Modal logics for region-based theories of space

Philippe Balbiani, Tinko Tinchev, Dimiter Vakarelov Sofia, Toulouse

Syntax

Boolean terms

 $-a ::= p \mid 0 \mid \neg a \mid (a_1 \lor a_2)$

• Modal formulas

 $- \phi ::= (a_1 \oplus a_2) | 0 | \neg \phi | (\phi_1 \lor \phi_2) | (a_1 = a_2)$

• Abbreviations (Boolean terms)

$$- 1 ::= \neg 0, (a_1 \land a_2) ::= \neg (\neg a_1 \lor \neg a_2)$$

• Abbreviations (modal formulas)

$$- 1 ::= \neg 0, (\phi_1 \land \phi_2) ::= \neg (\neg \phi_1 \lor \neg \phi_2)$$

• $(a_1 \oplus a_2)$ is equivalent to $\langle U \rangle (a_1 \land \langle R \rangle a_2)$ and $(a_1 = a_2)$ is equivalent to $[U](a_1 \leftrightarrow a_2)$

Semantics

- A **model** is a structure of the form $M = \langle W, R, V \rangle$ where
 - W is a nonempty set
 - -R is a binary relation on W
 - V associates a subset V(p) of W to each Boolean variable p
- <u>V</u> associates a subset $\underline{V}(a)$ of W to each Boolean term a

$$- \underline{V}(p) = V(p)$$
$$- \underline{V}(0) = \emptyset \quad V(\neg a) = W V(a) \quad V(a \lor a)$$

- $\underline{V}(0) = \emptyset, \underline{V}(\neg a) = W/\underline{V}(a), \underline{V}(a_1 \lor a_2) = \underline{V}(a_1) \cup \underline{V}(a_2)$
- Remark that

$$- \underline{V}(1) = W, \underline{V}(a_1 \wedge a_2) = \underline{V}(a_1) \cap \underline{V}(a_2)$$

Semantics

- **Satisfiability** of ϕ in $M = \langle W, R, V \rangle$ is defined by:
 - M sat $(a_1 \oplus a_2)$ iff there exists $w \in V(a_1)$ such that for some $w' \in R(w)$, $w' \in V(a_2)$
 - Not *M* sat 0, *M* sat $\neg \phi$ iff not *M* sat ϕ , *M* sat $(\phi_1 \lor \phi_2)$ iff *M* sat ϕ_1 or *M* sat ϕ_2
 - M sat $(a_1 = a_2)$ iff $\underline{V}(a_1) = \underline{V}(a_2)$
- Remark that
 - *M* sat 1, *M* sat $(\phi_1 \land \phi_2)$ iff *M* sat ϕ_1 and *M* sat ϕ_2
- Validity of modal formula ϕ in frame $F = \langle W, R \rangle$ is defined by:
 - F val ϕ iff for all models $M = \langle W, R, V \rangle$ based on F, M sat ϕ

Semantics

- Correspondence theory
 - $F \text{ val } (p ≠ 0) \rightarrow (p \oplus p) \text{ iff } \forall w \in W(wRw)$
 - $F \operatorname{val}(p \oplus q) \rightarrow (q \oplus p) \operatorname{iff} \forall w, w' \in W(wRw' \rightarrow w'Rw)$
 - *F* val (*p≠0*)→(*p*⊕1) iff $\forall w \in W \exists w' \in W(wRw')$
 - $F \text{ val } (p \neq 0) \rightarrow (1 \oplus p) \text{ iff } \forall w \in W \exists w' \in W(w'Rw)$
 - $F \operatorname{val}(p \neq 0) \rightarrow (p \oplus 1) \lor (1 \oplus p) \operatorname{iff} \forall w \in W \exists w' \in W(w R w' \lor w' R w)$
 - $F \text{ val } (1 \oplus 1) \text{ iff } \exists w, w' \in W(wRw')$
 - *F* val (*p*≠0)∧(*q*≠0)→(*p*⊕*q*) iff $\forall w,w' \in W(wRw')$
 - − F val $(p \neq 0) \land (p \neq 1) \rightarrow (p \oplus \neg p)$ iff *R* is connected

Bisimulation

- Let $M = \langle W, R, V \rangle$ and $M' = \langle W', R', V' \rangle$ be models
- A **bisimulation** between *M* and *M'* is a binary relation *Z* between *W* and *W'* such that
 - $\forall w \in W \exists w' \in W'(wZw')$
 - $\forall w' \in W' \exists w \in W(wZw')$
 - $\forall w_1, w_2 \in W \exists w_1', w_2' \in W'(w_1 R w_2 \rightarrow w_1' R' w_2')$
 - $\forall w_1', w_2' \in W \exists w_1, w_2 \in W(w_1' R w_2' \rightarrow w_1 R w_2)$
 - $\forall w \in W \forall w' \in W'(wZw' \rightarrow (w \in V(p) \leftrightarrow w' \in V'(p)))$

Bisimulation

• Bisimulation theorem

- If M and M' are bisimilar then they are modally equivalent

• Hennessy-Milner theorem

If *M* and *M'* are finite and modally equivalent then they are bisimilar

• Van Benthem characterization theorem

– For all 1st-order sentences A like

•
$$A ::= R(x_1, x_2) | P(x) | 0 | \neg \phi | (\phi_1 \lor \phi_2) | \forall x A$$

 A is invariant for bisimulations iff A is equivalent to the standard translation of a modal formula

- Axioms of L_{min}
 - Identity axioms:

•
$$(a=a), (a_1=a_2) \rightarrow (a_2=a_1), (a_1=a_2) \land (a_2=a_3) \rightarrow (a_1=a_3)$$

- Congruence axioms:

•
$$(a=b) \rightarrow (\neg a=\neg b), (a_1=b_1) \land (a_2=b_2) \rightarrow ((a_1 \lor a_2)=(b_1 \lor b_2))$$

- Boolean axioms:
 - (*a=b*) if *a* and *b* are equivalent Boolean terms
 - (*0*≠1)

- Axioms of *L_{min}*
 - Proximity axioms:
 - $(a \oplus b) \rightarrow (a \neq 0) \land (b \neq 0)$
 - $((a \lor b) \oplus c) \Leftrightarrow (a \oplus c) \lor (b \oplus c)$
 - $(a \oplus (b \lor c)) \nleftrightarrow (a \oplus b) \lor (a \oplus c)$
- **Completeness of** L_{min} : For all modal formulas ϕ , ϕ is provable from the axioms of L_{min} iff ϕ is valid in the class of all frames $F = \langle W, R \rangle$

- Let Σ be a set of modal formulas
- Axioms of L_{Σ} are those of L_{min} plus the following
 - Σ -axioms: Every modal formula $\psi(a_1, \dots, a_n)$ which can be obtained from a modal formula $\psi(p_1, \dots, p_n)$ of Σ by uniformly substituting the Boolean terms a_1, \dots, a_n for the Boolean variables p_1, \dots, p_n
- Completeness of L_Σ: If Σ is finite then for all modal formulas φ, φ is provable from the axioms of L_Σ iff φ is valid in the nonempty class of all frames F = <W,R> such that <W,R> val Σ

- A first extension of L_{min}
 - Let Σ_{sym} be $\{(p \oplus q) \rightarrow (q \oplus p)\}$
 - The **axioms of** $L_{\Sigma sym}$ are those of L_{min} plus every modal formula like $(a \oplus b) \rightarrow (b \oplus a)$
- **Completeness of** $L_{\Sigma sym}$: For all modal formulas ϕ , ϕ is provable from the axioms of $L_{\Sigma sym}$ iff ϕ is valid in the nonempty class of all frames F= $\langle W, R \rangle$ such that $\forall w, w' \in W(wRw' \rightarrow w'Rw)$

- A second extension of L_{min}
 - Let Σ_{con} be $\{(p \neq 0) \land (p \neq 1) \rightarrow (p \oplus \neg p)\}$
 - The **axioms of** $L_{\Sigma con}$ are those of L_{min} plus every modal formula like $(a \neq 0) \land (a \neq 1) \rightarrow (a \oplus \neg a)$
- **Completeness of** $L_{\Sigma con}$: For all modal formulas ϕ , ϕ is provable from the axioms of $L_{\Sigma con}$ iff ϕ is valid in the nonempty class of all frames $F = \langle W, R \rangle$ such that *R* is connected

• Open problems

- Find a set Σ of modal formulas such that L_{Σ} is not complete with respect to the nonempty class of all frames $F = \langle W, R \rangle$ such that $\langle W, R \rangle$ val Σ
- Find a set Σ of modal formulas such that the class of all frames F
 = <W,R> such that <W,R> val Σ is empty

- Given a set Σ of modal formulas and a maximal L_{Σ} -consistent set S of modal formulas, the **canonical frame of** L_{Σ} defined by S is the structure $F_S = \langle W_S, R_S \rangle$ defined as follows
 - W_S is the set of all maximal consistent sets w of Boolean terms such that for all Boolean terms $a \in w$, $(a \neq 0) \in S$
 - R_S is the binary relation on W_S such that for all $w, w' \in W_S$, wR_Sw' iff for all Boolean terms $a \in w$ and for all Boolean terms $a' \in w'$, $(a \oplus a') \in S$

- Let Σ be a set of modal formulas
 - L_{Σ} is strongly canonical iff for all maximal L_{Σ} -consistent sets *S* of modal formulas, the canonical frame $F_S = \langle W_S, R_S \rangle$ of L_{Σ} defined by *S* validates L_{Σ}
 - L_{Σ} is weakly canonical iff there exists a maximal L_{Σ} -consistent set S of modal formulas such that the canonical frame $F_S = \langle W_S, R_S \rangle$ of L_{Σ} defined by S validates L_{Σ}

- Strong canonicity of L_{min} : For all maximal L_{min} -consistent sets *S* of modal formulas, the canonical frame $F_S = \langle W_S, R_S \rangle$ of L_{min} defined by *S* validates L_{min}
- Weak canonicity of L_{min} : There exists a maximal L_{min} -consistent set S of modal formulas such that the canonical frame $F_S = \langle W_S, R_S \rangle$ of L_{min} defined by S validates L_{min}

- A first extension of L_{min}
 - Let Σ_{sym} be $\{(p \oplus q) \rightarrow (q \oplus p)\}$
 - The **axioms of** $L_{\Sigma sym}$ are those of L_{min} plus every modal formula like $(a \oplus b) \rightarrow (b \oplus a)$
- Strong canonicity of $L_{\Sigma sym}$: For all maximal $L_{\Sigma sym}$ -consistent sets *S* of modal formulas, the canonical frame $F_S = \langle W_S, R_S \rangle$ of $L_{\Sigma sym}$ defined by *S* validates $L_{\Sigma sym}$

- A second extension of L_{min}
 - Let Σ_{con} be $\{(p \neq 0) \land (p \neq 1) \rightarrow (p \oplus \neg p)\}$
 - The axioms of $L_{\Sigma con}$ are those of L_{min} plus every modal formula like $(a \neq 0) \land (a \neq 1) \rightarrow (a \oplus \neg a)$
- Non strong canonicity of $L_{\Sigma con}$: There exists a maximal $L_{\Sigma con}$ consistent sets S of modal formulas such that the canonical frame $F_S = \langle W_S, R_S \rangle$ of $L_{\Sigma con}$ defined by S does not validate $L_{\Sigma con}$
- Weak canonicity of $L_{\Sigma con}$: There exists a maximal $L_{\Sigma con}$ -consistent sets *S* of modal formulas such that the canonical frame $F_S = \langle W_S, R_S \rangle$ of $L_{\Sigma con}$ defined by *S* validates $L_{\Sigma con}$

- Open problems
 - Find a set Σ of modal formulas such that L_{Σ} is not weakly canonical
 - Find a syntactic condition on the sets Σ of modal formulas implying that L_{Σ} is strongly canonical
 - Find a syntactic condition on the sets Σ of modal formulas implying that L_{Σ} is weakly canonical

- Let sat- L_{min} be the following decision problem
 - Input: A modal formula $\boldsymbol{\varphi}$
 - Output: Determine if there exists a model $M = \langle W, R, V \rangle$ such that M sat ϕ
- Complexity of sat- L_{min} : sat- L_{min} is NP-complete

- Let Σ be a set of modal formulas
- Let sat- L_{Σ} be the following decision problem
 - Input: A modal formula $\boldsymbol{\varphi}$
 - Output: Determine if there exists a model $M = \langle W, R, V \rangle$ such that M sat ϕ and $\langle W, R \rangle$ val Σ
- Complexity of sat-L_Σ (upper bound): If Σ is finite then sat-L_Σ is in NEXPTIME
- **Complexity of sat-** L_{Σ} (**lower bound**): If the class of all frames $F = \langle W, R \rangle$ such that $\langle W, R \rangle$ val Σ is nonempty then sat- L_{Σ} is NP-hard

- A first extension of L_{min}
 - Let Σ_{sym} be $\{(p \oplus q) \rightarrow (q \oplus p)\}$
 - The **axioms of** $L_{\Sigma sym}$ are those of L_{min} plus every modal formula like $(a \oplus b) \rightarrow (b \oplus a)$
- Complexity of sat- $L_{\Sigma sym}$: sat- $L_{\Sigma sym}$ is NP-complete

- A second extension of L_{min}
 - Let Σ_{con} be $\{(p \neq 0) \land (p \neq 1) \rightarrow (p \oplus \neg p)\}$
 - The axioms of $L_{\Sigma con}$ are those of L_{min} plus every modal formula like $(a \neq 0) \land (a \neq 1) \rightarrow (a \oplus \neg a)$
- Complexity of sat- $L_{\Sigma con}$: sat- $L_{\Sigma con}$ is PSPACE-complete

• Open problems

- Find a set Σ of modal formulas such that sat- L_{Σ} is EXPTIMEcomplete
- Find a set Σ of modal formulas such that sat- L_{Σ} is NEXPTIMEcomplete
- Find a set Σ of modal formulas such that sat- L_{Σ} is not decidable

- A **topological model** is a structure of the form $M = \langle X, T, V \rangle$ where
 - <*X*,*T*> is a topological space
 - V associates a regular closed subset V(p) of <X,T> to each Boolean variable p
- <u>*V*</u> associates a regular closed subset <u>*V*(*a*) of *<X*,*T*> to each Boolean term *a*</u>
 - $$\begin{split} &- \underline{V}(p) = V(p) \\ &- \underline{V}(0) = \emptyset, \, \underline{V}(\neg a) = Cl(X / \underline{V}(a)), \, (a_1 \lor a_2) = \underline{V}(a_1) \cup \underline{V}(a_2) \end{split}$$
- Remark that

 $- \underline{V}(1) = X, \underline{V}(a_1 \wedge a_2) = Cl(In(\underline{V}(a_1) \cap \underline{V}(a_2)))$

- **Satisfiability** of ϕ in $M = \langle X, T, V \rangle$ is defined by:
 - $-M \operatorname{sat} (a_1 \oplus a_2) \operatorname{iff} \underline{V}(a_1) \cap \underline{V}(a_2) \neq \emptyset$
 - Not *M* sat 0, *M* sat $\neg \phi$ iff not *M* sat ϕ , *M* sat $(\phi_1 \lor \phi_2)$ iff *M* sat ϕ_1 or *M* sat ϕ_2
 - M sat $(a_1 = a_2)$ iff $\underline{V}(a_1) = \underline{V}(a_2)$
- Remark that

- *M* sat 1, *M* sat $(\phi_1 \land \phi_2)$ iff *M* sat ϕ_1 and *M* sat ϕ_2

- A first topological extension of L_{min}
 - Let $\Sigma_{ref,sym}$ be $\{(p \neq 0) \rightarrow (p \oplus p), (p \oplus q) \rightarrow (q \oplus p)\}$
 - The **axioms of** *L*_{Σ*ref,sym*} are those of *L*_{*min*} plus every modal formula like $(a \neq 0) \rightarrow (a \oplus a), (a \oplus b) \rightarrow (b \oplus a)$
- Completeness of L_{Σref,sym}: For all modal formulas φ, φ is provable from the axioms of L_{Σref,sym} iff φ is valid in the class of all topological models iff φ is valid in the class of all frames F = <W,R> such that ∀w∈W(wRw) and ∀w,w'∈W(wRw'→w'Rw)
- Complexity of sat- $L_{\Sigma ref,sym}$: sat- $L_{\Sigma ref,sym}$ is NP-complete

- A second topological extension of L_{min}
 - Let $\Sigma_{ref,sym,con}$ be $\{(p \neq 0) \rightarrow (p \oplus p), (p \oplus q) \rightarrow (q \oplus p), (p \neq 0) \rightarrow (p \oplus 1) \rightarrow (p \oplus \neg p)\}$
 - The **axioms of** $L_{\Sigma ref,sym,con}$ are those of L_{min} plus every modal formula like $(a \neq 0) \rightarrow (a \oplus a), (a \oplus b) \rightarrow (b \oplus a), (a \neq 0) \land (a \neq 1) \rightarrow (a \oplus \neg a)$
- Completeness of L_{Σref,sym,con}: For all modal formulas φ, φ is provable from the axioms of L_{Σref,sym,con} iff φ is valid in the class of all connected topological models iff φ is valid in the class of all frames F = <W,R> such that ∀w∈W(wRw), ∀w,w'∈W(wRw'→w'Rw) and R is connected
- Complexity of sat- $L_{\Sigma ref, sym, con}$: sat- $L_{\Sigma ref, sym, con}$ is PSPACE-complete

Conclusion

• We have considered logics based on a language that contains the operators ⊕ and =

$$-a ::= p \mid 0 \mid \neg a \mid (a_1 \lor a_2)$$

$$- \phi ::= (a_1 \oplus a_2) | 0 | \neg \phi | (\phi_1 \lor \phi_2) | (a_1 = a_2)$$

- M sat $(a_1 \oplus a_2)$ iff there exists $w \in V(a_1)$ such that for some $w' \in R(w)$, $w' \in V(a_2)$
- M sat $(a_1 = a_2)$ iff $\underline{V}(a_1) = \underline{V}(a_2)$
- $(a_1 \oplus a_2)$ is equivalent to $\langle U \rangle (a_1 \land \langle R \rangle a_2)$ and $(a_1 = a_2)$ is equivalent to $[U](a_1 \leftrightarrow a_2)$

Conclusion

- We might also consider logics based on the more general language that contains the \otimes as well
 - $-a ::= p \mid 0 \mid \neg a \mid (a_1 \lor a_2)$
 - $\phi ::= (a_1 \oplus a_2) | (a_1 \otimes a_2) | 0 | \neg \phi | (\phi_1 \lor \phi_2) | (a_1 = a_2)$
 - M sat $(a_1 \oplus a_2)$ iff there exists $w \in \underline{V}(a_1)$ such that for some $w' \in \underline{R}(w)$, $w' \in \underline{V}(a_2)$
 - M sat $(a_1=a_2)$ iff $\underline{V}(a_1)=\underline{V}(a_2)$
 - M sat $(a_1 \otimes a_2)$ iff there exists $w \in \underline{V}(a_1)$ such that for each $w' \in \underline{R}(w)$, $w' \in \underline{V}(a_2)$
- $(a_1 \oplus a_2)$ is equivalent to $\langle U \rangle (a_1 \wedge \langle R \rangle a_2)$, $(a_1 = a_2)$ is equivalent to $[U](a_1 \leftrightarrow a_2)$ and $(a_1 \otimes a_2)$ is equivalent to $\langle U \rangle (a_1 \wedge [R]a_2)$