clearly, since MIL is not downward-closed, we obtain the following:

Proposition 6.1 There is an MIL-formula ϕMIL such that there is no ML-
formula ϕML with the property that M,T |= ϕMIL if and only if M,T |= ϕML for
all models M and all teams T .

Proof. This is true for every formula ϕMIL that is not downwards closed: In
this case we have teams T ′ ( T of the same model M with M,T |= ϕMIL and
M,T ′ 6|= ϕMIL. However, for any modal formula ϕML, clearly if M,w |= ϕML for
all w ∈ T , then the same is true for all w ∈ T ′ as T ′ ⊆ T . An easy example
for a formula that is not downwards closed is x⊥∅y. This formula is satisfied
on a team T in which every combination of truth values of x and y is realized
in some world, but not on its subset T ′ containing only worlds w and w′ with
assignments x ∧ y and x ∧ y, respectively. 2
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The proposition remains true for classical modal logic extended with a
global modality, or for MDL, since these logics remain downward-closed. In [13],
it was shown that MDL is as expressive as classical modal logic on singletons.
Therefore, a natural question to ask is whether on singletons, MIL is still more
expressive than ML. We show that this is not the case, but we will also see that
MIL is exponentially more succinct than ML, even on singletons. For our proof,
we use bisimulations, which are a well-established tool to compare expressive-
ness of different concepts. We recall the classical definition of bisimulation for
modal logic:

Definition 6.2 Let M = (W,R, π) and M ′ = (W ′, R′, π′) be Kripke models.
A relation Z ⊆ W ×W ′ is a modal bisimulation if for every (w,w′) ∈ Z, the
following holds:

• π(w) = π′(w′), i.e., w and w′ satisfy the same propositional variables,

• if u is an R-successor of w, then there is an R′-successor u′ of w′ such that
(u, u′) ∈ Z (forward condition),

• if u′ is an R′-successor of w′, then there is an R-successor u of w such that
(u, u′) ∈ Z (backward condition).

It is well-known and easy to see that modal logic is invariant under bisim-
ulation, i.e., if Z is a bisimulation and (w,w′) ∈ Z, then w and w′ satisfy the
same modal formulas. We now “lift” this property to modal independence logic
by considering a bisimulation Z as above on the team level:

Definition 6.3 Let M = (W,R, π) and M ′ = (W ′, R′, π′) be models, let T ⊆
W and T ′ ⊆ W ′ be teams. Let Z ⊆ W ×W ′ be a modal bisimulation. Then
T and T ′ are Z-bisimilar if the following is true:

• for each w ∈ T , there is a w′ ∈ T ′ such that (w,w′) ∈ Z,

• for each w′ ∈ T ′, there is a w ∈ T such that (w,w′) ∈ Z.

We now show that on the team level, bisimulation for modal independence
logic plays the same role as it does on the world level for modal logic: Simply
stated, bisimilar teams satisfy the same formulas. Due to Lemma 3.1, the result
also applies to modal dependence logic. This lemma may be of independent
interest (for example, it implies a “family-of-trees”-like model property), we
use it to compare the expressiveness of MIL and ML.

Lemma 6.4 Let M = (W,R, π) and M ′ = (W ′, R′, π′) be Kripke models, let
T ⊆W and T ′ ⊆W ′ be teams that are Z-bisimilar for a modal bisimulation Z.
Then for any MIL-formula ϕ, we have that M,T |= ϕ if and only if M ′, T ′ |= ϕ.

Proof. We show the lemma by induction on ϕ. Clearly it suffices to show that
if M,T |=MIL ϕ, then M ′, T ′ |=MIL ϕ. Hence assume M,T |=MIL ϕ.

• Let ϕ = x for some propositional variable x, and let w′ ∈ T ′. Since T and T ′

are Z-bisimilar, there is a world w ∈ T with (w,w′) ∈ Z. Since M,T |=MIL

x, the variable x is true at w in M . Since Z is a modal bisimulation, it
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follows that x is true at w′ in M ′, and hence every world w′ ∈ T satisfies x.
Therefore, it follows that M ′, T ′ |= ϕ.

• If ϕ = ¬x, the proof is the same as above.

• Let ϕ = ϕ1 ∧ ϕ2. This case trivially follows inductively.

• Let ϕ = ϕ1 ∨ ϕ2. Since M,T |= ϕ, it follows that T = T1 ∪ T2 for teams T1
and T2 with M,T1 |= ϕ1 and M,T2 |= ϕ2. We define teams T ′1 and T ′2 as
follows:
· T ′1 = {w′ ∈ T ′ | (w,w′) ∈ Z for some w ∈ T1},
· T ′2 = {w′ ∈ T ′ | (w,w′) ∈ Z for some w ∈ T2}.
We prove the following:

(i) T ′ = T ′1 ∪ T ′2
(ii) T1 and T ′1 are Z-bisimilar,
(iii) T2 and T ′2 are Z-bisimilar.

By induction, it then follows that M ′, T ′1 |= ϕ1 and M ′, T ′2 |= ϕ2, which,
since T ′ = T ′1 ∪ T ′2 implies that M ′, T ′ |= ϕ. We prove these points:

(i) By construction, T ′1 ∪ T ′2 ⊆ T ′. Hence let w′ ∈ T ′. Since T and T ′ are
Z-bisimilar, there is some w ∈ T such that (w,w′) ∈ Z. Since T = T1∪T2,
we can, without loss of generality, assume that w ∈ T1. By definition of
T ′1, it follows that w′ ∈ T ′1.

(ii) First let w ∈ T1 ⊆ T . Since T and T ′ are Z-bisimilar, there is some w′ ∈ T ′
such that (w,w′) ∈ Z. Due to the definition of T ′1, it follows that w′ ∈ T ′1.
For the converse, assume that w′ ∈ T ′1. By definition, there is some w ∈ T1
such that (w,w′) ∈ Z.

(iii) This follows with the same proof as for T1 and T ′1.
Hence M ′, T ′ |= ϕ as required.

• Let ϕ = 3ψ. Since M,T |= ϕ, there exists a team U ⊆ R(T ) such that for
each w ∈ T , the set u(w) := R({w}) ∩ T is not empty, and M,U |= ψ. We
define a corresponding team U ′ of M ′ as follows: Start with U ′ = ∅ and then
for each (w,w′) ∈ (T × T ′) ∩ Z, do the following:
· For each R-successor v of w that is an element of U , since Z is a modal

bisimulation and (w,w′) ∈ Z, there is at least one R′-successor v′ of w′

with (v, v′) ∈ Z. Add all such v′ to the set U ′.
By construction, U ′ only contains worlds that are R′-successors of worlds

in T ′. Hence to show that M ′, T ′ |= 3ψ, it remains to show that
(i) for each w′ ∈ T ′, the team U ′ contains a world v′ that is an R′-successor

of w′,
(ii) the teams U and U ′ are Z-bisimilar.

The claim then follows by induction, since M,U |= ψ. We now show the
above two points:

(i) Let w′ ∈ T ′. Since T and T ′ are Z-bisimilar, there is some w ∈ T with
(w,w′) ∈ Z. Due to the choice of U , there is some v ∈ U which is an
R-successor of w. By construction of the set U ′, a world v′ that is an
R′-successor of w′ has been added to U ′.

(ii) By construction, for every R-successor v of some w in T , at least one v′
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has been added to U ′ with (v, v′) ∈ Z. For the converse, by construction
of U ′, for every v′ added to U ′ there is a v ∈ U with (v, v′) ∈ Z.
Hence M ′, T ′ |= 3ψ as required.

• Now assume that ϕ = 2ψ, and let U be the set of all R-successors of worlds
in T , let U ′ be the set of all R′-successors of worlds in T ′. By induction,
it suffices to show that U and U ′ are Z-bisimilar. Hence let v ∈ U be the
R-successor of some w ∈ T . Since T and T ′ are Z-bisimilar, there is some
w′ ∈ T ′ such that (w,w′) ∈ Z. Since v is an R-successor of w, and since Z
is a modal bisimulation, there is some v′ which is an R′-successor of w′ such
that (v, v′) ∈ Z. Since v′ is an R′-successor of w′, it follows that v′ ∈ U ′.
The converse direction follows analogously.

• Let ϕ = ~p1⊥~q ~p2. To show that M ′, T ′ |= ϕ, let u, u′ ∈ T ′ with the same
truth values of the variables in q. Since T and T ′ are bisimilar, there are
worlds w,w′ ∈ T such that (w, u) ∈ Z and (w′, u′) ∈ Z. Since Z is a
modal bisimulation, the Z-related worlds have the same propositional truth
assignment. In particular, w and w′ agree on the values for the variables in
q. Since M,T |= ϕ, there is some world w′′ ∈ T such that
· w′′ ≡~q w′ ≡~q w, and since Z is a modal bisimulation it follows that w′′ and

both u and u′ have the same ~q-assignment,
· w′′ ≡ ~p1 w, and hence w′′ and u have the same ~p1-assignment,
· w′′ ≡ ~p2 w

′, and hence w′′ and u′ have the same ~p2-assignment.
Since T and T ′ are Z-bisimilar, there is a world u′′ ∈ T ′ such that (w′′, u′′) ∈
Z. Since Z is a modal bisimulation, w′′ and u′′ satisfy the same propositional
variables, and hence for u′′ we have that
· u′′ ≡~q u, u′′ ≡~q u′
· u′′ ≡ ~p1 u
· u′′ ≡ ~p2 u

′.
Therefore, M ′, T ′ |= ϕ as required.

2

With Lemma 6.4 and an application of van Benthem’s Theorem [2], it fol-
lows directly that MIL and ML are in fact equivalent in expressiveness on sin-
gletons:

Theorem 6.5 For each MIL-formula ϕMIL, there is an ML-formula ϕML such
that ϕML and ϕMIL are equivalent on singletons.

Proof. Due to Lemma 6.4, we know that MIL is invariant under bisimulation
of teams. Since for singleton teams, bisimulation on teams and bisimulation
on worlds coincide, it follows that MIL on singletons is invariant under modal
bisimulation. Clearly, when evaluating an MIL-formula ϕMIL on a singleton
team {w}, all worlds in the model that have a distance from w which exceeds
the modal depth (i.e., maximal nesting degree of modal operators) of ϕ, are
irrelevant for the question whether M, {w} |= ϕ. Therefore, ϕMIL, evaluated
on singletons, captures a property of Kripke models that is invariant under
modal bisimulation and only depends on the worlds that can be reached in
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at most md(ϕMIL) steps. Due to [2], such a property can be encoded by a
standard modal logic formula ϕML. (The formula ϕML can be obtained, for
example, as the disjunction of formulas ϕM,w which, for each model M and
world w with M, {w} |=MIL ϕMIL, encodes the finite tree unfolding of M,w up to
depth md(ϕMIL), up to bisimulation, and only taking into account the variables
appearing in ϕMIL. This unfolding is finite and hence first-order definable,
therefore we can apply the result from [2].) 2

Since the application of van Benthem’s Theorem yields a potentially very
large formula, the above result does not give a “efficient” translation from MIL
to ML. It turns out that one cannot do much better: MIL is exponentially more
succinct than ML.

Theorem 6.6 There is a family of MIL-formulas (ϕi)i∈N such that the length
of ϕi is quadratic in i, and for any family of ML-formulas (ψi)i∈N such that for
all i, ϕi and ψi are equivalent on singletons, the length of ψi grows exponentially
in i.

Proof. Let ϕi be the formula describing the security property of the dining
cryptographers protocol in Section 5, with every sequence 33 replaced with
3. As argued in that section, if ϕi is satisfied at M, {w}, then the number of
propositional assignments appearing in the set of worlds that can be reached
from w in one step (two steps for the original formula) is exponential in i. Now
let (ψi)i∈N a family of ML-formulas such that ϕi and ψi are locally equivalent
for each i. Since ψi is locally equivalent to ϕi, we can without loss of generality
assume that md(ψi) = 1 for all i (if ψi contains deeper nestings of modal
operators, the formula can be simplified since the truth value of ψi cannot
depend on worlds reachable in 2 or more steps). Therefore, modal operators
do not appear nested in ψi. Without loss of generality, we can assume that
only 3 appears in ψ. It is clear that if M,w |= ψi, then there is a submodel of
M which contains w, and in which the number of successors of w is bounded
by the number of 3-operators appearing in ψi. Therefore, ψi must have an
exponential number of 3-operators, which proves the theorem. 2

As far as we know, the analogue of Theorem 6.6 for MDL has not yet been
showed. Sevenster [13] has shown the analogue of Theorem 6.5 for MDL, but
he did not show that going from MDL to ML (over singletons) inevitably leads
to an exponential blow-up in the formula size. On the other hand, a closely
related result showing that any formula of ML(>), where > is the classical
disjunction) that is logically equivalent to

=(p1, . . . , pn, q),

has to have length exponential in n was obtained in [9].

6.2 Expressiveness of ML with Generalized Dependence Atoms

Theorem 6.5 applies not only to MIL, but (with the same proof) to all extensions
of MIL with a dependence operator that, evaluated on a team T , depends only
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on the set of propositional assignments that occur in some world of the team.
This is because the set of assignments is clearly invariant under bisimulation.
As examples, operators like -those from exclusion logic or inclusion logic can be
added to MIL without increasing its expressiveness. Hence, in light of Section 4,
a natural question to ask is the following: For which generalized dependence
atoms D is the logic ML(D) as expressive as ML on singletons, and which atoms
do in fact add expressiveness?

–It is easy to see that there are generalized dependence atoms D that,
even on singletons, add expressiveness beyond classical modal logic (and hence,
beyond MIL). This is because with no restriction on the dependence operator
D, one can express properties that depend on the number of worlds in a team,
which clearly cannot be done in ML. As an example, consider the following:

w

u

Model M

w′

u′1 u′2

Model M ′

Example 6.7 Let D be the relation {(0)}, and consider the models M and
M ′ above, where the single variable x is false in every world of both models.
It is easy to see that M, {w} |= 2D(x), while M ′, {w′} 6|= 2D(x): For the
model M , the set of successors of w is the team T = {u}, since x is false in
u, it follows that T (x) = (0), hence T |= D(x). On the other hand, the set of
successors of w′ in M ′ is T ′ = {u1, u2}, hence T ′(x) = (0, 0) and T ′ 6|= D(x).

Clearly, no ML-formula can distinguish M,w and M ′, w′, since the relation
Z = {(w,w′), (u, u1), (u, u2)} is a bisimulation.

However, as mentioned earlier, the proof of Theorem 6.5 can be generalized
to handle the generalized dependence atoms discussed earlier. In general, we
obtain the following result: For a D which is definable using first-order formu-
las without equality, the expressiveness of ML(D) coincides with that on ML
for singletons. For the proof, we show that ML(D) remains invariant under
bisimulation, and then apply the proof of Theorem 6.5 again. On the other
hand, clearly if D is not FO-definable, then D cannot be expressed in modal
logic, as modal logic can be translated to first-order logic with the standard
translation, and if D cannot be expressed without equality, then D cannot be
invariant under bisimulation. Hence we obtain the following theorem:

Theorem 6.8 Let D be a generalized dependence atom. Then the following
statements are equivalent:

(i) D can be expressed in first-order logic without equality,

(ii) ML(D) and ML are equally expressive over singletons, i.e., for each
ML(D)-formula ϕMIL, there is an ML-formula ϕML such that ϕMIL and
ϕML are equivalent on singletons.
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Proof. We first assume that D is FO-definable. As mentioned above, it suffices
to adapt the proof of Lemma 6.4 to ML(D). Clearly, in the induction, we
only need to cover the case that ϕ = D(p1, . . . , pn) for propositional variables
p1, . . . , pn. Hence assume that M,T |= D(p1, . . . , pn), we show that M ′, T ′ |=
D(p1, . . . , pn), where T and T ′ are Z-bisimilar for a modal bisimulation Z.

Let φ be the first-order formula defining D. We prove the claim inductively
over the formula, where we only cover the key cases explicitly. Let the free
variables of φ be ω1, . . . , ωt. We show that if w1, . . . , wt ∈ T and w′1, . . . , w

′
n ∈

T ′ such that (wi, w
′
i) ∈ Z for all i, then φ(w1, . . . , wn) evaluates to true if and

only if φ(w′1, . . . , w
′
n) does. If φ is quantifier-free, the claim is clear: Since Z is

a modal bisimulation, wi and w′i satisfy the same propositional variables, and
due to the choice of φ, the truth value of φ only depends on the propositional
assignments of the worlds instantiating the variables ω1, . . . , ωn. The second
relevant case is when φ = ∃ωψ(ω, ω1, . . . , ωt). If M,T |= φ, then there is a world
w ∈ T such that ψ(w,w1, . . . , wt) is true. Since T and T ′ are Z-bisimilar, it
follows that there is a world w′ ∈ T ′ such that (w,w′) ∈ Z. Due to induction,
it follows that if ψ(w,w1, . . . , wt) is true, then so is ψ(w′, w′1, . . . , w

′
t). This

completes the proof that ML(D) and ML are equally expressive over singletons.
For the converse, assume that ML(D) is as expressive as ML over singletons.

In particular, then for every sequence x1, . . . , xn of variables, there is a modal
formula ϕ such that for every model M and every world w ∈ M , we have
that M,w |= ϕ if and only if M, {w} |= 2D(x1, . . . , xn). By the standard
translation from modal logic to first-order logic, this implies that D(x1, . . . , xn)
can be expressed as a FO-formula φD.

Since whether M, T |= D(x1, . . . , xn) is invariant under bisimulation (this
can be seen by adding a single world w0, connected to all w′ ∈ T and evaluat-
ing the formula 2D(x1, . . . , xn) at the singleton team {w0}—since ML(D) on
singletons is equivalent to ML, which is invariant under bisimulation, it follows
that ML(D) on singletons is invariant under bisimulation as well), it follows
that whetherM, T |= D(x1, . . . , xn) is in particular invariant under adding/re-
moving identical copies of worlds in T . Therefore, φD can be rewritten into a
formula without equality. 2

7 Conclusion and Open questions

In this paper we introduced modal independence logic MIL and settled the com-
putational complexity of its satisfiability and model checking problem. Further-
more we compared the expressivity of MIL with that of classical modal logic. It
turned out that most of our results can be generalized to modal logic extended
with various so called generalized dependence atoms.

We end this paper by the following interesting open questions:

(i) Are there classes of frames definable in MIL that cannot be defined with
ML?

(ii) Is it possible to formulate and prove a version of van Benthem’s Theorem
for our generalization of bisimilarity from the world level to the team level
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(see Definition 6.3)?
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