Modal logics for region-based theories of space

Philippe Balbiani, Tinko Tinchev, Dimiter Vakarelov Sofia, Toulouse

Syntax

- Boolean terms
$-a::=p|0| \neg a \mid\left(a_{1} \vee a_{2}\right)$
- Modal formulas
$-\phi::=\left(a_{1} \oplus a_{2}\right)|0| \neg \phi\left|\left(\phi_{1} \vee \phi_{2}\right)\right|\left(a_{1}=a_{2}\right)$
- Abbreviations (Boolean terms)

$$
-1::=\neg 0,\left(a_{1} \wedge a_{2}\right)::=\neg\left(\neg a_{1} \vee \neg a_{2}\right)
$$

- Abbreviations (modal formulas)

$$
-1::=\neg 0,\left(\phi_{1} \wedge \phi_{2}\right)::=\neg\left(\neg \phi_{1} \vee \neg \phi_{2}\right)
$$

- $\left(a_{1} \oplus a_{2}\right)$ is equivalent to $<U>\left(a_{1} \wedge<R>a_{2}\right)$ and $\left(a_{1}=a_{2}\right)$ is equivalent to $[U]\left(a_{1} \leftrightarrow a_{2}\right)$

Semantics

- A model is a structure of the form $M=<W, R, V>$ where
- W is a nonempty set
- R is a binary relation on W
- V associates a subset $V(p)$ of W to each Boolean variable p
- \underline{V} associates a subset $\underline{V}(a)$ of W to each Boolean term a
- $\underline{V}(p)=V(p)$
$-\underline{V}(0)=\varnothing, \underline{V}(\neg a)=W \underline{V}(a), \underline{V}\left(a_{1} \vee a_{2}\right)=\underline{V}\left(a_{1}\right) \cup \underline{V}\left(a_{2}\right)$
- Remark that

$$
-\underline{V}(1)=W, \underline{V}\left(a_{1} \wedge a_{2}\right)=\underline{V}\left(a_{1}\right) \cap \underline{V}\left(a_{2}\right)
$$

$$
\underline{V}\left(a_{l}\right)
$$

$$
\underline{V}\left(a_{2}\right)
$$

M sat $\left(a_{1} \oplus a_{2}\right)$

Semantics

- Satisfiability of ϕ in $M=<W, R, V>$ is defined by:
- M sat $\left(a_{1} \oplus a_{2}\right)$ iff there exists $w \in \underline{V}\left(a_{1}\right)$ such that for some $w^{\prime} \in R(w)$, $w^{\prime} \in \underline{V}\left(a_{2}\right)$
- Not M sat $0, M$ sat $\neg \phi$ iff not M sat ϕ, M sat $\left(\phi_{1} \vee \phi_{2}\right)$ iff M sat ϕ_{1} or M sat ϕ_{2}
- M sat $\left(\boldsymbol{a}_{1}=a_{2}\right)$ iff $\underline{V}\left(a_{1}\right)=\underline{V}\left(a_{2}\right)$
- Remark that
- M sat $1, M$ sat $\left(\phi_{1} \wedge \phi_{2}\right)$ iff M sat ϕ_{1} and M sat ϕ_{2}
- Validity of modal formula ϕ in frame $F=\langle W, R>$ is defined by:
- F val ϕ iff for all models $M=<W, R, V>$ based on F, M sat ϕ

Semantics

- Correspondence theory
$-F \operatorname{val}(p \neq 0) \rightarrow(p \oplus p)$ iff $\forall w \in W(w \boldsymbol{R} w)$
$-F$ val $(p \oplus q) \rightarrow(q \oplus p)$ iff $\forall w, w^{\prime} \in W\left(w R w^{\prime} \rightarrow w^{\prime} \boldsymbol{R} w\right)$
$-F \operatorname{val}(p \neq 0) \rightarrow(p \oplus 1)$ iff $\forall w \in W \exists w^{\prime} \in W\left(w \boldsymbol{R} w^{\prime}\right)$
$-F$ val $(p \neq 0) \rightarrow(1 \oplus p)$ iff $\forall w \in W \exists w^{\prime} \in W\left(w^{\prime} R w\right)$
$-F \operatorname{val}(p \neq 0) \rightarrow(p \oplus 1) \mathrm{v}(1 \oplus p)$ iff $\forall w \in W \exists w^{\prime} \in W\left(w R w^{\prime} v w^{\prime} \mathbf{R} w\right)$
$-F \operatorname{val}(1 \oplus 1)$ iff $\exists w, w^{\prime} \in W(w \boldsymbol{R} w)$
$-F \operatorname{val}(p \neq 0) \wedge(q \neq 0) \rightarrow(p \oplus q)$ iff $\forall w, w^{\prime} \in W(w R w)$
$-F \operatorname{val}(p \neq 0) \wedge(p \neq 1) \rightarrow(p \oplus \neg p)$ iff R is connected

Bisimulation

- Let $M=<W, R, V>$ and $M^{\prime}=<W^{\prime}, R^{\prime}, V^{\prime}>$ be models
- A bisimulation between M and M^{\prime} is a binary relation Z between W and W^{\prime} such that
- $\forall w \in W \exists w^{\prime} \in W^{\prime}(w Z w)$
- $\forall w^{\prime} \in W \exists w \in W(w Z w)$
- $\forall w_{1}, w_{2} \in W \exists w_{1}{ }^{\prime}, w_{2}{ }^{\prime} \in W^{\prime}\left(w_{1} R w_{2} \rightarrow w_{1}{ }^{\prime} R^{\prime} w_{2}\right)$
- $\forall w_{1}{ }^{\prime}, w_{2}{ }^{\prime} \in W \exists w_{1}, w_{2} \in W\left(w_{1}{ }^{\prime} R w_{2}{ }^{\prime} \rightarrow w_{1} R w_{2}\right)$
- $\forall w \in W \forall w^{\prime} \in W^{\prime}\left(w Z w^{\prime} \rightarrow\left(w \in V(p) \leftrightarrow w^{\prime} \in V^{\prime}(p)\right)\right)$

Bisimulation

- Bisimulation theorem
- If M and M^{\prime} are bisimilar then they are modally equivalent
- Hennessy-Milner theorem
- If M and M^{\prime} are finite and modally equivalent then they are bisimilar
- Van Benthem characterization theorem
- For all 1st-order sentences A like
- $A::=R\left(x_{1}, x_{2}\right)|P(x)| O|\neg \phi|\left(\phi_{1} \vee \phi_{2}\right) \mid \forall x A$
$-A$ is invariant for bisimulations iff A is equivalent to the standard translation of a modal formula

Axiomatization/completeness

- Axioms of $\boldsymbol{L}_{\text {min }}$
- Identity axioms:
- $(a=a),\left(a_{1}=a_{2}\right) \rightarrow\left(a_{2}=a_{1}\right),\left(a_{1}=a_{2}\right) \wedge\left(a_{2}=a_{3}\right) \rightarrow\left(a_{1}=a_{3}\right)$
- Congruence axioms:
- $(a=b) \rightarrow(\neg a=\neg b),\left(a_{1}=b_{1}\right) \wedge\left(a_{2}=b_{2}\right) \rightarrow\left(\left(a_{1} \vee a_{2}\right)=\left(b_{1} \vee b_{2}\right)\right)$
- Boolean axioms:
- $(\boldsymbol{a}=\boldsymbol{b})$ if a and b are equivalent Boolean terms
- $(0 \neq 1)$

Axiomatization/completeness

- Axioms of $\boldsymbol{L}_{\text {min }}$
- Proximity axioms:
- $(a \oplus b) \rightarrow(a \neq 0) \wedge(b \neq 0)$
- $((a \vee b) \oplus c) \leftrightarrow(a \oplus c) \vee(b \oplus c)$
- $(a \oplus(b \vee c)) \leftrightarrow(a \oplus b) \vee(a \oplus c)$
- Completeness of $L_{\text {min }}$: For all modal formulas ϕ, ϕ is provable from the axioms of $L_{\text {min }}$ iff ϕ is valid in the class of all frames $F=\langle W, R\rangle$

Axiomatization/completeness

- Let Σ be a set of modal formulas
- Axioms of L_{Σ} are those of $L_{\text {min }}$ plus the following
- Σ-axioms: Every modal formula $\psi\left(a_{1}, \ldots, a_{n}\right)$ which can be obtained from a modal formula $\psi\left(p_{1}, \ldots, p_{n}\right)$ of Σ by uniformly substituting the Boolean terms a_{1}, \ldots, a_{n} for the Boolean variables p_{1}, \ldots, p_{n}
- Completeness of L_{Σ} : If Σ is finite then for all modal formulas ϕ, ϕ is provable from the axioms of L_{Σ} iff ϕ is valid in the nonempty class of all frames $F=<W, R>$ such that $<W, R>$ val Σ

Axiomatization/completeness

- A first extension of $L_{\text {min }}$
- Let $\Sigma_{\text {sym }}$ be $\{(p \oplus q) \rightarrow(q \oplus p)\}$
- The axioms of $L_{\Sigma \text { sym }}$ are those of $L_{\text {min }}$ plus every modal formula like $(a \oplus b) \rightarrow(b \oplus a)$
- Completeness of $\boldsymbol{L}_{\Sigma \text { sym }}$: For all modal formulas ϕ, ϕ is provable from the axioms of $L_{\text {ssym }}$ iff ϕ is valid in the nonempty class of all frames F $=<W, R>$ such that $\forall w, w^{\prime} \in W\left(w \boldsymbol{R} \boldsymbol{w}^{\prime} \rightarrow w^{\prime} \boldsymbol{R} \boldsymbol{w}\right)$

Axiomatization/completeness

- A second extension of $L_{\text {min }}$
- Let $\Sigma_{\text {con }}$ be $\{(p \neq 0) \wedge(p \neq 1) \rightarrow(p \oplus \neg p)\}$
- The axioms of $\boldsymbol{L}_{\Sigma c o n}$ are those of $L_{\text {min }}$ plus every modal formula like $(a \neq 0) \wedge(a \neq 1) \rightarrow(a \oplus \neg a)$
- Completeness of $L_{\Sigma c o n}$: For all modal formulas ϕ, ϕ is provable from the axioms of $L_{\text {scon }}$ iff ϕ is valid in the nonempty class of all frames F $=<W, R>$ such that \boldsymbol{R} is connected

Axiomatization/completeness

- Open problems
- Find a set Σ of modal formulas such that L_{Σ} is not complete with respect to the nonempty class of all frames $F=\langle W, R\rangle$ such that $<W, R>$ val Σ
- Find a set Σ of modal formulas such that the class of all frames \boldsymbol{F} $=\langle W, R\rangle$ such that $\langle W, R\rangle$ val Σ is empty

Canonicity

- Given a set Σ of modal formulas and a maximal L_{Σ}-consistent set S of modal formulas, the canonical frame of \boldsymbol{L}_{Σ} defined by S is the structure $F_{S}=<W_{S}, R_{S}>$ defined as follows
- W_{S} is the set of all maximal consistent sets w of Boolean terms such that for all Boolean terms $a \in w,(a \neq 0) \in S$
- R_{S} is the binary relation on W_{S} such that for all $w, w^{\prime} \in W_{S}, w R_{S} w^{\prime}$ iff for all Boolean terms $a \in w$ and for all Boolean terms $a^{\prime} \in w^{\prime}$, $(a \oplus a) \in S$

Canonicity

- Let Σ be a set of modal formulas
- L_{Σ} is strongly canonical iff for all maximal L_{Σ}-consistent sets S of modal formulas, the canonical frame $F_{S}=<W_{S}, R_{S}>$ of L_{Σ} defined by S validates L_{Σ}
- L_{Σ} is weakly canonical iff there exists a maximal L_{Σ}-consistent set S of modal formulas such that the canonical frame $F_{S}=\left\langle W_{S}, R_{S}>\right.$ of L_{Σ} defined by S validates L_{Σ}

Canonicity

- Strong canonicity of $L_{\text {min }}$: For all maximal $L_{\text {min }}$-consistent sets S of modal formulas, the canonical frame $F_{S}=\left\langle W_{S}, R_{S}>\right.$ of $L_{\text {min }}$ defined by S validates $L_{\text {min }}$
- Weak canonicity of $\boldsymbol{L}_{m i n}$: There exists a maximal $L_{m i n}$-consistent set S of modal formulas such that the canonical frame $F_{S}=\left\langle W_{S}, R_{S}>\right.$ of $L_{\text {min }}$ defined by S validates $L_{\text {min }}$

Canonicity

- A first extension of $L_{\text {min }}$
- Let $\Sigma_{\text {sym }}$ be $\{(p \oplus q) \rightarrow(q \oplus p)\}$
- The axioms of $L_{\text {ミsym }}$ are those of $L_{\text {min }}$ plus every modal formula like $(a \oplus b) \rightarrow(b \oplus a)$
- Strong canonicity of $L_{\Sigma s y m}$: For all maximal $L_{\Sigma s y m}$-consistent sets S of modal formulas, the canonical frame $F_{S}=<W_{S}, R_{S}>$ of $L_{\text {Ssym }}$ defined by S validates $L_{\text {ssym }}$

Canonicity

- A second extension of $L_{\text {min }}$
- Let $\Sigma_{\text {con }}$ be $\{(p \neq 0) \wedge(p \neq 1) \rightarrow(p \oplus \neg p)\}$
- The axioms of $L_{\Sigma c o n}$ are those of $L_{\text {min }}$ plus every modal formula like $(a \neq 0) \wedge(a \neq 1) \rightarrow(a \oplus \neg a)$
- Non strong canonicity of $L_{\Sigma c o n}$: There exists a maximal $L_{\Sigma c o n}{ }^{-}$ consistent sets S of modal formulas such that the canonical frame $F_{S}=$ $<W_{S}, R_{S}>$ of $L_{\text {عcon }}$ defined by S does not validate $L_{\text {عcon }}$
- Weak canonicity of $L_{\Sigma c o n}$: There exists a maximal $L_{\Sigma c o n}$-consistent sets S of modal formulas such that the canonical frame $F_{S}=\left\langle W_{S}, R_{S}\right\rangle$ of $L_{\Sigma c o n}$ defined by S validates $L_{\Sigma c o n}$

Canonicity

- Open problems
- Find a set Σ of modal formulas such that $\boldsymbol{L}_{\boldsymbol{\Sigma}}$ is not weakly canonical
- Find a syntactic condition on the sets Σ of modal formulas implying that $\boldsymbol{L}_{\boldsymbol{\Sigma}}$ is strongly canonical
- Find a syntactic condition on the sets Σ of modal formulas implying that $\boldsymbol{L}_{\boldsymbol{\Sigma}}$ is weakly canonical

Decidability/complexity

- Let sat- $L_{\text {min }}$ be the following decision problem
- Input: A modal formula ϕ
- Output: Determine if there exists a model $M=<W, R, V>$ such that M sat ϕ
- Complexity of sat- $L_{\text {min }}$: sat- $L_{\text {min }}$ is NP-complete

Decidability/complexity

- Let Σ be a set of modal formulas
- Let sat- L_{Σ} be the following decision problem
- Input: A modal formula ϕ
- Output: Determine if there exists a model $M=<W, R, V>$ such that M sat ϕ and $<W, R>\operatorname{val} \Sigma$
- Complexity of sat- L_{Σ} (upper bound): If Σ is finite then sat- L_{Σ} is in NEXPTIME
- Complexity of sat- L_{Σ} (lower bound): If the class of all frames $F=$ $<W, R>$ such that $\langle W, R\rangle$ val Σ is nonempty then sat- L_{Σ} is NP-hard

Decidability/complexity

- A first extension of $L_{\text {min }}$
- Let $\Sigma_{\text {sym }}$ be $\{(p \oplus q) \rightarrow(q \oplus p)\}$
- The axioms of $L_{\text {ssym }}$ are those of $L_{\text {min }}$ plus every modal formula like $(a \oplus b) \rightarrow(b \oplus a)$
- Complexity of sat- $L_{\text {ssym }}$: sat- $L_{\text {Ssym }}$ is NP-complete

Decidability/complexity

- A second extension of $L_{\text {min }}$
- Let $\Sigma_{\text {con }}$ be $\{(p \neq 0) \wedge(p \neq 1) \rightarrow(p \oplus \neg p)\}$
- The axioms of $L_{\Sigma c o n}$ are those of $L_{\text {min }}$ plus every modal formula like $(a \neq 0) \wedge(a \neq 1) \rightarrow(a \oplus \neg a)$
- Complexity of sat- $L_{\Sigma c o n}:$ sat- $L_{\Sigma c o n}$ is PSPACE-complete

Decidability/complexity

- Open problems
- Find a set Σ of modal formulas such that sat- L_{Σ} is EXPTIMEcomplete
- Find a set Σ of modal formulas such that sat- L_{Σ} is NEXPTIMEcomplete
- Find a set Σ of modal formulas such that sat- L_{Σ} is not decidable

Topological interpretation

- A topological model is a structure of the form $M=\langle X, T, V\rangle$ where
$-\langle X, T\rangle$ is a topological space
- V associates a regular closed subset $V(p)$ of $<X, T>$ to each Boolean variable p
- \underline{V} associates a regular closed subset $\underline{V}(a)$ of $\langle X, T\rangle$ to each Boolean term a

$$
\begin{aligned}
& -\underline{V}(p)=V(p) \\
& -\underline{V}(0)=\varnothing, \underline{V}(\neg a)=C l(X \underline{V}(a)),\left(a_{1} \vee a_{2}\right)=\underline{V}\left(a_{1}\right) \cup \underline{V}\left(a_{2}\right)
\end{aligned}
$$

- Remark that

$$
-\underline{V}(1)=X, \underline{V}\left(a_{1} \wedge a_{2}\right)=C l\left(\operatorname{In}\left(\underline{V}\left(a_{1}\right) \cap \underline{V}\left(a_{2}\right)\right)\right)
$$

Topological interpretation

- Satisfiability of ϕ in $M=<X, T, V>$ is defined by:
$-M$ sat $\left(a_{1} \oplus a_{2}\right)$ iff $\underline{V}\left(a_{1}\right) \cap \underline{V}\left(a_{2}\right) \neq \varnothing$
- Not M sat $0, M$ sat $\neg \phi$ iff not M sat ϕ, M sat $\left(\phi_{1} \vee \phi_{2}\right)$ iff M sat ϕ_{1} or M sat ϕ_{2}
- M sat $\left(\boldsymbol{a}_{1}=\boldsymbol{a}_{2}\right)$ iff $\underline{V}\left(a_{1}\right)=\underline{V}\left(a_{2}\right)$
- Remark that
- M sat $1, M$ sat $\left(\phi_{1} \wedge \phi_{2}\right)$ iff M sat ϕ_{1} and M sat ϕ_{2}

Topological interpretation

- A first topological extension of $L_{\text {min }}$
- Let $\Sigma_{\text {ref,sym }}$ be $\{(p \neq 0) \rightarrow(p \oplus p),(p \oplus q) \rightarrow(q \oplus p)\}$
- The axioms of $L_{\Sigma r e f, s y m}$ are those of $L_{\text {min }}$ plus every modal formula like $(a \neq 0) \rightarrow(a \oplus a),(a \oplus b) \rightarrow(b \oplus a)$
- Completeness of $L_{\text {Eref,sym }}$: For all modal formulas ϕ, ϕ is provable from the axioms of $L_{\text {Erefsym }}$ iff ϕ is valid in the class of all topological models iff ϕ is valid in the class of all frames $F=<W, R>$ such that $\forall w \in W(w R w)$ and $\forall w, w^{\prime} \in W\left(w R w^{\prime} \rightarrow w^{\prime} \mathbf{R} w\right)$
- Complexity of sat- $L_{\text {Eref,sym }}$: sat- $L_{\text {Eref,sym }}$ is NP-complete

Topological interpretation

- A second topological extension of $L_{\text {min }}$
- Let $\Sigma_{\text {ref,sym,con }}$ be $\{(p \neq 0) \rightarrow(p \oplus p),(p \oplus q) \rightarrow(q \oplus p)$, $(p \neq 0) \wedge(p \neq 1) \rightarrow(p \oplus \neg p)\}$
- The axioms of $L_{\text {Sref,sym,con }}$ are those of $L_{\text {min }}$ plus every modal formula like $(a \neq 0) \rightarrow(a \oplus a),(a \oplus b) \rightarrow(b \oplus a),(a \neq 0) \wedge(a \neq 1) \rightarrow(a \oplus \neg a)$
- Completeness of $L_{\text {Sref,sym,con }}$: For all modal formulas ϕ, ϕ is provable from the axioms of $L_{\text {Eref,sym,con }}$ iff ϕ is valid in the class of all connected topological models iff ϕ is valid in the class of all frames F $=\left\langle W, R>\right.$ such that $\forall w \in W(w \boldsymbol{R} w), \forall w, w^{\prime} \in W\left(w \boldsymbol{R} w^{\prime} \rightarrow w^{\prime} \boldsymbol{R} w\right)$ and \boldsymbol{R} is connected
- Complexity of sat- $L_{\text {Eref,sym,con }}$: sat- $L_{\text {Eref,sym,con }}$ is PSPACE-complete

Conclusion

- We have considered logics based on a language that contains the operators \oplus and $=$
$-a::=p|0| \neg a \mid\left(a_{1} \vee a_{2}\right)$
$-\phi::=\left(a_{1} \oplus a_{2}\right)|0| \neg \phi\left|\left(\phi_{1} \vee \phi_{2}\right)\right|\left(a_{1}=a_{2}\right)$
- M sat $\left(a_{1} \oplus a_{2}\right)$ iff there exists $w \in \underline{V}\left(a_{1}\right)$ such that for some $w^{\prime} \in R(w)$, $w^{\prime} \in \underline{V}\left(a_{2}\right)$
$-M$ sat $\left(\boldsymbol{a}_{1}=\boldsymbol{a}_{2}\right)$ iff $\underline{V}\left(a_{1}\right)=\underline{V}\left(a_{2}\right)$
- $\left(a_{1} \oplus a_{2}\right)$ is equivalent to $<U>\left(a_{1} \wedge<R>a_{2}\right)$ and $\left(a_{1}=a_{2}\right)$ is equivalent to $[U]\left(a_{1} \leftrightarrow a_{2}\right)$

Conclusion

- We might also consider logics based on the more general language that contains the \otimes as well

$$
\begin{aligned}
& -a::=p|0| \neg a \mid\left(a_{1} \vee a_{2}\right) \\
& -\phi::=\left(a_{1} \oplus a_{2}\right)\left|\left(a_{1} \otimes a_{2}\right)\right| O|\neg \phi|\left(\phi_{1} \vee \phi_{2}\right) \mid\left(a_{1}=a_{2}\right)
\end{aligned}
$$

- M sat $\left(a_{1} \oplus a_{2}\right)$ iff there exists $w \in \underline{V}\left(a_{l}\right)$ such that for some $w^{\prime} \in R(w)$, $w^{\prime} \in \underline{V}\left(a_{2}\right)$
- M sat $\left(a_{1}=a_{2}\right)$ iff $\underline{V}\left(a_{1}\right)=\underline{V}\left(a_{2}\right)$
- M sat $\left(a_{1} \otimes a_{2}\right)$ iff there exists $w \in \underline{V}\left(a_{1}\right)$ such that for each $w^{\prime} \in R(w)$, $w^{\prime} \in \underline{V}\left(a_{2}\right)$
- $\left(a_{1} \oplus a_{2}\right)$ is equivalent to $<U>\left(a_{1} \wedge<R>a_{2}\right),\left(a_{1}=a_{2}\right)$ is equivalent to $[U]\left(a_{1} \leftrightarrow a_{2}\right)$ and $\left(\boldsymbol{a}_{1} \otimes \boldsymbol{a}_{2}\right)$ is equivalent to $<U>\left(a_{1} \wedge[R] a_{2}\right)$

