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0. Historical Remarks. 0.1 The first logic of modalities owes its
origin to Aristotle. Already at this time he developed two different aspects
of modal logics: a theory of modal statements in general—mainly con-
sidered in (PHe) ch. 9,12 and 13 and in (APr) I,ch.3 and 13—and a theory of
modal syllogisms which is described primarily in (APr) I, ch. 8-22%
0.2 Theophrast introduced a new aspect: in his theory the statement as a
whole is determined by the modus. In scholastic philosophy this kind of
modality was called ‘‘modales de dicto’’ (modality de dicto)®. Aristotle
however interprets the structure of a modal statement—according to
A. Becker and Bochefiski—in such a way that the modus is applied either
to the subject or to the predicate of a subject—predicate statement. If the
statement in question is the universal statement (x)(Fx D Gx) and if L is the
modal operation ‘necessary’, then Aristotle’s view of the modal statement
is such that it can be represented either by the statement (x)(Fx D L(Gx)) or
by the statement (x)(L(Fx)D> L(Gx)). In schelastic philosophy those kinds of
modality were called ‘““modales de re’’ (modality de re)’. 0.3 Some
interesting contributions to the logic of modalities have been made
by the stoic and megaric schools: the first attempt to interpret the
modal operators by time-operators is due to them®. 0.4 In scholastic
philosophy both interpretations of the modal statements, as described in
0.2, were well-known (cf. Abaelard (Dia) p. 204ff.). A precise distinction of
these kinds of modality based on a syntactical criterion—namely, the
position of the modus (modal operator) in the sentence—can be found in the
work ‘‘De Propositionibus Modalibus’’ of Thomas Aquinas (PMo) cf.
Bochenski (AMo). In this work Aquinas considers also the relations
between modalities and quantification and gives an interpretation of the
modal operators with the help of quantifiers. In 1952 0. Becker did the
same and he called this interpretation ‘‘statistical interpretation (Deutung)
of the modal calculus’’ (UMo) p. 16ff. Further contributions to modal logics
in scholastic philosophy have been made by Albert the Great (PAP), Petrus
Hispanus (SuL) 7,26, Pseudo Scott (PrA) II, p. 143-159 and Paulus Venetus
(LgM) 1,21°, 0.5 Modern modal logics begins essentially with the con-
tributions of C. I. Lewis (SSL) (SLg). Since the publication of the first
works of Lewis (about 1918) a great number and variety of papers and
books about modal logics have appearede.

1. Structure of the system SS1. 1.01 Introductory remarks: To
expedite matters it seems desirable to have a modal logics which
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distinguishes two kinds of necessity and two kinds of possibility, for
instance, interpretable as logical and empirical necessity (or natural
necessity) or possibility respectively. There are some contemporary
contributions which have been made to this problem already. The two most
fundamental seem to be an essay of Popper (UDN) and one of Montague
(LPE). There are three wellknown methods to construct deductive systems:
the axiomatic method, the method of natural deduction and the matrix
method. For the construction of the following deductive system (abbrevi-
ated as SS1) the matrix method was chosen. This method originates from
Peirce (ALg) and Schroder (VAL). Since 1920 fukasiewicz applied this
method from the first to construct many valued systems of propositional
calculus (MSA). Rukasiewicz and Tarski established the two-valued propo-
sitional calculus by means of this method (UAK). Bernays used the matrix
method for the first time for investigations about independency—proofs
(AUA). Tarski established the base for a meta-calculus in order to set
down the laws for the construction of deductive systems with the help of the
matrix-method (UAK) Def. 3,4; Theorem 2,3,4".

1.03 1In the following the so called Polish notation (which is due to
tukasiewicz) is used. 1.04 Inthe propositional calculus as in the uninter-
preted SS1 ‘p’, ‘q’, ‘v’, ‘s’ are propositional variables and ‘N’, ‘A’ ‘K’, ‘C’
and ‘E’ are propositional constants standing for negation-sign, disjunction-
sign, conjunction-sign, (material) implication-sign and (material)
equivalence-sign respectively. 1.05 In SS1 there are the further one-place
operators ‘L’ ‘LL’) ‘M’, ‘MM’, ‘ML’ and ‘LM’ which are interpreted in
SS1IM as (empirical) necessity, logical necessity, (empirical) possibility,
logical possibility, possible necessity and necessary possibility respec-
tively.

1.06 To the wellformed formulas («ffs) of the two-valued propositional
calculus two truth-values true and false can be assigned. To the wffs of
SS1 the six truth-values 1,2,3,4,5,6 are assigned, the values 1,2,3 for true,
the values 4,5,6 for false.

1.07 Formula (sentence) of the system. 1.071 Every propositional
variable is a formula (atomic formula)®. 1.072 If ¢p’ is a formula, ‘Np’ and
‘Lp’ are formulas. According to 1.16-1.20 it follows that also ‘LLp’, ‘Mp’,
‘MMp’, ‘MLp’, ‘LMD’ are formulas. 1.073 If ‘p° and ‘q@’ are formulas,
‘Apq’ is a formula. According to 1.12-1.14 it follows that also ‘Kpq’, ‘Cpq’,
‘Epq’ are formulas.

1.08 Definition of the system SS1. The system SS1 can be defined as
the set of all formulas (sentences) which are satisfied by the matrix Maf =
<T,F,N,A,L> where T ={1,2,3,}, F=1{4,5,6} and the operations N, A and L
are defined by the following formulas:

N(1)=6, N(2)=5, N(3)=4, N(4)=3, N(5)=2, N(6)=1

A(1,1)=A(1,2) =A(1,3) =A(1,4) =A(1,5) =A(1,6) =A(2,1) =A(3,1) =A (4,1) =
A(5,1)=A(6,1)=A(2,5)=A(3,4) =A(4,3) =A(5,2) = 1
A(2,2)=A(2,3)=A(2,4)=A(2,6) =A(3,2) =A(4,2) =A(6,2) =2
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A(3,3)=A(3,5)=A(8,6)=A(5,3)=A(6,3) =3
A(4,4)=A(4,5)=A(4,6)=A(5,4)=A(6,4) =4
A(5,5)=A(5,6)=A(6,5)=5

A(6,6)=6
L(1)=1,L(2)=3,L(3)=6,L(4)=6,L(5)=6,L(6)=6

1.081 1t follows from 1.08 that every sentence (formula) of SS1 is
unambiguously determined by a certain matrix which is an instance of the
matrix Mat = <T,F,N,A,L> (as defined in 1,08). And on the other hand to
every special matrix which is an instance of Mat = <T,F,N,A,L> a sentence
of SS1 corresponds. The meaning -of the expression ‘a sentence is
determined (or satisfied) by a matrix’ need not to be outlined here; it will
become sufficiently clear (for the understanding of the paper) in ch. 1.4 and
1.5. For a detailed and formal definition of this expression see Tarski
(UAK) def. 4.

1.09 Basic matrix. Every atomic formula has the basic matrix:

123456

1.10 Negation (N). Iff° p has the basic matrix 12 3 4 56 then Np has
the matrix: 654321

1.11 Disjunction (A). Iff p and ¢ have the Apq
basic matrix then Apg has the matrix:

p
1
2
3
4
5
6

i i e i e L
DO = DD DN DN
LW W = WO DN O
O B DN
N Ul B O kst = |On
DLW =D

1.111 With the help of these two operations one can—as it is
wellknown—build up all other compound sentences of the classical asser-
toric propositional calculus. Instead of the two operations of negation and
disjunction as a base for the classical assertoric propositional calculus one
could use also only one, for instance Sheffers function.

1.12 Conjunction (K). Kpq has the same matrix K,
as NANpNg; i.e. iff p and ¢ have the basic matrix,
then Kpq has the matrix:

>
1]

1.13 Material Implication (C). Cpq has the C
same matrix as ANpg or as NKpNg; i.e. iff p and
¢ have the basic matrix, then Cpq has the matrix:

ek ek ek el bk ek | DD U B O DN
= DN DN DN = DD O AW
= DWW WlwW D DWW WwW
[ Y N - N =~ IS T N~ Y 7o
=W o anfon (oIS I IS e RS | )
DN W o D (o2 BN o Mo BN orBer N> ] Kol

mmmwmug G 1D O DN
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1.14 Material Equivalence (E). Epgq has the Epgl1 2 3 4 5 6
same matrix as KCpgCqp or as AKpgKNpNg; i.e. 11123425¢6
iff p and 4 have the basic matrix then Epg has the 21213465
matrix: 313316 44

41446133
51564312
6 16 54 3 21

1.15 L, in SS1M interpreted as the operation of necessity. Iff » has the
basic matrix, then Lp has the matrix: 13666 6.

1.151 The operation L together with the operations N and A (or
Sheffer’s function instead of N and A) suffice to build up the system SS1;
with additional interpretations and definitions also the systems SSIM and
SS1I can be constructed. It is not necessary to give a certain interpretation
of the operations L, LL, M, MM, ML, LM right from the beginning. The
system SS1 determined by the matrix given in 1,08 can be interpreted in
different ways and it would have been possible to leave open the question of
interpretation all the way through. This has not been done for the following
reasons:

1. The system SS1 is much better to understand for the reader in its modal
interpretation SS1M.

2. The purpose of constructing SS1 was to find a modal system with two
kinds of necessity and possibility; thus SS1 was constructed with its modal
interpretation SSIM in mind.

Therefore in the following the system SS1 is described through its modal
interpretation SS1M.

1.16 LL, in SSIM: logical necessity. LLp has the same matrix as
L(Lp); i.e. iff p has the basic matrix, then LLp has the matrix: 16 6 6 6 6,

1.17 M, in SSIM: possibility. Mp has the same matrix as NLNp; i.e.
iff p has the basic matrix, then Mp has the matrix: 11114 8,

1.18 MM, in SSIM: logical possibility. MMp has the same matrix as
M(Mp); i.e. iff p has the basic matrix, then MMp has the matrix: 1111186,

1.19 ML, in SSIM: possible necessity. MLp has the same matrix as
M(Lp); i.e. iff p has the basic matrix, then MLp has the matrix: 1166 6 6,

1.20 LM, in 8S1M: necessary possibility. LMp has the same matrix
as L(Mp); i.e. iff p has the basic matrix, then LMp has the matrix:
111166,

1.21 Table of the one place operations of SS1.

p Np |LLp Lp MLp p LMp Mp MMp
1 6 1 1 1 1 1 1 1
2 5 6 3 12 1 1 1
3 4 6 6 6 3 1 1 1
4 3 6 6 6 4 1 1 1
5 2 6 6 6 5 6 4 1
6 1 6 6 6 6 6 6 6

From this table it can be observed that the values 1 and 6 are not changed
by any of the modal operations. One can see further that the possibilities
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for positive (proper) modalities in SS1M are exhausted by the six given
above. Analogously there are six negative (proper) modalities in SS1M:
LINp, LNp, MLNp, LMNp, MNp and MMNp. Their matrices can be obtained
by overturning the above matrices of the positive (proper) modalities
respectively: From this it is clear that in SSIM there are exactly 12
proper and 2 improper modalities (p, Np). The number of modalities is
therefore the same as in the system S4 by C. I. Lewis, although S4 and
SS1M have essential differences.

1,22 Strict implication (LC). LCpg has the LCpqll 2 3 4 5 6
same matrix as L(Cpq); i.e. iff p and g have the 1 |1 36666
basic matrix, then LCpqg has the matrix: 2 116666

3 |131666
4 [13616¢6
5 133313
6 (111111

1.23 Strong implication (LLC). LLCpq has LLCpql1 2 3 4 5 6
the same matrix as L(LCpgq); i.e. iff p and ¢ have 1 166666
the basic matrix, then LLCpg has the matrix: 2 116666

3 16 1666
4 166166
5 1666 16
6 111111

1.24 Between the seven positive modalities the following implicational
relations exist:

LLC LLp Lp
LLC Lp MLp
LC MLp p
LC p LMp
LLC LMp Mp
LLC Mp MMp

This can be seen easily from the given matrices in 1.22 and 1.23. The
implicational sequence of the positive modalities is also shown by the right
part of the table (from left to right) in 1.21.

1.25 Strict equivalence (LE). LEpq has the LEpg|1 2 3 4 5 0
same matrix as L(Epq); i.e. iff p and g have the 1 13 6666
basic matrix then LEpgq has the matrix: 2 316666

3 |6 616686
4 (6 66 166
5 |6 666 13
6 (6 666 31
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1.26 Strong equivalence (LLE). LLEpq has LLEpg|1 2 3 4 5 6

the same matrix as L(LEpq); i.e. iff p and ¢ 1 1666266
have the basic matrix then LLEpq has the 2 6 16 6 6 6
matrix: 3 6 6 16 6 6
4 666166

5 6 6 6 6 16

6 6 6 6 6 6 1

1.27 Substitution. Two formulas (sentences) p and ¢ can be substituted
for one another iff LLEpqg holds i.e. iff they are strongly equivalent. In
SSIM: Two sentences p and ¢ can be substituted for one another iff they
are logically necessary equivalent. As it can be seen from the matrix in
1.26., LLEpq holds only if the matrices of p and ¢ are identical.

1.3 Matrices of compound sentences. As an example the matrix of
modus ponens CKpCpgq and of its strict form LCKpCpqq is taken:

KpCphaqgaq
1

~
o

e e ol e e D e R e e L a7 Y o S R gy Y Y [ e e L R T ey

el e e e [ e e e L e S B e O B o e Gy WY [ T G GV iy

DO DDNNDDD O O W B OO LW WO O W DI DI U1 0O D =

Peb bk ek ek et 3 IND =t DD DD DND 200 GO s GO DD | S S e DN 1 1 QO b O 1 W GO B =
'S

AR WNODOTTRAWN O LN O B WD = U1 DN = o o B =
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1.4 Truth in SS1 and in SSIM. 1.41 A sentence (formula) is logically
true (or: valid) in SS1 and SSIM iff its matrix contains exclusively values
between 1 and 3. 1.411 A sentence (formula) is logically false in SS1 and
SSIM iff its negation is logically true in SS1 and SS1M, i.e. iff its matrix
contains exclusively values between 4 and 6. 1.42 A sentence is strongly
logically true (or: strongly valid) in SS1 and SSIM iff its matrix contains
exclusively the value 1, in other words: iff the highest value of its matrix
is 1. 1.421 A sentence is strongly logically false in SS1 and SSIM iff its
negation is strongly logically true in SS1 and SS1M, i.e. iff its matrix
contains exclusively the value 6, in other words: iff the lowest value of its
matrix is 6. 1.43 A sentence is strictly logically true (or: strictly valid)
in 8S1 and SSIM iff the highest value of its matrix is 2. 1.431 A sentence
is strictly logically false in SS1 and SSIM iff its negation is strictly
logically true, i.e. iff the lowest value of its matrix is 5. 1.44 A sentence
is materially logically true (or materially valid) in SS1 and SS1M iff the
highest value of its matrix is 3. 1.441 A sentence is materially logically
false in SS1 and SSIM iff its negation is materially logically true, i.e. iff
the lowest value of its matrix is 4. 1.45 A sentence is contingent (or
contingently true) in SS1 and SS1M iff its matrix contains at least one value
between 1 and 3 and at the same time at least one value between 4 and 6.

1.46 The following table shows the distribution of the truth-values for
logically true, logically false and contingent sentences in SS1 and SS1M:

Highest value of the matrix (=characteristical value)
1 strongly logically true
2 strictly logically true
3 materially logically true

The matrix contains at least both of the values:
land 4 contingent
2and 4 contingent
3and 4 contingent
land 5 contingent
2and 5 contingent
3and 5 contingent
land 6 contingent
2 and 6 contingent
3dand 6 contingent

Lowest value of the matrix
4 materially logically false
5 strictly logically false
6 strongly logically false

1.5 Characteristical value (cv) of a sentence (formula). The char-
acteristical value of validity (or short: characteristical value) of a
sentence in SS1 and SSIM is the highest value between 1 and 6 which occurs
in its matrix. 1.51 The definitions 1.42, 1.43 and 1.44 can also be
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formulated by replacing ‘the highest value of its matrix’ by ‘its character-
istical value’., Thus a sentence is logically true (valid) in SS1 and SSIM iff
its cv is either 1,2 or 3; it is strongly valid iff its cv is 1, strictly valid iff
its cv is 2 and materially valid iff its cv is 3. For instance if one looks at
the form of modus ponens in 1.3—which is not the metalinguistic rule but the
sentence in the object language of propositional calculus—one observes that
C KpCpg g is strictly valid in SS1 and SSIM, because its cv is 2 and
LC KpCpq q is materially valid in SS1 and SSIM, because its cv is 3,
1.52 If a sentence in SS1 or SSIM has a cv which is higher than 3 (i.e. 4,5
or 6) then this sentence is either contingent or logically false in SS1 and
SS1M (df. 1.46).

1.53 In many systems of modal logic the following rule holds: If p is
valid in the system, then Lp (necessarily p) is also valid in the system.
This rule does not hold in SS1 or SS1M or in any of the other systems which
are interpretations or extensions of SS1 or SSIM. Instead of this rule a
number of much more detailed statements hold in SS1 and SS1IM. Let p be
any sentence of SS1 or SS1M, Then the following statements hold:

If the cv of pis 1, then LLp is valid.

If the cv of p is 2, then Lp is valid.

If the cv of p is 3, then p is valid.

If the cv of p is 4, then LMp (and Mp) are valid.
If the cv of p is 5, then MMp is valid.

1.6 The concept of logical consequence in SS1 and SS1M. In SS1 and
SSIM three concepts of logical consequence are distinguished which
correspond to the three Kkinds of implication: the strong concept of
consequence in SS1 and SS1IM is defined by the matrix of strong implication
(ef. 1.23); the strict concept of consequence is defined by the matrix of
strict implication (cf. 1.22); the material concept of consequence is defined
by the matrix of material implication (cf. 1.13). In all these cases one may
just say that a conclusion (consequence) g follows (strongly, strictly,
materially) from a premiss p, iff p implies (strongly, strictly, materially)
g. 1.61 The concept of logical consequence in SS1 and SSIM can also be
defined in the following way:

1.611 Strong concept of consequence, The conclusion ¢ follows
(strongly) from the premiss p iff at least one of the following conditions
(a) or (b) are satisfied:

(a) p and ¢ have identical matrices; i.e. all the values of the matrices
of p and ¢ which are coordinated to one another because they are on the
same line (the matrix of modus ponens in 1.3 for example has 36 lines, the
coordinated values are in the rows under K and ¢) are identical.

(b) For all coordinated pairs of values of the matrices of p and ¢
(a coordinated pair consists of two values which are on the same line): the
value of the matrix of p is 6 or the value of the matrix of ¢ is 1 (or both
cases hold). From this it is clear that the strong concept of consequence in
SS1 and SS1IM is also satisfied if the premiss is a contradiction (in which



106 PAUL WEINGARTNER

case every value of the matrix is 6) and the conclusion is any sentence or
else if the conclusion is strongly logically true (in which case cvis 1) and
the premiss is any sentence. In other words: from a contradiction every
sentence follows and a sentence which is strongly valid follows from every
sentence (or also: a sentence which is strongly valid follows from the
nullclass of sentences).

1.612 Strict concept of consequence. The conclusion g follows (strictly)
from the premiss p iff at least one of the following conditions (a), (b) or (c)
are satisfied:

(a) as in 1.611 (a)

(b) as in 1.611 (b)

(c) For all coordinated pairs of values of the matrices of pandgq: the

value of the matrix of p is 5 or the value of the matrix of ¢ is 2 (or both
cases hold).
By the strict concept of consequence already a large number of the so
called ‘‘paradoxes of implication’’ are excluded. As an example one can
consider the statement A Cpg CpNg which is a theorem of the classical
propositional calculus; its cv is 2, i.e. this statement is strictly valid in
SS1 and SSIM. If however one replaces the material implications of this
statement by strict ones then the resulting statement, A LCpg LCpNgq is no
longer valid in SS1 or SS1M; the values of its matrix are between 6 and 1,
thus this statement is contingent in SS1 and SSIM (cf. 1.46). There are a
number of reasons which make it very probable that by the strong concept
of consequence (1.611) almost all of the serious paradoxes of implication
are excluded.

1.613 Material concept of consequence. The conclusion ¢ follows
materially from the premiss p iff at least one of the following conditions
(a), (b), (¢) or (d) are satisfied:

(a) as in 1.611 (a)

(b) as in 1.611 (b)

(c) as in 1.612 (c)

(d) For all coordinated pairs of values of the matrices of p and ¢: the
value of the matrix of p is 4 or the value of the matrix of ¢ is 3 (or both
cases hold).

1.62 There is no need for any rule of derivation in SS1 or SSIM. The
reason is this: From 1.081 it is clear that every sentence of SS1 (and also
of SS1M) is determined by a certain matrix. All what 6ne has to do in order
to decide whether a sentence is a theorem or is not a theorem of SS1 or
SSIM is to check the cv of its matrix (cf. 1.46 and 1.51). (In complicated
cases, if the compound sentences contain many different propositional
variables, this can be done by a computor). Thus the answer to the question
whether a sentence is or is not a theorem of SS1 or SS1IM does not require
to know whether this sentence follows from certain premisses or not, this
answer can be given quite independently of such a knowledge, i.e. on
grounds of the matrix (and the cv) of the sentence in question. On the other
hand the concept of consequence as defined in 1.6-1.613 is not superfluous.
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With its help one can decide which sentences are premisses of other
sentences or which sentences are conclusions of other sentences in SS1 and
SS1IM. Also one can compare the consequence class of a sentence in any
kind of propositional calculus with that of a sentence in SS1 or SS1M.

1.63 Consequence class (CI). To each of the three distinguished
concepts of consequence there are three corresponding concepts of
consequence-class in SS1 and SSIM. 1,631 Classes (or sets) of sentences
are viewed in SS1 and SS1M as conjunctions of sentences. Thus it follows
from 1.081 that every class (set) of sentences of SS1 or SS1M is determined
by a certain matrix. Applied to classes of premisses (P#) and classes of
consequences (CI) in 8S1 and SSIM this means that any P» and any CI is
determined by a certain matrix.

1.632 Strong consequence class. The strong consequence class CI, of
a set of premises Pr is the set of all sentences which are satisifed by the
matrix Mat = <T,F,Cr> where T ={1,2,3} F ={4,5,6} and C; is defined by
the following set (a) of formulas in which (. . ., . . .) is a coordinated value
pair (a coordinated value pair consists of two different values of matrices
which are on the same line; cf. 1.3 the rows under X and q), one value
belonging to the matrix of Py, the other belonging to the matrix of Cl;:

(a) Cr(1,1) = Cr(2,2) = Cr(3,3 = Cr(4,4) = Cr(5,5) = Cr(6,6) = Cr(2,1) =
= CT(3;1) = CT(4;1) = CT(571) = CT(671) = CT(6,2) = CT(6;3) = CT(6,4) =
CT(6,5) =1

1.633 Strict consequence class. The strict consequence class Cl; of a
set of premisses P7 is the set of all sentences which are satisfied by the
matrix Mat = <T,F,Cy> where T ={1,2 3}, F = {4,5,6} and Cy is defined by
the following sets (a) and (b) of formulas in which (...,...) is a
coordinated value pair, one value belonging to the matrix of Py, the other to
the matrix of Cl,:

(a) as in 1.632 (a)
(b) CT(172) = CT(3;2) = CT(4;2) = CT(5’2) = CT(5,3) = CT(5;4) = CT(5;6) =2

1.634 Material consequence class. The material consequence class
Cl; of a set of premisses Pr is the set of all sentences which are satisfied
by the matrix Mat = <T,F,Cr> where T = {1,238}, F = {4,5,6} and Cr is
defined by the following sets (a), (b) and (c¢) of formulas in which (. . ., ...)
is a coordinated value pair, one value belonging to the matrix of Pz, the
other to the matrix of Cl;:

(a) as in 1.632 (a)
(b) as in 1.633 (b)
(c) Cr(1,3) = C1(2,3) = Cr(4,3) = Cr(4,5) = Cr{4,6) = 3

1.7 Consistency of SS1 and SSIM. 1.71 A sentence (of SS1 or SSIM) is
a theorem (of SS1 or SS1M) iff it is logically true (or: valid) in SS1 or SS1M
(cf. 1.41). In other words: A sentence is a theorem iff its cv is either 1 or
2 of 3. 1.72 A system is consistent iff it contains no sentence such that
both the sentence and its negation are provable as theorems within it',
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1.73 By the help of 1.71 and 1.72 it is easily seen that SS1 and SS1M
are consistent:

Case 1: The matrices of the sentences in question consist of values 1
exclusively or 2 exclusively or 3 exclusively. Then these sentences are
theorems of SS1 and SSIM (according 1.71). The matrices of their
negations however consist then of the values 6 exclusively, 5 exclusively or
4 exclusively as it is clear from the definition of the operation of negation
(N) in 1.08. Thus according to 1.71 these negations cannot be theorems of
SS1 or SSIM because their cv is higher than 3.

Case 2: The matrices of the sentences in question consist of the values 1
and 2, 1 and 3, 2 and 3 or 1, 2 and 3 which are mixed up. Then these
sentences are theorems of SS1 and SSIM (1.71). The matrices of their
negations however consist then of the values 6 and 5, 6 and 4, 5 and 4 or 6,
5 and 4 respectively mixed up (1.08). Thus according to 1.71 these
negations cannot be theorems of SS1 or SSIM because their cv is higher
than 3.

Case 1 and 2 cover all different distributions of the values in the matrices
of theorems of SS1 and SSIM. Thus the consistency proof is completed.

1.74 SS1 and SSIM are consistent (1,71-1.73).

1.8 Decision procedure for SS1 and SSIM. 1,81 A method which suffices
to answer, either by ‘‘yes’’ or by ‘‘no’”’, the question whether or not any
sentence of SS1 or SSIM is a theorem (1.71) of SS1 or SSIM is called a
decision precedure (or: decision method, or: algorithm) for SS1 or SS 1IM*2,

1.82 A decision procedure for any sentence of SS1 and SSIM is
afforded by the process of calculating the matrix of the sentence in question
for its cv (characteristical value): The sentence is a theorem iff its cv is
either 1 or 2 or 3. The sentence is not a theorem iff its cv is higher than
3 (i.e. either 4 or 5 or 6); in this case the sentence may be either provable
contingent (cf. 1.46) or provable false (cf. 1.46). The sentence is provable
false iff the lowest value of its matrix is either 4 or 5 or 6. The sentence
is provable contingent iff its matrix contains at least one value between 1
and 3 and at least one value between 4 and 6. 1.83 Such a decision
procedure has been carried out by an electronic computer for a great
number of sentences and their variations (cf. 1.9) of SS1 and SSIM. These
sentences and their variations are given in chapters 2 and 3. The results
of the decision procedure for a certain sentence (or variation of it) is
given by stating its cv. Iff the sentence (or variation of it) is provable
contingent then this result is given by writing a ‘%’ instead of a certain
value-number (cf. 2.24).

1.84 Completeness-proofs for SS1 and SS1M (also one with respect to
classical propositional calculus) are given in 3.06.

1.9 Variations of formulas (sentences). A formula p becomes a
variation of p (in SSIM: a modal variation of p) iff any of the operations L,
LL, ML, M, MM, LM is applied to either its atomic formulas or to its
two-place operations A, K, C, E. In producing the variations (in order to
decide whether they are theorems or not) in the following chapters the
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operation L, LL, ML, M, MM, LM have been applied always in the order
just stated.

1.91 Not-separated variations of the atomic formulas of a formula
(VA). A formula p becomes a VA (of p) iff one of the operations L, LL, ML,
M, MM, LM (abbreviated: L-LM) is applied to all of its atomic formulas at
the same time.

Example: VA of CpCqp are: CLHpCLqLp, CLLPCLLgLLp . . . etc. Itis
clear that there are exactly six VA of CpCqp as for any other formula.

1.92 Separated variations of the atomic formulas of a formula (VAG).
A formula p becomes a VAG (of p) iff one of the operations L-LM is applied
exactly and at the same time to all of its atomic formulas which have the
same index.

Example: VAG of CKp,Cp,q,q, are: CKLp,Cp,q,Lq,, CKLLp ,Cp1q,LLq,

. etc. The application of the operations L-LM begins always with these
atomic formulas which have the highest index (in this special case the
index 2) and continues to the lower index in such a way that for every
application of an operation (say L) to the p; and ¢, all the six VAG of p, and
g, are carried through. The following table shows this (in the example
discussed the number of VAG is 49):

¢ K p C b 9 92
Lps Lg,
LMp, LMgq,
Lp, Lagx

Lp, Lq:
LMp, LMp,

LLp, LLg,

LMp, LMgq,

1.93 Variations of the two-place operations (4,K,C, E) of a formula
(V0). A formula p becomes VO (of p) iff one of the operations L-LM is
applied to all of its two-place operations of the same Kkind at the same time
(i.e. to all operations A at the same time, to all operations K at the same
time . . . etc.). The order of application is such that the first two-place
operation-sign on the left of a formula (i.e. this operation-sign which is the
main-connective)—together with the operation-signs of the same kind—is
the last in the order of application.

Example: VO of CKpCpqq are: CLKpCpqq, CLLKPChqq ... etc.
LCKpLCpqq, LCLKPLCDpgq— LCLMKpLCpgqq, LLCKPLLCpqq . . . etc.
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1.94 VO+VA variations. A formula becomes a VO+VA (of p) iff to a
certain VO of p a VA variation is applied. To every VO six VA variations
belong.

Example: VO+VA of CpApg are:

CpLApq, CLpLALpLq, CLLpLALLPLLq . . . etc.
CpLLApq ,CLPLLALpLq, CLLPLLALLpPLLg . . . etc.

LCpApq, LCLpALpLq . . . etc.
LCpLApg, LCLpLALpLq . . . etc.
(in this example the number of VO+VA is 336; i.e. 343 minus 7 VA).

1.95 Separated variations of the two-place operations (4,K,C,E) of a
formula (VOG). A formula p becomes a VOG (of p) iff one of the operations
L-LM is applied exactly and at the same time to all of its two-place
operations A,K,C,E which have the same index. The application of the
operations L-LM begins always with these operations A,K,C,E which have
the highest index and continues to the lower index ending up with the index 1
which is always given to the main-connective (i.e. the first two-place
operation-sign on the left of a formula). The order of application is shown
by the following table
Example: VOG of CiCopCuqrCKapqr

C, Cp Gar C, K par
LC,
LLC,
LK,
LC,
LLK,
LC, LC,
LK,
LLC, LLC,

LC,
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LK,

LC,

LKy

LCz LCZ

LLCy

Note: In order to decide the cv of the VOG variations of the main-
connective—in the above example C ;—which has always the index 1 (if there
are indices at all) it is not necessary to calculate through these variations
(namely: LC,, LLCy...LMC,). The cv of it can be recognized easily with
with the help of the statements of 1.53.

1.96 VOG+VA variations. A formula becomes a VOG+VA (of p) iff to a
certain VOG of p a VA variation is applied. To every VOG six VA
variations belong.

Example: VOG+VA of CipCoqp are: CpLCoqp, C,LPLC,LgLp,
C,LLpLC,LLqLLp . . . etc.
CwpLLCyqp, CyLPpLLC,LgLp, CLLPLLC,LLgLLp . . . etc.

2. Basic laws of SS1 and SS1M
2.1 Identity and Negation
characteristical
value (cv)

211 E p p® principle of identity (in prop. calc.) 1

(n all VA 1
212 E NNp p double negation 1

(1) all VA 1
2.13 E NKpg ANpPNq De Morgan’s law 1

(1) all VA 1
2.131 E Kpq NANPNg De Morgan’s law 1

(M all VA 1
2.132 E NApq KNpNg De Morgan’s law 1

(7) all VA 1
2.133 E Apq NKNpNg De Morgan’s law 1

(M) all VA 1
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2,14
(7)
2.141

2.15
(M)
2.151

2.16

2.161
2.162
2.163
217

2.171
2.172
2.173
2.18

2.181
2.182
2.183
2.19

2.191
2.192
2.193
2.194
2.195
2.196
2.197
2.198
2.199

2.2
2.21
(M
2.211
2.212
2.22
2.221
2.23
(196)
2.24
(343)
(314)

2,241
2.25
2.251

N KpNp

OO

a0

all VA

p AgNq
Lp NMNp
NLp MNp
Mp NLNp
NMp LNp
LLp NMMNp
NLLp MMNp
MMp NLLNp
NMMp LLNp
MLp NLMNp
NMLp LMNp
LMp NMLNp
NLMp MLNp
LLp Lp

C Lp MLp

PAUL WEINGARTNER

C MLp p

LLp p
Lp p

a0

Conjunction

E

Moo=

p Kpp
all VA
p KpApq
p KpAgNq
Kpq p
Kpg ¢
Kpg Kqp

b LMp

C LMp Mp
C Mp

b Mp

b MMp

all VA and VO+VA

KKpgqr KpKqr
all vA

the VO LLK, MLK™
the VO LK, MK, MMK, LMK; the VO LLC . . . K
all VA of VO LC-LMC

KKpqr KpKqr

KpAqr AKpgKpr
AKpqKpr KpAqr

principle of non-contradiction

tertium non datur

MMp

commutation

association

association
distribution
distribution

<
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2.252
2.26
2,261
2.262
2.263
2.264
2,265
2.266
2.267
2.27
2.271
2.2712
2,273
2.274
2.275
2.276
2.277
2.278
2.2781
2.2782
2.279
2.2791
2.28

2.3

2.31

2.311
(196)
(161)

2.312

2.313

2.32
(196)
(160)
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E KpAgqr AKpgKpr distribution
E LLKpgq KLLpLLq distribution of modalities
C LLKpq LKpg distribution of modalities

E LKpg KLpLq
C LKpgq MLKpq
MLKpq KMLpMLq
MLKpq Kpq

LKpq Kpq
LLKpq Kpq

OO0

C Kpg LMKpq
C LMKpq KLMpLMq
C KLMpLMq KMpMq
C LMKpq MKpq
C MKpq KMpMq
C KMpMg KMMpMMq
C MKpg MMKpq
C MMKpq KMMpMMq
Kpq KLMpLMq
Kpg MKpq
Kpq KMpMq
Kpq MMKpq
Kpq KMMpM>Mq
LKpg Lp

OO0 00

All variations which arise from replacing both of the

operations L in 2.28 by LL, ML, M, MM, LM

Disjunction
E p App
C App p
all VA
the VO LA, MLA
all VA of LA and MLA
all VO+VA of LLA
the VO MA, MMA, LMA
its VA Mp'®
its VA Lp
all other VA
E p ApKpq
E p ApKqNgq
C p» Apg addition
all VA
the VO LA, LLA, MLA
its VA Lp
its VA Mp
the VO MA, LMA
the VO MMA
the VA of LMA, MMA

113
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2.321
2.33
(196)
2.34
2.35
2.351
2.352
2.36
2.361
2.362
2.363
2.364
2.365
2.366
2.367
2.368
2.3681
2.3682
2.3683
2.3684
2.37
2.371
2.372
2.373
2.374
2.375
2.376
2.377
2.38

2.4

2.41
(49)
2.411
(49)
2.412
(7)
2.4121
(7)
2.413
2.414
2.4141
2.415
(49)

PAUL WEINGARTNER

C q Apq
E Apqg Agp commutation
all VA and VO+VA
E ApAqr AApgr association
C KApgApr ApKqr distribution
C ApKqr KApqApr
E KApgApr ApKqr
C ALLpLLq LLApgq distribution of modalities

C LLApg LApq  distribution of modalities
ALLpLLg ALpLq
C ALpLq LApq
C LApq MLApgq
C ALpLqg AMLpMLq
C AMLpMLq MLApq
C MLApq Apq

O

C ALLpLLq Apq
C LLApq Apq
C ALpLg Apq
C LApq Apg
C AMLpMLq Apq
C Apg LMApq
E LMApq ALMpLMg
C LMApq MApq
E MApg AMpMgq
C MApg MMApq
E MMApq AMMpMMgq
C Apq MApq
C Apg MMApq
C Lp LApq

All variations which arise from replacing both of the
operations L in 2.38 by LL, ML, M, MM, LM

Implication and Equivalence

E Epq Eqp
all VA and VO+VA
E Epq ENDNq
all VA and VO+VA
C Epq Cpq
all VA
C Epq Cqp
all VA
E Cpg ANpq
E Cpq NKpNq
E NCpg KpNq
E Cpg CNgNp transposition
all VA and VO+VA

(9]
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CpNg CgNp

all VA and VO+VA
CNpq CNgp

all VA and VO+VA
p CNpp

all VA

Np CpNp

all vA

q Cpq

Np Cpq

Kpq Epgq

KNpNq Epq

Cpq EpKpq
EpKpg Cpg

Cpg EpKpq

Cpq Cqgp

Cpq CpNq

The corresponding sentences with strict or strong implica-
tion i.e. ALCpqLCqp, ALCpqLCpNg and ALLCpqLLCqp,
ALLCpqLLCPpNq are not valid in SS1 (and SS1M).

2427 C
(196)
(174)

2.428 C
(196)

(174)

243 E
2431 E
2432 E
2.433 E

Cpq CKvpKrq factor-theorem
all VA

the VO LK, LLK, MLK

its VA Lp

its VA Mp

the VO MK, MMK, LMK

its VA Lp

its VA Mp

all other VA

the VO+VA LC . . . MLK LC...LMK"
all other VO LC

its VA

the VOLLC...K

its VA

all other VO+VA LLC

the VO+VA MLC ... K, MLC ... MLK, MLC ... LMK
all other VO MLC'®

its VA

Cpq CArpArq factor theorem
Variations: the same distribution of cy as in 2.427 with
‘A’ for ‘K’

LCpq LANpPq

NLCpgq MKpNq

LCpg LNKpPpNgq

Lp LCNpp
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2.4331 E LNp LCpNp 1
All variations which arise from replacing both of the
(8)(6) operations L in 2.433 and 2.4331 by LL, ML, M, MM,

LM
2.4332 E Lp LEpPpADPN, 1
2.4333 E LNp LEpKpND 1

All variations which arise from replacing both of the

(6)(6) operations L in 2.4332 and 2.4333 by LL, ML, M, MM,
LM

2.4334 E Lg KLCpqLCNpq

2.4335 E LNp KLCpqLCpNq

(3)(3) All variations which arise from replacing all three
operations L in 2,4334 and 2.4335 by LL and ML

—_ A el

2.434 C Lq LCpq

2.4341 C LNp LCpq

2.435 C LKpg LEpq

2.4351 C LKNpNq LEpq

2.436 A MCpq LCpNq

2.4361 A LCpg MCpNgq

24362 E NLCpq MKpPpNq

2.4363 C NMCpq LCpNgq

2.4364 C NLCpg MCpNgq

2.437 C LCMpLq LCpg law of I. Thomas
2.4371 C LCMpLq Cpq

2.4372 C CMpLg Cpq

245 C LLCpg LLCLpLq distribution of
2.4501 E LLCLpLg LCLpLg modalities
2.451 C LCLpLq LLCLLpLLq
24511 E LLCLLpLLg LCLLpLLq

2.4512 E LCLLpLLq CLILpLLgq

2452 C LCLpLgq CLpLgq
2453 C LCLpLgq LLCMLpMLq

2.4531 E LLCMLpMLq LCMLpMLq

2.4532 E LCMLpMLq CMLpMLq
2.454 C LLCpq LCpgq

2.4541 C LCpq CLpLq

2.4542 C LCpg Cpq

2.4543 C LCpq LLCMLpPpMLq

2455 C LLCpgq LLCMpMgq

2.4551 E LLCMpMg LCMpMg

2.456 C LCMpMq LLCMMpM>Mq
2.4561 E LLCMMpMMq LCMMpMMyg

2.4562 E LCMMpMMq CMMpMMq

2.456 C LCMpMq CMpMq

2.458 C LCMpMg LLCLMpLMg

2.4581 E LLCLMpLMq LCLMpLMqg

2.4582 E LCLMpLMgq CLMpLMgq

T T T S N O g S N T S g O L T e S T S G e S e Y
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2.459 C LCpg CMpMq 1
2.4591 C LCpgq LLCLMpLMg 1

Note: The following propositional-logical forms of Becker’s
rules are not valid in SS1 (and SS1M):

C LCpg LCLplLq C LCpg LCMpMyg
C Cpg CLplLg C Cpq CMpMg
2.46 C KCpgCqr Cpr hyp. syllogism

(196) all VA

(184) the VO LK, MLK
its VA
the VO+VA LILK
the VO MK, MMK, LMK
its VA Lp, Mp
its VA LLp, MLp, MMp, LMp
the VO+VALC...K,LC...ILK,LC...LLK,LC...MLK
the VOLC... MK, LC...MMK,LC...LMK
its VA
the VO+VA LLC and MLC ... K-LMK

2.461 C Cpg CCqrCpr
(28) all vA

27 the VO LC
its VA
the VO+VA LLCand MLC
2.462 C, KiCopqCopr CopKsqr distribution

(196)  all VA
(155)  all VOG K, (i.e. LKy, LLK,. . .)
its VA Lp
its VA Mp
its other VA (i.e. LLp, MLp, MMp, LMp)
the VOG+VA LC, ... K; LLC,...K; MLG, ... K
the VOG LG, . .. LK, LLK, MLK; LLGC, . . . LK, LLK, MLK;

o G0 T ek et bk A D) bR b B e b S X e e DN e DN

MLGC, ... LK, LLK, MLK k
its VA Lp Mp k
its other V4 1
the VOG LG, . .. MK, MMK, LMK 3
its VA 1
the VOG LLC, ... MK, LMK k
its VA 1
the VOG+VA LLG, ... MMK 1
the VOG+VA MLC, . .. MK, MMK, LMK 1
(588) the VOG+VA LC,, LLC,, MLC, have the same distribution
(438) of cv with exception of the cv 3 which turn into %

2.4621 E, K C,pgC.pr C,pKiqr distribution 2
(196) all VA 1
(126) the VOG LKy~ LMK, b

its VA Lp k
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(196)
(122)

(196)
(121)
(196)
(122)
2.463 C
(1372)
(1071)

PAUL WEINGARTNER

the VA Mp of the VOG LK;, LLKj3; MLK;,

the VA Mp of the VOG MK, MMK, LMK,

the other VA LLp, MLp, MMp, LMp

the VOG LG, . . . K,

its VA

the VOG LLG, . . . K,

its VA

the VOG+VA MLC,

the VOG LC, ... LK3 LLK;. .. LMK3; LLG ... LK,
LLK,;...LMKs; MLC, ... LK, LLK;. .. LMK,

its VA Lp, Mp

its other VA

the VOG+VA LE, have the same distribution of cv

as in 2,4621 with the following exceptions:

the cv 2 turn into 3 and the cv 3into %

the VOG+VA LLE,: distribution as in 2.4621, except:

the cv 2 and 3 turn into &

the VOG+VA MLE,: distribution as in 2.4621, except:

the cv 2 turn into 1, the cv 3 into &.

KCprCqr CApqr distribution
all vA

the VO LK, MLK

its VA

the VO+VA LLK

the VO MK, MMK, LMK

its VA Lp, Mp

its other VA .

the VOLA...K, LK, LLK, MLK; MLA .. . K, LK, LLK,
MLK; LLA ... LK; LLA ... MLK

its VA

the VO+VA LIA...K,LLA ... LLK

the VO LA ... MK, MMK, LMK; LLA, MLA with the same;
MA...K, LK, LLK, MLK; MMA, LMA with the same;

its VA Lp

its VA Mp

its other vA

the VO MA ... MK, MMK, LMK; MMA, LMA with the same;

its VA Lp, Mp

its other VA

the VO+VA LC ... K, LK, LLK, MLK;
LC...LLA...K, LK, LLK, MLK

the VOLC ... MK, MMK, LMK; LC...LLA ... MK,
MMK, LMK

its VA

the VO LC ... LA, MLA, MA, MMA, LMA (with all K-var.)

the VA oflVO LC . .. LA, MLA

the VA Lp, Mp of VO LC ... MA, MMA, LMA

)-b—n?@‘r—swuwk‘g

ot R

— R i DN b

- DO

— — A = & oo

B it R I



2464 C,
(784)
(639)

(2352)
(1829)
2.465 C,
(784)
(567)

MODAL LOGICS

the other VA of VO LC ... MA, MMA, LMA

the VO+VA LLC ... A, LLA (with all K-var. i.e, K-LMK)

the VO LLC ... LA, MLA, MA, MMA, LMA .. .K-LMK

the VA of VO LLC ... LA, MILA

the VA Lp, Mp of VO LLC . .. MA, MMA, LMA

the other VA of VO LLC ... MA, MMA, LMA

the VO+VA MLC ... A, LA, LLA, MLA ... K-LMK

the VO MLC ... MA, MMA, LMA ... K-LMK

its VA Lp, Mp

its other VA

GpCaqr CoKipqr importation

all VA

the VOG LG, LLC,, MLC,; LKs, MLK, (with all C,~var.)

its VA

the VOG LLK;.,..Cy LLK,...LLC,

the VOG MK,;, MMK, LMK ... C4q-MLC,

its VA Lp

its VA Mp

its other VA

the VOG LG, . . . K, LK, MLK;...C,-MLC,

its VA

the VOG+VA LG, ... LLK;...LC,, LLC,

the VOG LG, ... LLK; ... MLC,

its VA

the VOG LG, ... MKs;, MMK,, LMK, ... Cy~-MLC,4

its VA Lp, Mp

its other VA

the VOG LLG,. .. K, LKs, (LLK;. .. MLC,),
MLKs...Cy- MLC,

its VA

the VOG+VA LLC,...LLKs...C4 LCy, LLC,

the VOG LLG, ... MK3, MMK;, LMK, ... C,-MLC,

its VA Lp, Mp

its other VA

the VOG+VA MLGC, ... K LK; LLKg MLK,.... . Co-MLC,

the VOG MLGC, ... MKs, MMKs, LMK, ... Cy-MLC,

its VA Lp, Mp

its other VA

the variations LC,, LLC,, MLC,: distribution

of cv as in 2.464 with slight differences (cf. the end of 2.465)

CaK3pqr CqCypr exportation
all VA

the VOG LC,, LLC,, MLC,

its VA Lp, Mp

its other VA

the VOG LKs, LLK; MLKs . . . Cy-MLC,
its VA Lp
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(784)
(551)
(784)
(547)
(784)
(551)
2.466
(196)

(196)
(196)
(196)
2.467
(196)
(147)

C

C

[

-
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its VA Mp

its other VA

the VOG MKy . ..Cy MMK,...Cy LMK, ... C,

its VA

the VOG MK; ... LC,, LLC,, MLC,; MMK,, LMK, with the
same

its VA Lp

its VA Mp

its other VA

the VOG LG, ... Cyq; LG . .. MKy MMK, LMK;. .. Cy

its VA

the VOG LG, ... LCy LLCy, MLCy; LG, . . . LK, LLK; MLK,

its VA Lp, Mp

its other VA

the VOG LG, ... MK;, MMK,;, LMKs. .. LCy, LLC,, MLC,

its VA

the VOG LLG,; LLG, ... LK, LLK; MLK;. .. Cy-MLC,

its VA Lp, Mp

its other VA

the VOG LLG, ... MK MMK3 LMK;. .. Cy-MLC,

its VA

the VOG+VA MLG,. .. Cy; MLG, . . . MK;, MMK,,
LMK;...C,

the VOG MLC,...LCy, LLCy, MLCy; MLG, ... LK, LLK,,
MLK; ... C4s-MLC,

its VA Lp, Mp

its otherVA

the VOG MLG, ... MK; MMK,;, LMK;. .. LC,, LLC,, MLC,

its VA

the VOG+VA LC,;: distribution as in 2.465, except:

the cv 2 turn into 3, the cv 3 turn into 2

the VOG+VA LLC,: distribution as in 2,465, except:

the cv 2 and 3 turn into &

the VOG+VA MLC;: distribution as in 2.465, except:

the cv 2 turn into 1, the cv 3 into &

CeKspqr CyKiqpr

all VA

all VOG+VA G-MLGC, ... Ks-LMK,

all VOG+VA LC,

all VOG+VA LLC,

all VOG+VA MLC,

GKspgr GKsNrpgNp

all VA

the VOG LK;~LMK,

its VA Lp

its VA Mp

its other VA
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(196)
(140)
(196)
(139)
(196)
(140)

2.47

2.471

2.472

MODAL LOGICS

the VOG LG, ... K;

its VA

the VOG LG, LLGC,, MLC,, ... LK;, LLK;, MLK,
its VA Lp, Mp

its other VA

the VOG LG, LLG,, MLG,, . . . MK3, MMK,, LMK,
its VA

the VOG LLG,.. . K,

its VA

the VOG+VA MLG,. . . K,

the VOG+VA LC;: the cv 2turn into 3, thecv 3 intok
the VOG+VA LLC,: the cv 2 and 3 turn into 2
the VOG+VA MLC,: thecv 2 turn into 1, the cv 3 intok
Valid variations of the (propositional-logical form of)
modus ponens in SS1 and SSIM
C K .Cpg -
4 MMq
P q, Mq, LMq
Lp q, Mg, MMq, LMq
LLp q, MMgq
LLp Mq, LMq
MLp q, Mg, MMgqg, LMq
C K .LCpq -
p q, Mq, MMg, LMq
Lp Lq, MLq, Mgq, MMq, LMgq
Lp q
LLp Lq, MLq, Mq, MMq, LMq
LLp q
MLp MLq, Mq, MMgq, LMgq
MLp q
MLp Lq
Mp Mg, MMq
Mp L Mg
LMp Mq, MMq, LMg
2473 C K LLCpg -
p q, MMgq
p Mg, LMq
Lp Lg, MLq, Mq, MMq, LMq
Lp q
LLp Lq,LLq, MLq, q, Mq, MMgq, LMq
MLp MLg, Mq, MMg, LMq
MLp q

MLp Lq
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Mp Mq, MMq
Mp LMq
MMp MMgq
LMp Mq, MMg, LMg

2414 C,K,p,Csp1q: 4.

(196)
(125)

(196)
(110)
(196)
(98)

(196)
(110)

3.0
3.01

3.011

3.012
(196)
(160)

only the VAG of p,and ¢,are calculated here (not these

of p, and ¢,); this is indicated by writing ‘VAG,’ instead

of ‘VAG’

all VAG,

the VOG LCs, MLCg; LK, . .. C3, MLC; LLK, ... MLCg;

MLK,...Cs MLC,

its VAG, LLp, MMp

its other VAG,

the VOG LK, ... LC3 LLCg; MLK, ... LC3 LLC,

its VAG,

the VOG+VAG, LLCs; LLK, ... Cs LCs, LLC3

the VOG MK,, MMK,, LMK, ... C,

its VAG,

the VOG MK, MMK,, LMK, ... LCs;, MLC,

its VAG, Lp

its VAG, LLp, Mp, MMp

its other VAG,

the VOG MK, MMK, LMK,... LLC,

its VAG, Lp

its VAG, Mp

its other VAG,

the VOG+VAG, LC,: distribution as in 2,474, except:

the cv 2 turn into 3, the cv 3 into &

the VOG+VAG, LLC,: distribution as in 2.474, except:
the cv 2 and 3 turn info 2

the VOG+VAG, MLC,: distribution as in 2.474, except:
the cv 2 turn into 1, thecv 3 intok

Investigations on the validity or invalidity of axiom
systems of propositional calculus in SS1 and SS1IM

Classical propositional calculus
Whitehead-Russell (PMt) (restriction: Bernays (AUA))
Hilbert-Ackermann (GZT)

App p (cf. 2.311)
q Apq (cf. 2.32)
all VA

the VO LA, LLA, MLA

its VA Lp

its VA Mp

its other VA4

the VO MA, LMA

cv
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cv
its VA 1
the VO+VA MMA 1
The cvof VO+VA LC, LLC, MLC can easily be obtained
with a method like at the end of 2.474
3.013 C Apq Agp (cf. 2.33) 1
(294) all VO+VA (also the VO+VA LC, LLC, MLC, MC, MMC,
LMC) 1
3.014 C Cpq CArpArg (ctf. 2.428 and 2.427) 2
3.02 Nicod, (RNP)
3.021 N KpNp (cf. 2.14) 1
(49) all VO+VA 1
3.022 C Cpg CCgNvCpNy 2
(28) all VA 1
(27) the VO LC %
its VA 1
the VO+VA LLC, MLC 1
3.03 ERukasiewicz, (UAK)
3.031 C Cpg CCqrCpr (cf. 2.461) 2
3.032 C CNpp p (cf. 2.417) 1
3.033 C p CNpg 2
(1) the VO LC, LLC, MLC, MC, MMC, LMC {without VA-var.) 1
3,04 Rosser. (LMt)
3.041 C p Kpp (cf. 2.21) 1
(49) all VA 1
all VO+VA LC—LMC 1
3.042 C Kpqp 2
(1) all VA 1
3.043 C Cpgq CNKqvNKrp 2

3.06 Completeness of SS1 and SS1M. 3,061 First sense of complete-
ness: A gystem is complete (under a given interpretation), if a decision
procedure enables us to prove in the system all the logically true (or:
valid) propositions, i.e. all the theorems, which its formation rules enable
us to express in the system.

3.062 SS1 and SSIM are complete in this first sense (3.061). The
interpretation (for 7 and F) is given already in the definition of the system
1.08. The formation rules for SS1 and SSIM are determined by the
definition of the system in 1.08, and from 1.82 it is clear that the required
decision procedure for SS1 and SSIM exists.

3.063 Second sense of completeness: A system is complete (under a
given interpretation), if the deductive postulates and substitution rules (or:
the definitions of the concept of consequence) enable us to prove from any
valid formula (sentence) of the system all the logically true (or: valid)
propositions i.e. all the theorems, which its formation rules enable us to
express in the systemlg.

3.064 SS1 and SSIM are complete in this second sense {3.063). This
can be seen in the following way:
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1. The interpretation (for T and F) is given in 1.08; the formation rules
are determined by the definition of the system in 1.08. The concept of
consequence is defined in 1.6.

2. It is clear from 1.41 and 1.71 that a valid formula of SS1 or SSIM has a
cv not higher than 3 (i.e. either 1 or 2 or 3). Thus the cv of the premiss
(being valid) is either 1 or 2 or 3. For any conclusion, drawn from such a
premiss, which is valid in SS1 or SS1M the same holds. Thus all deductive
situations which are required to cover all the cases for a complete deriva-
tion of all the theorems (which the formation rules enable us to express) of
SS1 and SS1M have the following property: the cv of the matrix of the
premisses (taken together in a conjunction) is either 1 or 2 or 3 and the cv
of the matrix of the conclusion (or of more conclusions taken together in a
conjunction) is also either 1 or 2 or 3. But this property is satisfied at
least by the material concept of consequence as defined in 1.6. Thus all
deductive situations which are necessary for the completeness defined in
3.063 are satisfied (at least) by the material concept of consequence,

Note: The concepts of consequence in SS1 and SSIM allow for proof of
every theorem of SS1 and SSIM, not only from certain axioms, but from any
other valid sentence (or: theorem) of the system. Thus one can also say:
All the theorems of 8S1 and SS1M can be derived from the principle of
noncontradiction or from the tertium non datur or from the principle of
identity Epp and so on. The kind of concept of consequence (material,
strict, strong) which is used depends on the cv of the premiss and the
conclusion as is clear from 1.611-1.613., But nevertheless it should be
remembered that in order to decide whether a sentence of SS1 or SSIM is a
theorem (in SS1 or SS1M) or not it is not necessary at all to use derivation
and the concept of consequence. This question can be answered always
independently by calculating the cv of the matrix of the sentence in question
(cf. 1.82). In other words one could say: All the theorems of SS1 and
SS1M follow from the empty set of sentences®.

3.065 Third sense of completeness: A system is complete (under a
given interpretation), if a decision procedure enables us to prove in the
system all the valid propositions of the classical propositional calculus
(CPC).

3.066 SS1 and SSIM are complete in this third sense (3.065). This can
be shown in two steps: The intepretation (for T and F') is given in 1.08; the
decision procedure is described in 1.82.

1. The sentences which the formation rules of the CPC enable us to
express form a subset of the sentences which the formation rules of SS1,
SSIM enable us to express. This can be shown by comparison of the
definitions of the systems which are constructed by the matrix method.
The definition of SS1 (and—if the interpretation for L and M is made—of
SS1M) is given in 1.08. The definition of CPC with the help of the matrix
method is due to Tarski (UAK)*'. It can be reformulated (making some
nonessential changes of numbers and letters and taking instead of the
operations C and N the operations A and N) as this: The classical propos-
tional calculus (ordinary system of sentential calculus) is the set of all
sentences which are satisfied by the matrix Mat = <T,F,N,A> where T =
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{1}, F={6} and the operations N and A are defined by the following formulas:

N(1) = 6; N(6) = 1
A(1,1) = A(1,6) = A(6,1) = 1; A(6,6) = 6.

It is easily seen from the definition in 1.08 (which can be considered as the
formation rules of SS1 and SS1M), and from the definition just given that the
sentences (well-formed formulas) of the CPC form a subset of the
sentences of SS1 or SS1IM.

2. Every sentence which is valid in the CPC is also (provable) valid in SS1
and SSIM. In other words: every sentence which has the value T (i.e. 1) in
the CPC has the value T (i.e. either 1 or 2 or 3) in SS1 and SSIM. This can
be shown by a comparison of the matrices of CPC and SS1 or SS1IM. The
matrices for N, A K, C, E of SS1 (or SS1M) contain the matrices for N, 4,
K, C, E of CPC respectively: The matrix N of 851 contains the matrix N of
CPC in its first and last value; the other matrices of SS1 {or SS1M) (which
have the form of a square) contain the other corresponding matrices of
CPC in their corners:

Apg|1 2 3 456 Kpg|1 2 3 4 56 Cpgl1 2 3 458
111 11 1]1 1[1]2 3 4 5[6 1112 3 4 5[8
2 /122212 2223468 2113455
3 (123133 3(333655 31121444
40121444 414464568 41123133
511134505 51565556 51122212
6 [1]2 3 4 5[6 6 l6l6 6666 6 (1111111

Thus SS1 turns into CPC if one drops in 1.08 the operation L and the values
2,3,4 and 5.

3.1 Positive Implicational Calculus
cv

3.11  Lukasiewicz (Prior, (Flg) Appendix)

3.111 C p Cqp 2
(N all VA 1

3.112 C CpCqr CCpqCpr 2
(28) all VA 1
(27) the VO LC k

its VA 1
the VO+VA LLC, MLC 1

3.12  Hilbert, (GLM)

3.121 C CpCpq Cpq 1
(28) all VA 1
(27) the VO LC k

its VA 1
the VO+VA LLC, MLC 1
3.122 C Cpgq CCqrCpr (cf. 2.461) 2
3.123 C p Cqgp (cf. 3.111) 2

3.2 Weak Positive Implicational Calculus
3.21  Church, (WTT)
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3.211
3.212
(28)
(27)

3.213
(28)
(19)

3.3
3.31
3.311
3.312
(196)

3.313
3.314
3.315
3.316
3.317
3.318
(196)

3.319

3.320
(7)

3.321
(196)
(190)

34

3.41

3.41
(147)

C CpCpq Chq
C Cqr CCpqCpr
all VA
the VO LC
its VA

PAUL WEINGARTNER

{cf. 3.121)

the VO+VA LLC, MLC

C CpCqr CqCpr
all VA

the VO LC, LLC, MLC

its other VA

Full Intuitionistic
Heyting, (FRI)

C p Kpp

C Kpg Kgp

all VA

all VO+VA
Cpq CKprKqr
KCpqCqr Chr
p Cqp
KpCpq q

b Apq

Apg Agp

all VA

all VO+VA

OO0 00

Calculus

(cf. 2.21)
(cf. 2.23)

(cf. 2.427)
(cf. 2.46)
(cf. 3.111)
(cf. 2.47)
(cf. 2.32)
(cf. 2.33)

C KCprCqr CApgr (cf. 2.463)

C Np Cpq
all VA

C KCpgCpNq Np
all VA

the VO LK, MLK

its VA

the VO+VA LLK
the VO MK, MMK, LMK

its VA Lp

its VA Mp

its other VA

the VO LC, LC

its VA

the VO+VA LC
and MLC

Modal Systems

Lewis S1, (SLg)

LC Kpq Kqp
all VA

... MK, MMK, LMK

... LK, LLK, MLK; all VO+VA of LLC

{cf. 3.312)

i
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3.412
(7)
3.413
(42)

3.414
(147)
(134)

3.415
(147)
(144)

3.416
(21)
(20)

3.42
3.421
3.432

(42)

3.43
3.431
3.432

3.44
3.441
3.442

3.45
3.451
3.452

3.46
3.461

LC

LC

Lc

LC

LC

MODAL LOGICS

all VO+VA

Kpqg p (cf. 3.042)

all VA

b Kpp (cf. 2.21 and 3.041)
all VA

the VO+VA LLC—LMC (without K-var.)
KKpqr KpKqr (cf. 2.24)

all VA

the VO LK, MK, MMK, LMK
the VO LLC . .. K, LK, MK, MMK, LMK;
MLC ... LK, MK, MMK, LMK

the VOLC...LLK, MLK; LLC ... LLK, MLK;
MLC...K, LK, MLK

the VA of all mentioned VO

KLCpqLCqr LCphr (cf. 2.46)

all vA

the VO LC ... MK, MMK, LMK

the VO+VA LLC, MLC . .. K-LMK;

the VO+VA LC ... LK-MLK

p Mp

all VA

the VO LLC

its VA

the VO+VA MLC

Lewis S2, (SLg)
Axioms 3.411-3.416 of S1

LC

MKpq Mp (cf. 2.28)
all VA
all VO+VA LLC ... LMC

Lewis S3, (SSL)
Axioms 3.411-3.416, 3.422

LC

LCpq LCMpMgq

In SS1 the following are valid:

LC
LC

LCpq CMpMy {cf. 2.455-2.459)
LILCpq LCMpMq (ct. 2.455-2,953)

Lewis S4, (SLg)
Axioms 3.411-3.416, 3.422, 3.432

LC

MMp Mp

In SS1 the following is valid:

LC

Mp MMp (cf. 2.197)

Lewis S5, (SLg)
Axioms 3.411-3.416, 3.422, 3.432, 3.442

LC Mp LMp

In SS1 the following is valid:

LC LMp Mp (cf. 2.196)
Godel, (IIA)

c Lp p (cf. 2.194)

2}
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(49)
(48)

3.462
(84)
(78)

3.5
3.51
3.5101
(42)
3.5102
(21)
(20)
3.5103
(21)
(20)
3.5104
(21)
(20)
3.5105
(7
3.5106
(7)
3.5107
(147)
(118)

3.5108
(147)
(117)

G

PAUL WEINGARTNER

all VA

the VO LC

the VO LLC

the other VO MLC, MC, MMC, LMC
the VA of all VO

LGpg C3LpLq

all VA

the VOG LG, . .. LCs, MLC,

its VA

the VOG+VA LLC, ... C,y LCs LLC, MLC,
the VOG MLGC, ... C;y

its VA

the VOG MLC, ... LCs, LLCs, MLC,
its VA

Strict and Strong Implication
Ackermann (strong implication) (LSI) (LSS)

LC

LC

LC

LC

LC

LC

LC,

LC

p b
all VA and VO+VA

LCpq LCLCqvLCpr
all VA

the VO+VA LLC, MLC
LCqr LCLCpqLChv {cf. 3.212)

all VA

the VO+VA LLC, MLC

LCPLCpq LCpq

all VA

the VO+VA LLC, MLC

Kpq p (cf. 3.042)

all VA

Kpg q

all VA

Ky LCpgLCopr LC,pKiqr {(cf. 2.462)

all VA

the VOG+VA LLC,...K; MLG,.. . K
Continuation as in 2.462, (except the two lines at end)
p Apg (cf. 2.32)

all VA

the VO LA, LLA, MLA

its VA Lp, Mp

the VO MA, LMA

its VA

the VO+VA MMA

the VO LLC . .. A, MA, LMA

its VA

(cf. 2.461, 3.031)
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3.5109
(147)
(117)

3.5110
(1029)
(806)

3.5111
(1029)
(794)

LC

LC

LC

Note:

MODAL LOGICS

the VOLLC ... LA, LLA, MLA; MLC ... LA, LLA, MLA
its VA Lp, Mp

its other VA

the VO+VA LLC ... MMA; MLC ... A, MA, MMA, LMA
q Apgq (cf. 3.012)

the same distribution of cv as in 3.5108
KLCprLCqr LCApgy (cf. 2.463)
distribution of cv as in 2.463, beginning from:
the VO+VA ILC .. . K
KpAqr AqKpv
all VA
the VOLC...LA, LLA, MLA
its VA Lp, Mp
its other VA
the VO LC ... MA, MMA, LMA
its VA
the VOLC...LK, LLK, MLK ... A, LA, LLA, MLA
its VA
the VO LC ... LK, LLK, MLK ... MA, MMA, LMA
its VA Lp, Mp
its other VA
the VOLC...MK, MMK, LMK ... A
its VA Lp, Mp
its other VA
the VO LC ... MK, MMK, LMK ... LA, LLA, MLA, MA,
MMA, LMA
its VA
the VOLLC...K...A
the other VO+VA of LLC . . . have the same distribu-
tion of cv as these of LC . . .
the VOMLC ...K...A
the other VO+VA of MLC . . . have the same distribu-
tion of cv as these of LC . ..
The corresponding variations of C KpAgqr AqKpr

(C not varied), (343 variations, 271 valid) differ from the
above distributions for LC ... only in the following re-

spect:
(LC .

the following formulas are not valid in the strict
. .) of 3.5111, but valid in the material form (C . . .):
the three VA Mp of CKpLAqvLAqKpr, C . .. LLA,
C...MLA;
the three VA Lp of CMK pAqrAqMKpv, C ... MMk ... A,
C...LMK...A

3.5112 LC LCpg LCNgNp (cf. 2.415)

129

—_ AR T D e D D A W

BN



130

PAUL WEINGARTNER

(21) LC all VA
all VO+VA LLC, MLC
3.5113 LC p NNp (cf. 2.12)
(21) all VA
all VO+VA LLC, MLC
3,5114 LC NNp p (cf. 2.12)
(21) all VA
all VO+VA LLC, MLC
3.5115 LC KpNq NLCpq
3.52 Schmidt (Strict Implication) (AZM) (VAL)
3.5201 LC Kpq Kqp (cf. 3.411)
3.5202 LC KKpgr KpKqr (cf. 3.414)
3.5203 LC Kpg p (cf. 3.412)
3.5204 LC p Kpp (cf. 3.413)
3.5205 LC KpLCpq q (cf. 3.472 and 3.474)
3.5206 LC KLCpqLCqr LCpr (cf. 2.46)
3.5207 LC LCpq LCNgNp (cf. 3.5112)
3.5208 LC LCKpqr LCKpNrNgq
3.52081 C;, G,K pqr C,K;pNrNg
(196) all VA
(147) the VOG C, ... LK3-LMK,
its VA Lp
its VA Mp
its other VA
the VOG LG, . . . K3
its VA
the VOG LG, ... LK;-MLK3; LLC, . .. LKs-MLK;
MLG,. . . LKy+~MLK,
its VA Lp, Mp
its other VA
the VOG LG, . .. MK;-LMK,; LLG, . . . K3, MK;-LMKsg;
MLC, ... MK;-LMK,
its VA
the VOG+VA MLC, ... K,
(196) the VOG+VA LC,: distribution as in 3,52081, except:
(139) the cv 2 turn into 3, the cv 3 into %
(196) the VOG+VA LLC,: distribution as in 3,52081, except:
(138) the cv 2 and 3 turn into &
(196) the VOG+VA MLC,: distribution as in 3,52081, except:
(139) the cv 2 turn into 1, the cv 3 into 2
3.5209 LC p NNp (cf. 2.12)
3.5210 LC NNp p (cf. 2.12)
3.5211 LC LCpKqr Cpq
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3.53
3,531

3.532

3.5321
(120)
(103)

(120)
(100)
(120)
(100)

MODAL LOGICS

Lemmon (Strict Implication, fragment S5) (APS)
LC LCpq LCLCqvLCpr (ct. 2.461)
In SS1 and SS1M the following is valid:
LLC LLCpg LLCLLCqrLLCpy
LC LCLCLCrpgLCyvp LCyvp
¢, CCCyvpqCsvp Cyrp
all VA
the VOG+VA LC,; LLCgs, MLCs,
the VOG LG, LLGC, MLG,. .. Cs
its VA Lp, Mp
its other VA
the VOG LG,, LLC, MLGC,. .. LC,
its VA
the VOG+VA LC, LLC, MLC,...LLCs MLC,
the VOG+VA LC,: distribution as in 3.5321, except:
the cv 3 turn into &
the VOG+VA LLC,: distribution as in LC,

(120)(100) the VOG+VA MLC,: distribution as in LC,

3.533

3.5331
(120)
(100)

(120)
(100)
(120)
(98)
(120)
(100)
3.534

LC LCrp LCqLCrp
In SS1 (and SS1M) the following are valid:
C LCyvp CqLCrp
LC LCvp CqLCrp
LLC LLCrp LLCqLLCyp
Cy Csrp CqCsvp
all VA
the VOG LC,
its VA
the VOG+VA LLC,; MLC,
the VOG LC,, LLC,, ... Cy; LLCo~MLC,
its VA Lp, Mp
its other VA
the VOG LG, LLCG,, ... LCy;; MLG,. .. Cy
its VA
the VOG+VA LC,. .. LLCs, MLCs; LLC,. .. LLCg;
MLG,...LCy LLC; MLC,
the VOG+VA LC;: distribution as in 3,5331, except:
the cv 2 turn into 3
the VOG+VA LLC,: distribution as in 3.5331, except:
the cv 2 turn into 2
the VOG+VA MLC,: distribution as in 3.5331, except:
the ¢cv 2 turn into 1
LC p p (cf. 2.11)
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4, The intuitionistic calculus SS1I
4.1 With the help of the operation LM of SS1 (or SS1M) one can turn the
system SS1 (or SSIM) into the intuitionistic calculus SS1I by the following
definitions (which are formulated as logically necessary equivalences). As
it can be seen the definientia for the intuitionistic operations are solely
taken from SS1:
4.11 Intuitionistic Negation (N') LLE N'p NLMp Df.
4,12 Intuitionistic Disjunction (A') LLE A'pg Apq Di.

(the intuitionistic disjunction is identical with the disjunction of SS1)
4,13 Intuitionistic Conjunction (K') LLE K'pg KLMpLMq Df.
4,14 Intuitionistic Implication (C') LLE C'pqg CLMpLMgq Di.
4.15 Intuitionistic Equivalence (E')

LLE E'pg ELMpLMq Df.

LLE E'pg K'C'pqC'qp
All the other properties of SS1 (and SS1M) remain unchanged®
4.2 The strong validity of Heytings axioms (FRI) (Int) in SS1I

S

el el e e e e el i~

4201 C' p K'pp (cf. 3.31)
unabbreviated: C LMp LMKLMpLMp
4202 C' K'pg K'qp
4,203 C' C'pg CK'prK'qr
4,204 C' K'C'pgC'qr C'pr
4205 C' g C'pq
4206 C' K'pC'pq q
4207 C' p A'pq
4,208 C' A'pg A'gqp
4209 C' K'C'prC'qr C'A'pqr
4210 C' N'p C'pq
4211 C' K'C'pgqC'pN'q N'p
4.3 The validity and invalidity of important other formulas in SS1I
4301 A p N'p tertium non datur k
The tertium non datur is a contingent sentence in SSI1I, its matrix is:
123411

4302 N NA p N'p 1
4,303 A Np N'N'p 2
4304 A Np N'Np k
4305 A N'p N'N'p 1
4306 A N'p N'Np k
4,307 C AN'pN'Np ANpPN'Np 1
4.308 C AN'pN'Np ApN'p 1
4310 C p N'N'p 2
4311 C N'N'p p k

Although the sentence 4.311 is not valid (&) in SS1I the same sentence with
intuitionistic implication C' is valid in SSI1I as it is seen from 4,313

4,312 C N'Np p 2
4313 E' p N'N'p 1
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4,314 E N'p N'N'N'p 1
4315 E' N'p N'N'N'p 1

4,316 The following sentences have identical matrices and are therefore
substitutable for one another:

N'N'N'p, N'NN'p, N'NNp, NN'N'p, NNN'p. And: N'N'Np, NN'Np. Instead of
saying two formulas have identical matrices one could also write down an
equivalence theorem with the cv 1.

4317 C N'N'N'p N'N'Np (cn 1
“C') indicates that the same formula is valid also with C' (this refers
always only to the main-connective of the formula)

4,320 C K'pN'p ¢q (c" 1
4,321 C KpN'p ¢q 2
4322 C' KpN'p q 1

4,323 The following sentences have identical matrices:

K'9N'p, K'N'pN'N'p, K'N'pNNp , K'N'pN'Np , KN'pNNp | KN'pN'Np .

4.324 C K'pNp q (O k
The results stated in 4.320 and 4.324 are important. They show that the
system SS1I is able to distinguish both of the controversial views of
intuitionists concerning the principle ‘‘ex falso quodlibet’’. This principle
holds when formulated as in 4,320 but it does not hold (is not valid in SS1I)
when it is formulated as in 4.324, i.e. with classical negation.

4.325 E K'pNp K'NpN'N'p (EM 1
4,326 C KNpN'N'p K'pNp 2
4,327 C N'p C'pq (c" 1
4,330 E N'Apg K'N'pN'q (E") 1
4.331 E AN'DN'q N'K'pg (E") 1

This seems to differ from the usual intuitionistic calculus in which the
second law of De Morgan, 4.331, only holds with an implication. However if
one takes a classical conjunction instead of a intuitionistic one 4.331 holds
only with an implication (for 4.330 the change from intuitionistic to
classical conjunction does not make any difference):

4,332 C AN'pN'q N'Kpq (ea) 1
4,333 C N'Kpg AN'pN'q () k
4335 E C'pqg C'N'gN'p (E") 1

SS1I differs from many intuitionistic systems in respect to the formula
4.335. In these systems only an implication instead of the equivalence
holds. But also this property of intuitionistic systems is explainable in
SS1I. This can be seen from the following formulas (more explicitly from
the validity of 4.336 and 4.337 and the invalidity of 4.338 and 4.339):

4,336 C C'pg C'N'gNp (cn 1
4,337 C C'pg CN'gNp (cn 1
4338 C C'N'gNp C'pq ()] k
4,339 C CN'gqNp C'pgq (cn k

Here also SS1I is able to distinguish between different intuitionistic
systems like in 4,320 and 4.324, 4.331 and 4.332.
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4,340 C q C'pg (c) 2
4,341 C AN'pq C'pgq (6] 2
4,350 E N'N'K'pq K'N'N'pN'N'q (E") 1

4.351 The formulas N'N'K'pq, NNK'pq, K'pq, N'NK'pq, KN'N'pN'N'q and
K'N'N'pN'N'q have identical matrices

4.352 C K'N'pN'q N'K'pq Ccn 1
4353 C N'K'pg K'N'pN'q o) k
4,355 E AN'N'pN'N'q N'N'Apgq E" 1

Also 4.355 differs from the usual intuitionistic systems. However the
following formulas show again a more detailed differentiation in SS1I:

4,356 C ANNpNNq N'N'Apq cn 2
4.357 C N'N'Apqg ANNpPNNq " k
4,358 C AN'NpN'Ng N'N'Apq R 2
4.359 C N'N'Apq AN'NpN'Ng " k
4360 C N'Apq AN'pN'q (R 1
4.361 C AN'pN'q N'Apq cn k

4,4 A consistency proof for SS1I can easily be obtained in a similar way as
in 1.7 for 8S1. 4.5 A decision procedure can be described for SS1I ina
similar way as in 1.8 for SS1. 4.6 A completeness proof with the result
that SS1I is complete in the first and second sense of completeness, defined
in 3.061 and 3.063, can easily be obtained in an analogous way to that in
3.062 and 3.064.

5. Syllogistic. 5.1 Oskar Becker (UMo) introduced an interpretation of the
modal calculus which he called ‘‘statistical interpretation (Deutung) of the
modal calculus’’ and which was anticipated by Thomas Aquinas in his
(PMo). According to this interpretation the sentence ‘it is necessary that
D’ is interpreted as a universal sentence and the sentence ‘if is possible
that p’ as an existential sentence. The definitions which underlie this
interpretation are the following:

5.11 Lp = df. (x)Px™®

5.12 NLp = df. ~(x)Px

5.13 NLNp =di. ~(x)~ Px

5.131 ~(x)~Px = (Ex)Px

§.132 NLNp =df. Mp

5.133 Mp = df. (Ex)Px

5.14 LNp =df. (x)~Px

5.2 In the following the 24 syllogisms of the assertoric categorical
syllogism (CS) will be reinterpreted with the help of the definitions above
and with the further definitions 5.21-5.24. The corresponding 24 modal-
sentences which are the result of this intepretation are then calculated for
their validity or invalidity in SS1 and SS1M.

5.21 SaP =df. LCsp universal affirmative form
5.22 SeP =df. LCsNp universal negative form
5.23 SiP =df. MKsp particular affirmative form

5.24 Sop =df. MKsNp particular negative form
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5.25 TFirst figure
5.251 C KLCqpLCsq LCsp Barbara 1
5,252 C KLCgNpLCsq LCsNp Celarent 1
5.253 C KLCqpMKsq MKsp Darii 1
5.254 C KLCgNpMKsq MKsNp Ferio 1
5.255 C KLCqpLCsq MKsp Barbari k
5.256 C KLCgNpLCsq MKsSNp Celaront k
5.26 Second figure
5.261 C KLCpNqLCsq LCsSNp Cesare 1
5.262 C KLCpqLCsNgq LCsNp Camestres 1
5.263 C KLCpNqMKsq MKSNp Festino 1
5.264 C KLCpqMKsNqg MKsNp Baroco 1
5.265 C KLCpNqLCsq MKSNp Cesaro k
5266 C KLCpqLCsNq MKsNp Camestrop k
5.27  Third figure
5.2711 C KLCgqpLCgqgs MKsp Darapti k
5.272 C KLCgNpLCqs MKsNp Felapton k
5.273 C KMKqpLCqs MKsp Disamis 1
5.274 C KLCgpMKqs MKsp Datisi 1
5.275 C KMKgNpLCgs MKsNp Bocardo 1
5,216 C KLCqNpMKqgs MKsNp Ferison 1
5.28  Fourth figure
5.281 C KMKpqLCqs MKsp Dimaris 1
5.282 C KLCpNqMKqgs MKsNp Fresison 1
5.283 C KLCpqLCqNs LCsNp Camenes 1
5.284 C KLCpqLCqs MKsp Bamalip k
5.285 C KLCpgLCgqs MKsNp Camenop k
5.286 C KLCpNqLCqs MKSNp Fesapo k

5.29 In 5.24-5.28 the 24 forms of CS are reinterpreted as sentential
modal forms of SSIM. As one can see from the cv there are 15 of the 24
modal forms which are strongly valid in SSIM. The other 9 are not valid
but contingent in SS1IM. The 15 sentential modal forms are exactly these
which can be derived from a subsystem of the axiomatized CS** which
arises from the full system (of axiomatized CS) when the axiom PiP is
dropped®. A full axiomatization of CS one can get by taking some basic
laws of propositional calculus as axioms and adding Barbara and Datisi or
Ferio as syllogistic axioms® and as further syllogistic axioms PaP and
PiP. From these axioms one can derive all the 24 forms of CS. However
if one drops the axiom PiP only 15 forms can be derived because the laws
of the logical square—except the laws of contradictorical opposition and
some laws of conversion—are no longer valid. The corresponding modal
sentences of exactly these 15 forms are strongly valid in SSIM. According
to Hilbert-Ackermann (GZT) p. 62 ss. the axiom PiP represents the
existential presuppositions of the Aristotelian syllogistic system which are
not made in most of the systems of modern logic since Frege”.
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Shepherdson, (ISy) p. 143, has shown that the function ‘%’ in the axiom PiP
of the full axiomatized CS (in which all 24 forms are valid) is not a
truth-function. However ‘/’ can be interpreted as a truth-function in the
subsystem of CS which arises from CS if PiP is dropped®®.

5.3 In an analogous way one could investigate the Aristotelian and
Scholastic modal syllogistic. As it is clear from what has been said at the
beginning (0.2 and 0.4) there must be two ways of doing this: First one can
interpret the modal sentence with modality de dicto and secondly with
modality de re. Of the latter one can distinguish two kinds. Thus one gets
three groups of modal sentences each one consisting of the four Aristote-
lian propositions modified by modalities of a certain kind:

5.31 Modality de dicto
5.311 L(SaP) =df. L(LCsp)
M(SaP) = df. M(LCsp)
LL(SaP) =df. LL(LCsp)
MM(SaP) = df. MM(LCsp)
ML(SaP) = df. ML(LCsp)
LM(SaP) = df. LM(LCsp)
5.312 L(SeP) =df. L(LCsNp)

etc.

5.313 L(SiP) =df. L(MKsp)
etc.

5.314 L(SoP) = df. L{MKsND)
ete.

5.32 Modalities de re I (cf.0.2)
5.321 L(SaP) =df. LCLsLp
M(SaP) = df. LCMsMp
etc.
5.322 L(SeP) =df. LCLsLNp
ete.
5.323 L(SiP) =df. MKLsLp
ete.
5.324  L(SoP) =df. MKLsLNp
etc.
5.33  Modalities de re II*®
5.331 L(Sap) =df. LCsLp
M(SaP) = df. LCsMp

etc.

5.332 L(SeP) = df. LCsLNp
ete.

5.333 L(SiP) = df. MKsLp
etc.

5.334  L(Sop) = df. MKsLNp

According to Bocheriski, (AFL) p. 61s., the number of modal syllogisms
which are built analogous to the first, second and third figure (cf. 5.25-
5.276) are 95. The number of modal syllogisms which follow from that with
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the help of the law CpMp are 7. 35 other syllogisms can be obtained by the
help of the law Cont (SaP) = Cont (SeP) and Cont (SiP) = Cont (SoP). But the
corresponding modal-interpretations (according to 5.11-5.24) of these two
laws of contingency (‘Cont’ stands for ‘contingent’) are not valid in SS1M.
Thus the number of the remaining modal syllogisms are 102; interpreted as
modalities de dicto and de re I and II this gives 306 forms. The investiga-
tions on the validity of these forms of modal syllogisms in SS1IM are not yet
finished by the author.

6. The Epistemic System SS1E. 6.11 What has been said in 1,03, 1.04 and
1.071 holds also for SS1E. 6.12 The letters ‘@’, ‘b’, ‘c’, 4’ . . . are used
in SS1E as personal variables (designating arbitrary human persons).

6.13 ‘aWp’ stands for ‘the person a knows that p (is the case)’

‘NaWp’ stands for ‘it is not the case that the person a knows that p (is the
case)’

‘aWNp’ stands for ‘the person @ knows that not-p (is the case)’

‘aWApg’ stands for ‘the person @ knows that either p or ¢ (is the case)’ etc.
‘aW®’ stands for ‘the person a knows whether p (is the case)’

‘aWaWp’ stands for ‘the person a knows that the person a knows that p (is
the case)’

‘aW{®dWp)’ stands for ‘the person @ knows that the person b knows that p (is
the case)’

Note: aWbWp is also a sentence of SS1E but has a matrix different from
aWwdWwWp); cf. 6.29 and 6.537,

‘LaWp’ stands for ‘the person a necessarily knows that p (is the case)’;
cf. 6.63.

6.14 At first sight it seems reasonable to interpret ‘¢Wp’ in SS1 just as
MLp. One can see at once that a number of interesting theorems for a
logic of knowledge result from this interpretation. Under these the
following are important:

6.141 C aWp p

6.142 C aWp aWaWp

6.143 C aWp NaWNp

6.1431 C aWNp NaWp

6.144 N KaWp NaWp

6.145 A aWp NaWp

6.146 E aWKpq KaWpaWgq

6.147 C AaWpaWq aWApq (the converse does not hold)
6.1471 C AaWpaWNp aWApPNp

aWp =df. AaWp aWNp
6.148 C aWp aW%
6.1481 C aWNp aW%

ete.

6.149 But the important difficulties of such an intepretation are the
following ones:
1. The modal system SSIM cannot be used independently any more; thus if
one wants a logic of knowledge where also modalities can be used one
cannot use MLp as a modal statement any longer.
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2. When using the modal system SSIM in the logic of knowledge one gets
theorems which one certainly does not want. Thus CaWpLp holds ma-
terially, CLpaWp holds strongly etc.

6.15 A much better base for a logic of knowledge one can obtain if aWp has
a matrix which in this sense is independent of SSIM that it is not defined
with the help of its modal operations. Thus aWp could have the matrix:
343556 (where p has the basic matrix 12 34 56). This gives much
better results: All the theorems 6.141-6.1481 hold and even much more.
However though the first point (of 6.149) is removed the second remains in
some of its modifications. More explicitly: though the sentences CaWpLp
and CLpaWp are no longer valid there are other counterexamples like
these: C NaWMp LNp (if it is not the case that a knows that possibly p then
necessarily not-p) is a materially valid sentence of SS1 if aWp has the
matrix 34 3 55 6. Even if some of the counterexamples can be removed if
one uses the intuitionistic negation N' (cf. 4.11) instead of those N which
occur just before qW ..., the above mentioned counterexample (and
others) remain®.

6.16 The counterexamples stated in 6,149 and 6.15 suggest a complete new
matrix for the sentence aWp: This matrix should be independent of SSIM in
the mentioned sense (cf. 6.149) and it should not lead to counterexamples
analogous to point 2. in 6.149. A matrix which satisfies these purposes can
be constructed for a (deductive) system which is an extension of SS1 and
may be called SSIE. The system SS1E is defined in what follows.

6.20 Formula of the system SS1E. 6.201 1,071 holds in SS1E. 6.202 If 9’
is a formula then ‘Np»*', ‘Lp’, ‘LLp’, ‘Mp’, ‘MMp’, ‘MLp’, ‘LMp’ and ‘@Wp’
DWp’, . .. @WLp’ . . ., ‘LaWp’ . .., ‘aWaWp,’ ‘aWoWp’, ‘aW(dWp)’,
‘awp’, bW°p’ . . . are formulas (cf. 6.24, 6.27, 6.28). 6,203 If ‘%’ and ‘q’
are formulas then Apq, Kpq, Cbq, Epg are formulas (cf. 6.25, 6.26).

6.21 The basic matrix of any sentence of SSIE is: 0012345678,
6.22 0, 0, 1, 2, 3 are (different) truth-values for true, 4, 5, 6, 7, 8 are
(different) truth-values for false.

6.23 Definition of the system SS1E. The system SS1E can be defined
as the set of all sentences which are satisifed by the matrix Mat =
<T,F,N,A, L, aW, bW> where T = {0, 0, 1,2, 3}, F=1{4,5,6, 7, 8} and
the operations'N, A, L, aW, and bW are defined by the definitions in 6.24,
6.25, 6.27, 6,281 and 6,282,

6.24 Tif p has the basic matrix then Np has the matrix: 8 765432100
6.25 Iff p and ¢ have the basic matrix then Apg has the matrix:

Apq 5 6

g LI WhNROO

e O O O O it bt e OO
OHOOO M MHO MO
bbbk ek ek b pd ek ek ek ek ek
DI DD DN = DN DN DN = b DO
O L0 LO O LI DN a0
0O =T s 1D R ek D\ ped i b E
OO0 ~J 1 1 > GO bk ped ek b

O aTIDUIH COINDN - =

] =T~ =T -1 N = 2 =]
00 G0 00 OO CO L0 DD = i =400
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One can easily see that this matrix of Apg (of SS1E) contains the matrix of
Apg of SS1 as a part. By giving the matrices for Np and Apq the system is
defined as a propositional calculus (cf. 1.111).

6.26 The operations Kpq, Cpq and Epq are defined as in SS1: Kpq =
NANpPpNq, Cpq = ANpq and Epq = KCpqCqp. Iif p and g have the basic matrix
(of SS1E) Kpgq and Cpg have the matrices:

Kpglo 01 2345678 Chglo 01 23 456 1738
olo0oo0o0456T17E6 010123882878
0 lo 000045668 Olo1 123777178
1 |]o01234561738 1o 012345671738
210022346¢6 738 210011345578
3 /o03336256 178 3lo0121444 738
4 14 4446 456¢6F©6 4911123133233
515556555686 F6 571112221222
6 |6 6 6 6 6 6 6 6 66 61111111111
7 |6 6666666 76 711011111111
8 |6 6 6666666 8 8§io111111111

6.27 1ff p has the basic matrix (of SSIE) then Lp has the matrix:
00136666 78. As itis clear from 1.151 with the help of the matrices
of Np, Apg and Lp the whole system of modal logics SSIM can be
established., Thus the non-epistemic base of the epistemic system SS1E
which includes SS1 (or: SS1M, if the modal interpretation is taken) can be
defined with the help of the extended matrices of Np, Apg and Lp given in
6.24, 6.25 and 6.27. A definition like the one in 1.08 for SS1 could be given
for the non-epistemic base of SS1E in the like manner. The table of the
modal operations in SS1E is analogous to that of 1.21

LLp Lp MLp p LMp Mp MMp

o]
o
o
]
o]

O -JDH A OO D O
P AW DW = OO0
WO DO 1O
R -JO U1 WN M=O
QO =T OV O = bt e O
OO -J O B i e d e O
WO «TJ D = = = e 2 OO

The table shows that in SS1E not only the values 1 and 6 remain unchanged
when modal operations are applied (as in SSIM) but also the values o, 0, 7,
8 are not touched by the application of modal operations. The operations
LC, LLC, LE and LLE can be defined with the help of 6.27 and 6.26 in
analogy to 1.22-1.26.
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6.28 The matrices for aWp and for bWp (where ‘@’ and ‘b’ are personal
variables, for which different names of different persons may be sub-
stituted) complete the definition of SSI1E: Iff p has the basic matrix of
SS1E then:

6.281 aWp has the matrix: 50123666 78
6.282 pWp has the matrix: 0512366678

6.29 The following table shows some epistemic matrices of SS1E:

p Np aWp NaWp aWNp NeWNp bWp NoWp bWNp NOWNp aWaWp aWoWwp
o8 5 2 8 ¢] o} 8 8 o 6 5
07 0 7 7 0 5 2 7 0 0 6
16 1 6 6 1 1 6 6 1 1 1
2 5 2 5 6 1 2 5 6 1 2 2
3 4 3 4 6 1 3 4 6 1 3 3
4 3 6 1 3 4 6 1 3 4 6 6
5 2 6 1 2 5 6 1 2 5 6 6
6 1 6 1 1 6 6 1 1 6 6 6
70 7 0 0 7 7 0 5 2 i T
8 o 8 o 5 2 8 o o 8 8 8

6.3 Truth and Consequence in SS1E,

6.31 A sentence (formula) is (materially or strictly or strongly)
logically true (or: valid) in SS1E iff from its negation both p and Np are
(materially or strictly or strongly) derivable, What is (materially or
strictly or strongly) derivable from a certain sentence is determined by the
matrix of Cpq (cf. 6.26 and 6.27).

6.311 If the matrix of a sentence contains exclusively values between
o and 3 then this sentence is logically true (or: valid) in SS1E. If the cv
{cf. 1.42-1.44) of the matrix is 1 the sentence is strongly, if the cvis 2 it is
strictly and if the cv is 3 it is materially logically true.

6.312 The converse of 6.311 does not hold. Thus 6.311 is included in
6.31. The reason for the more complicated form of 6.31 in contradistinc-
tion to 1.41 is this: there are formulas in SS1E which are logically false
(because p and.Np are derivable from it) even though their matrices do not
contain exclusively values between 4 and 8 (but also some lower values be-
tween o and 3). An example is KaWpbWNp (its matrix contains 100 values)
which is logically false because p and Np are derivable from it, although its
matrix contains also some values between o and 3. That means that aWp
and bWNp are contraria in SS1E, i.e. they can both be false but cannot both
be true. The negation of KaWpbWNp, namely ANaWpNbWNp is therefore a
logically true (or: valid) sentence in SS1E.

6.32 A sentence (formula) is (materially or strictly or strongly)
logically false in SS1E iff both p and Np are (materially or strictly or
strongly) derivable from it., What is (materially or strictly or strongly)
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derivable from a certain sentence of SS1E is determined by the matrix of
Cpq (cf. 6.26 and 6.27).

6.33 A sentence is contingent in SS1E iff it is neither logically true
nor logically false in SS1E.

6.34 The characteristical value of validity (cv) of a sentence of SS1E is the
highest value between o and 8 which occurs in its matrix.

6.35 The sentences of 1.52 where the letters ‘L’ and ‘M’ are replaced by
the corresponding bold face letters hold in SS1E.

6.36 In SS1E the relations of the matrices of the atomic formulas to
one another are not so simple as in SS1. In SS1 the sentences p, ¢, 7 have
the same basic matrix 12 3 4 5 6 and the relation is such that for instance
Kpg has a matrix of 36, KKpqr has a matrix of 216 values. In other words:
if the number of different atomic sentences is » then the number of values
of the matrix of the compound sentence is 6” in SS1. The matrices of the
modal variations of the atomic sentences (VA) are viewed as belonging to
the basic matrix of the corresponding atomic sentence which is not varied.
Thus the matrix of KpLp has 6 values and the matrix of KKpLgLp has 36
values.

6.361 The relations of the matrices of the atomic formulas to one another
are a little more complicated in SS1E. First of all there is no change
refering to the atomic sentences p, g, v . . . : If the number of different
atomic sentences is # then the number of values of the matrix of the
compound sentence is 10" in SS1E, All other cases can be decided by the
help of two simple rules. Such other cases are for instance: KaWpbWp
(the matrix has 100 values), KaWpp (the matrix has 10 values), KaWpaWNp
(the matrix has 100 values), KaWbWpbWp (the matrix has 10 values),
KaWpNaWp (the matrix has 10 values) etc. The two rules are:

6.362 Ri: The matrix of a compound sentence consisting of two sentences
7 and 8 has 10 values iff  and $ bear the same truth-functional relation to
each other as p and Np.

6.363 R2: The matrix of a compound sentence consisting of two sentences
7 and s has 10 values iff # and s bear the same truth-functional relation to
each other as either p and aWp or p and bWp.

6.364 Every case which does not satisfy either R1 or R2 has to be decided
according to 6.361: the matrix of a compound sentence containing
different atomic sentences is 10”.

6.365 R1 and R2 must not be applied both to one and the same sentence or
to one and the same pair of sentences. Thus in the formula
K AaWpaWCpq NaWpaWp and NaWp have as a compound sentence accord-
ing to R1 a matrix with only 10 values; p and g have different matrices each
consisting of 10 values such that the whole formula has a matrix of 1000
values.

6.37 Consequence in SS1E

6.371 A conclusion g follows (materially or strictly or strongly) from a
premiss p iff from the negation of Cpg, i.e. from NCpq (or: from KpNg)
both p and Np are (materially or strictly or strongly) derivable. The
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question whether p and Np are (materially or strictly or strongly) derivable
has to be decided by the matrix of Cpq (cf. 6.26 and 6.27).

6.372 The laws 1.611 a) and b) are included in 6.371. 6.373 1.611a) holds
unchanged. 6.374 1.611b) can be replaced by the following extension of it:
For all coordinated pairs of values of the matrices of p (premiss) and ¢
(conclusion): the value of the matrix of p is one of the three values 6 or 7
or 8—or the value of the matrix of ¢ is one of the three values 1 or 0 or o
(or both cases hold). 6.375 1.612 holds unchanged. 6.376 1.613 holds
unchanged. :

6.4 Decision procedure, Consistency and Completeness of SSIE. 6.41 A
sentence of SS1E is a theorem of SS1E iff it is {materially or strictly or
strongly) logically true (cf. 6.31). 6.42 There exists a decision procedure
i.e. an answer to the question whether or not any sentence of SS1E is a
theorem (of SS1E) for any sentence of SS1E; it is afforded by calculating the
matrix of the formula CNfp and of the formula CNfNp (where f is any
sentence of SS1E) for its cv. If the cv of the matrix of both formulas CNfp
and CNfNp is between o and 3 then f is a theorem of SSIE, if the cv of
either CNfp or CNfNp is higher than 3 (i.e. 4 or 5 or 6 or 7 or 8) than f is
not a theorem of SS1E.

6.421 A part of 1.82 is included in 6.42. That means: If for any formula f
of SS1E the cv is between o and 3 f is a theorem of SS1E; if for any formula
f of SS1E the lowest value of its matrix is between 4 and 8 then f is not a
theorem of SS1E, but provable false.

6.43 SS1E is consistent. This can be seen from 1.72, 1.73, 6.41 and
6.42:
Case 1: The cv of a formula f of SS1E is between o and 3. Then f is a
theorem of SS1E. The matrix of the negation of f has then only values
between 4 and 8 (cf. 6.24) i.e. Nf is therefore not a theorem (6.421) of SS1E.
Case 2: The matrix of a formula f of SSIE contains at least one value
between o and 3 and at least one value between 4 and 8. Then f is a theorem
iff the cv of the matrix of CNfp and of CNfNp is between o and 3. But Nf is
then not a theorem for the cv of Cfp and of CfNp is then higher than 3 (cf.
6.42). This is so because exactly these values between 4 and 8 in the
matrix of Nf which make it possible to derive p and Np from Nf (i.e. which
cause the cv of CNfp and of CNfNp to be between o and 3) are values
between o and 3 in the matrix of f and thus must cause the cv of Cfp and of
CfNp to be higher than 3.

6.44 SSIE is complete in the first, second and third sense of com-
pleteness, defined in 3.061, 3,063 and 3.065. This is clear from the fact
that SS1E contains the system SS1 (and SS1M) as a subsystem. This again
can easily be seen by comparing the defining matrices of both systems.

6.5 Theorems of SSIE. 6,51 Criteria of consistency®®. ‘MMp’ stands for
‘v is consistent’ or ‘p is logically possible’.
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cv
6.511 C MMAWp MMKaWpp 1
6.512 C MMaWp MMp 1

The converse of 6.512 does not hold
6.52 Theorems for ‘“‘knowing that”’
6.521 C aWp p 1
By 6.521 the conditions for some strong concept of knowledge are laid
down. For this kind of knowledge the case that somebody knows that p,
where p is false at the same time, is excluded®.

6.522 Nk aWp NaWp principle of non-contradiction 1
6.523 A aWp NaWp tertium non datur 1
6.524 C aWp NaWNp 1
6.525 C aWNp NaWp 1
6.526 C aWp aWaWp 2
6.527 C aWNp aWaWNp 2

Note: 6.526 and 6.527 show the reflexive character of knowledge: if a
knows that p then he knows that he knows that p. However if a does not
know that p it does not always follow that he knows this (that he does not
know it); therefore C NaWp aWNaWp is not a theorem of SS1E*%,

6.528 C aWaWp aWp 1
6.529 C aWaWNp aWNp 1
6.53 Distribution of epistemic operations.

6.531 C KaWpaWq aWKpq 1
6.532 C AaWpaWq aWApq 1
6.5321 C AaWpaWNp aWApPpNp 1

Note: The converse of 6.532 and 6.5321 does not hold. This is important.
6.5321 says that somebody who knows whether p is the case (cf. 6.541) also
knows that either (p or not-p) is the case. In other words: One can accept
that somebody knows the tertium non datur (i.e. knows that p or not-p is the
case) without being committed to assert that he must also know (separately)
either that p is the case or that not-p is the case. But if he knows the
latter then he must know the former too. On the other hand there is also no
reason to deny the theorem 6.523 as one version of the tertium non datur in
epistemic logic. The important thing concerning the concept ‘‘provable’’
(which may be interpreted here with the epistemic operator ¢W .. .) and
the intuitionistic views about it seems—as far as propositional logic is
concerned—that 6.532 and 6.5321 hold only as implications (as in SS1E) but
not as equivalences.

6.533 C aWCpq CaWpaWgq 2
The converse of 6.533 is not valid in SS1E. The importance of this fact is
similar to that of 6.532 and 6.5321

6.534 E KNaWpNaWq NAaWpaWgq 1
6.5341 E NKaWpaWq ANaWpNaWg 1
6.535 E KNaWpNbWp NAaWpbWp 1
6.5351 E NKaWpbWp ANaWpNbWD 1
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6.534-6.5351 state that the laws of De Morgan are valid for the epistemic

logic SS1E, cv
6.536 E KaWaWpaWdoWp aWKaWpbWp 2
6.5361 C KaWaWpaWbWp aWKaWpbWp 1
6.537 E aW(®Wp) KaWaWpaWbWp 1 Df.

6.537 states the definition of ‘‘the person @ knows that the person b knows
that p is the case’’ symbolized as ‘@W(bWp)’. It is important to observe the
difference between aW([dWp) which is defined by 6.537 and aWbWp which is
defined in 6.29. The matrix of aWbWp has 10 values whereas the matrix of
aW({®Wp) has 100.

6.5371 C aW(dWp) KaWpbWp

6.5372 C aW(bWp) aWbWp

6.5373 C aW(dWp) bWp

6.5374 C aW(bWp) aWp

6.538 E KaWaWNpaWbWNp aWKaWNpbWNp

6.5381 C KaWaWNpaWbWNp aWKaWNpbWNp

6.539 E KaWpaWg KaWgaWp law of commutation
6.5391 E AaWpaWq AaWqaWp

The analogous laws hold also for KaWpbWp and AaWpbWp.
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6.54 Theorems for ‘knowing whether”’

6.541 E aW°’ AaWpaWNp 1 Df.
6.541 states the definition of ‘‘a knows whether p is the case’’, symbolized
as ‘aW’’. Note: aW’p has a matrix with 100 values of the form Apg where p
is aWp and q is aWNp.

6.542 E aW’ aW°Np

6.543 C aWp aW?

6.5431 C aWNp aW?

6.544 C NaW’p NaWp

6.5441 C NaW° NaWNp

6.55 Theorems for ‘‘knowing whether’’ with two persons
6.551 E aW(dW?) AaW(bWp)aW(bWND) 1 Df.
6.5510 E aW(OW°) AKaWaWpaWbWpKaWaWNpaWbWNp 1
6.551 states the definition of ‘‘@ knows that b knows whether p is the case’’.
There is also an important weaker form of ‘‘ga knows that b knows whether
p is the case’’ which is defined in 6.552. The difference between aW(bW?)
and gWbW°% is seen from the consequences of both forms stated in
6.5511-6.5521.

DD DN DD DD =

6.552 E aWbW°p aWAbWpbWNp 1 Df.
6.5511 C aW(dWp) aWbW°p 3
6.5512 C aW(dW°p) aW° 2
6.5513 C aW(dWp) bW° 3
6.5521 C aWbW°p bW p 1

It is easily observed that the difference between aW(dW°p) and aWoW?p is
that from the former aW° is derivable but not from the latter. An example
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for aW(bW°p) may be: The professor (@) knows that his student (b) knows
whether p is the case. In this case it is presupposed that also the professor
knows whether p is the case; thus @W°p must be derivable from aW(bW°p).
An example for aWbW° may be: The student () knows that his professor
(0) knows whether p is the case. Here it is not presupposed that the student
knows also whether p is the case; thus aW®p is not derivable from aWdW°p.
cv
6.553 E aW°bWp AaW(dWplaWNbWp 1 Df,
6.553 states the definition of ‘‘@ knows whether b knows that p is the case”’
which seems natural when looking at the definiens. However one can
observe by looking for consequences of aW°bWp that this is a weak inter-
pretation of ‘‘@4 knows whether b knows that p’’; for neither bW nor aW
is derivable from it. The essential point for the weakness lies in the
interpretation of aWNbWp which is a part of the above definiens; aWNbOWp
is determined by a matrix in SS1E such that it does not imply that aWp.
Although we use such a weak interpretation of ‘‘@ knows whether b knows
that p”’ when it is not presupposed that either aWp or aW?’ is the case, we
sometimes use a stronger interpretation. Thus, when we say ‘‘a knows
that it is not the case that b knows that p’’ we often presuppose that @ knows
that p. This sense of ‘‘@ knows that it is not the case that b knows that p*’
is interpreted by aW(NbWp) which is defined in 6.554. With the help of
aW(NbWp) one gets a stronger interpretation of ‘@ knows whether b knows
that p*’ which is defined in 6.555.
6.554 E aW(NOWD) KaWaWpKaWNDWpaWNOWND 1 Df.
6.555 E aW(bWp) AaW(HWp)aW(NbWp) 1 Df.
6.5550 E aW’(bWp) A KaWaWpaWdWp KaWaWpKaWNbWpaWNOWNp 1

(cf. 6.555, 6.537, 6.554). That 6.555 is stronger than 6.553 can be seen
from its consequences:

6.5551 C aW°(bWp) aWp 3
6.5552 C aW°(bWp) aWP 3
6.556 E aW°(bW) A AaW(bWplaW(BWNp) aW(NbWp) 1 Df.
6.5560 E aW°(bW’) A AKaWaWpaWbWpKaWaWNpaWbWNp
KaWaWpKaWNbWpa WNbWNp 1

(cf. 6,556, 6.537, 6.5510, 6.554). 6.556 states the definition of ‘‘a knows
whether b knows whether p is the case”’. 6.5561 shows thataW(bW°p) is a

strong form whereas aW’bW° is a weak form which is implied by
aW°BwWp).

6.5561 C aW°(bWp) aW?p 3
6.557 E aW°bW’ A aWdbW’ aWNbWD 1 Df.
6.5570 E aW’bW’% A aWAbWpbWNp aWNAbLWpbWNp

' (cf. 6.541) 1

6.5571 E aWbWp A aWAbWPOWNp aWKNOWHNbWNp
(cf. 6.534) 1
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6.56 Implicational relations between the forms of ‘‘knowing that’’ and
“‘knowing whether”’

cv
6.561 C aWp NbWNp 1
6.5611 C aWNp NoWp 1
6.562 C aW(bWp) aWKaWpbWp 1
6.563 C aWKaWpbWp aW(dbWP) (cf. 6.551) 2
6.5631 C aW(dWp) aW(dWPD) (cf. 6.537) 3
6.5632 C aW(OWp) aWbWP (cf. 6.551, 6.552) 2
6.5633 C aWoW%p aWbWP (cf. 6,557, 6.5570) 2
6.564 C aW(OWP) aW(bWp) (cf. 6.556, 6.5560) 2
6.5641 C aW°(OWp) aW’bWP 3
6.565 C aWKaWpbWp aW°(bWp) (cf. 6.555, 6.5550) 2
6.5651 C aW(dWp) aW(bWp) 2
6.5652 C aW°(bWp) aWbWp (cf. 6.553, 6.537) 2
6.5653 C aW°(bWp) aW°(bWp) 2
6.566 C aWKaWpbWp aWoWp 2

6.5661 C aWbWp aWdbWP 2
6.6 Epistemic operations and modalities. There is no difficulty to deal
with sentences like aWLp, aWLLp, aWMLp, aWMp, aWMMp, aWLMp in
SS1E. It is clear that the following theorem must hold:

6.61 € aWCLLpLp CaWLLpaWLp 2
The analogous cases with the other modal operations yield to similar
theorems by the principle 6.533,

6.62 However it is not so simple to define ‘‘it is necessary that @ knows
that p?’. First of all it seems that ‘it is necessary that a knows that p*’
(symbolized as ‘LaWp’) must be independent of *‘@ knows that necessarily
P’ (@WLP) in this sense that neither the former is in general derivable
from the latter nor the latter from the former. A second condition for an
adequate interpretation of LaWp seems to be the following:

If one says that a person necessarily knows some proposition p (say the
principle of non-contradiction) then it is implied that this is known also by
others. Thus if the person a necessarily knows that p is the case then it
follows (or it is presupposed) that any person b (under normal conditions)
also knows that p is the case. A third condition is that LaWp should be
defined with the help of the modal operation Lp because in order to bring
out that somebody necessarily knows something it is not sufficient to state
that any or that every person knows it foo.—These three conditions are
satisfied by the following definition:

6.63 E LaWp KaWpbWLLp 1 Df.
6.631 C LaWp aWLp (first condition) k
6.631 C aWLp LaWp (first condition) k
6.6312 C aWLLp LaWp (first condition) k
6.6313 C LaWp aWMLp (first condition) k
6.632 C LaWp bWp (second condition) 1
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cv
6.633 C LaWp bWLLp (third condition) 1
Note: By the definition in 6.63 the statement ‘@ necessarily knows that p’ is
interpreted in such a way that it is true only if p is a logically necessary
statement and if in addition to that some person b knows this (that LLp
holds). However from LaWp it does not follow that @ would know that LLp
(or even Lp) holds. This fact can be explained as follows: If one says of
some person that he necessarily knows that p, then one does not always
imply that this person knows what that means: thus it seems reasonable to
assert that we can truly say of a person that he necessarily knows the
principle of non-contradiction without claiming that this person {who may
be philosophically or logically uneducated) knows also (perhaps by reflec-
tion on his knowledge and by the help of philosophical and logical studies)
that what he knows (namely that p) does logically necessarily hold. There-
fore it is allowed by 6.63 to say that a person a necessarily knows that
NKpNp (perhaps because one thinks that this is a principle common to all
men—whatever anthropological explanation one may give) although this
person @ does not know that LLNKpNp, i.e. that NKpNp is a logically
necessary law.
6.64 C LaWp aWp
6.641 C LaWp NLaWNp
6.642 C LaWNp NLaWp
6.643 C aWliaWp LaWp
Note: The converse of 6.643 does not hold; i.e. LaWp does not have the
reflexive character which aWp has. The reason for this should be clear
from what has been said in the note of 6.633. Nevertheless the following
statement holds materially.
6.644 C LaWp aWaWp
6.646 E NKlLaWpLaWg ANLaWpNLaWg
6.647T E KNLaWpNLaWg NALaWplLaWg
6.648 E NKLaWpLOWPp ANLaWpNLOWD
6.649 E KNLaWpNLObWp NALaWpLOWD 1
Note: The forms which are analogous to the laws 6,531-6,533 (where ‘aW’
is replaced by ‘LaW’) do not hold in SS1E.
6.65 C LaWp KaWpbWp
6.651 C KaWLLpbWLLp LaWp
6.652 C KaWLLpbWLLp aWlLaWp
6.653 C aWLaWp aW(dWp)
Ci. the consequences of aW(bWp), 6.562-6,5652
6.66 E MaWp KpMMaW% 1 Df.
6.66 states the definition of ‘it is possible that a knows that p’. According
to this definition for the truth of ‘MaWp’ it is a necessary and sufficient
condition that both, p is the case and ‘e knows whether p’ is consistent (i.e.
MMaW).
6.661 C MaWp p 1

et s O N e S V)

[ O RSN



148 PAUL WEINGARTNER

6.661 says that one presupposes that p is the case (is true) if one says that
some person possibly knows that p. This condition seems to be adequate to
the common use of ‘it is possible that @ knows that p’. The converse of
6.661 does not hold. Thus it is not claimed in the system SS1E that all what
is true can possibly be known by men.

cv
6.662 C aWp MaWp 2
The converse of 6.662 does not hold of course.
6.663 C LaWp MaWp 3
6.6631 C LaWwp aWMaWp 3
6.664 C aWMaWp MaWp 1

The converse of 6.664 does not hold; i.e. it may be true to say that it is
possible that somebody knows that p, although this person does not know
this (cf. 6.643 and the note).
6.6641 C aWMaWp aWp k
6.6642 C bWMaWp bWp 1
Note: The forms which are analogous to 6.641, 6.642 and 6.646-6.649
(where ‘LaWp’ is replaced by ‘MaWp’) do not hold.
6.665 C aW°(dWp) MaWp (cf. 6.5551, 6.662)
6.67 C aWLp aWp
6.67T1 C aWLp NaWLNp
6.6711 C aWLp NaWNLp
6.6712 C aWLNp NaWLp
6.6713 C aWNLp NaWLp
6.672 E NKaWLpaWLq ANaWLpNaWLlq
6.6721 E KNaWLpNaWLq NAaWLpaWLq
6.673 E NKaWLpbWLp ANaWLPNbWLD
6.6731 E KNaWLpNbWLp NAaWLpbWLD
The analogous forms of 6.672-6.6731 with the other modalities (where ‘L’
is replaced by ‘LL’, ‘ML’ ‘M’, ‘MM’, ‘LM’) hold too. The analogous laws
of 6.531-6.533 hold with all VA(@WLp .. .) strongly. Further laws can be
easily proved with the help of the matrices.
6.68 There is another sense of ‘‘the person @ necessarily knows that
p’ (named by: ‘L’aWp’) than that defined in 6.63. This other sense is used
if one makes assertions about his own psychic (mental) phenomena at the
present time. More explicitly: It is this assertion which states that one
has (is aware of) now this or that psychic (mental) phenomenon. The mental
phenomenon or psychic action may be any one, for example an action of
representing, imagining, guessing, doubting, judging, asserting, desiring,
enjoying, unpleasing, loving, hating .. . etc. This judgement or assertion
with which I state that I have (now) this or that mental action is called
““judgement of introspection’’®®, Now it seems that one could say in some
perfectly good sense that a person who asserts something about his own
mental phenomena by a judgement of introspection not only knows that he
has this mental action but necessarily knows that.

Comparing the three conditions of 6.62 with conditions for this new
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concept of ‘‘necessarily knowing that p’’ one can easily see that the first
condition of 6.62 must hold here too. But on the other hand the second
condition of 6.62 cannot be required here. For a person b cannot know
directly something about the mental phenomena of a person a. Also the
third condition is not defensible because this what is known by introspec-
tion (the mental phenomena) is not necessarily the case (as it is if one
knows the principle of non-contradiction) neither logically necessary nor
empirically necessary. The new requirement here seems to be the
following: if the person g knows that he has a certain mental action then the
person g necessarily knows that he has this action. This requirement is
satisfied by the definition

cy
6.681 E L’aWr aWr 1 Df.
where ‘%’ is a sentence which has such a form that the following sentences
are concrete instances of this form:

‘a represents ¥’ ‘a wants that p’
‘a guesses that p’ ‘a loves %’

‘a judges that p’ ‘a enjoys x’

‘a affirms that p’ ete.

From this determination of 7 it is clear that statements like CaWLraWr—
though they are true—need not to violate the above mentioned requirements
because in all such statements the antecedens is viewed to be false. This
is so if one agrees that mental phenomena—the occurrence of which is
expressed assertively in the sentence %’—neither occur with physical or
natural necessity nor with logical necessity.

7. Tense-Logic based on SS1. 7.1 In his (TCT) and (PTL) Prior gives
axioms for a Tense-Logic. In (PTL) he also mentions interpretations of
time-operations by modal operations. For this purpose he uses the system
T of Feys with the additional axiom of Geach for the system S4.3,
ALCLpgLCLgp, and the system S4 of Lewis (cf. 3.44). It is shown in the
following that all axioms of Prior’s system GHI1 are valid in SS1 (more
accurately: SS1M) if one interprets the time-operations by modal-opera-
tions of SSIM in the way of 7.5.

7.2 Definitional abbreviations

7.21 ‘Pp? for ‘it has been the case that p’

7.22 ‘Hp’ for ‘it has always been the case that p’

7.23 ‘Fp’ for ‘it will be the case that p’

7.24 ‘Gp’ for ‘it will always be the case that p’

7.3 Definitions

7.31 F=df. NGN

7.32 P=df. NHN

7.4 Rules

7.41 RG: If ~a then + Ga
As it is clear from 1.53 this rule does not hold in SS1IM. Instead of this
rule the more detailed statements of 1.53 are valid.
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7.42 MI (the Mirror Image rule): In any thesis we may replace P by F, G
by H and vice versa, throughout.

7.5 Interpretation. 7.51 In the following Pp and Fp are interpreted by LMp
in SS1.(SS1M); Hp and Gp are interpreted by MLp in SS1 (SSIM). This
satisfies the definitions 7.31 and 7,32. That it is not necessary to have
different interpretations for Pp and Fp on the one hand and for Hp and Gp
on the other is clear by the rule MI of the system GHI1.

7.52 In the following I want to give reasons for choosing the operations ML
and LM of SSIM in order to interpret the time-operations P, H, F and G.

At first it seems clear that LLp and MMp (as the strongest form of
necessity and the weakest form of possibility in SS1M) are not suitable for
the following reason: that which is logically necessary should be viewed as
more generally valid than that which is valid for all the time; for the time
of which we speak is-—according to the theory of relativity—bound to our
(factual) universe whereas a logically necessary statement is valid in all
possible worlds (Leibniz) but not only in our universe. On the other hand:
that which is logically possible is less general than that which is valid for
at least one time-stretch #; for if one says that it is logically possible that
a certain event occurs, this statement may be consistent even if this event
never does occur (i.e., even if there is no time-stretch ¢ where the event
occurs).

Secondly it remains to give reasons for not having chosen the opera-

tions L and M for an interpretation of P, H, F and G. The stimulation for
such a reason the author got from the essay (UDN) of Popper in which a
definition of natural (or: physical) necessity is given. Poppers definition is
the following: ‘‘A statement may be said to be naturally or physically
necessary if, and only if, it is deducible from a statement function which is
satisifed in all worlds that differ from our world, if at all, only with
respect to initial conditions’’ (LSD) p. 433,
If one would try now to interpret natural necessity by ‘“for all times ¢, it
yields that . . .” or by ‘it was always the case and it will always be the case
that . . .” (KHpGp) then one arrives at the following conclusion: the state-
ments ‘for all times ¢, it yields that . . .” and ‘it was always the case and it
will always be the case that . . .” are also valid for the more general initial
conditions which hold in the (factual) universe; as for example for the
totality of mass or energy which is in the universe. From this considera~
tion and from Popper’s definition of natural necessity it seems to follow
that natural necessity is stronger and more general than that the validity of
which is determined by universal time-operations or time-quantification.
If therefore natural necessity is represented in SSIM by L then the
statements ‘for all ¢, it yields that’, ‘Hp’ and ‘Gp’ must be interpreted with
an operation weaker than L. The conditions for such an operation which—
when applied to p—should give a statement weaker than Lp but (and this
seems clear) stronger than p are exactly satisfied by the operation ML of
SS1 (SS1M). Analogous reasons can be given for interpreting Pp and Fp by
LMp of SS1 (SS1M).
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cv
7.6 The system T of Feys in SS1 (SS1M)

7.61 C Lp p (cf. 3.461)

7.62 C LCpg CLpLqg (cf. 3.462) 1

7.63 Rule: If +a then + La

This rule (more accurately: their corresponding formula of the calculus
SS1 (SS1M) which is in the object language and not in the meta language as
the rule) is not in general valid in SS1 (or SS1IM). Only the more detailed
statements of 1.53 are valid in SS1 and SS1M.

7.64 Additional axiom of Geach for S4.3

7.641 A LCLpg LCLgp 3
7.65 Additional axiom of Hintikka for S4.3
7.651 C KMpMq AMKpMgMKqMp 1
7.7 Axioms of GH1 interpreted in SS1M
7.71  C GCpg CGpGq
7.711 C MLCpq CMLpMLq 1
7.72 C Gp NGNp
7.721 C MLp NMLNp 1
7.73 C Gp GGp
7.731 C MLp MLMLp 1
7.74 C GGp Gp
7.741 C MLMLp MLp 1
7.75 C GChq C GCpGq CGCFpqCFDpGq
7.751 C MLCpqg C MLCpMLg CMLCLMpqCLMpMLq 1
7.76 C NHNGp p

C NGNGp p (with MI)
7.761 C NMLNMLp p 2
777 C p C Gp CHpGHp

C p C Gp CGpGGp (with M)
7771 C p C MLp CMLPMLMLD 1

7.78 As Prior remarks in a footnote (PTL) p. 153, Lemmon showed that
the axiom 7 (7.77) can be derived from the axioms 1, 5 and 6 (7.71, 7.75 and
7.76) with the help of RG and MI (i.e. axiom 7 is not an independent axiom).
In the same footnote Prior says that independency-proofs for all the other
6 axioms have been given by Berg and Hacking.

7.79 Validity of the axioms of GH1 in SSIM. If one takes the interpretation
of 7.5 and if one assumes the validity of the rule M/ then all the seven
axioms of GH1 (and all the six independent axioms of GH1) are valid in
SS1M. The axioms 1-5 are strongly valid, the axiom 6 is strictly valid in
SS1IM. If the rule MI is dropped only axioms 1-5 are (strongly) valid,
whereas axioms 6 and 7 are no longer interpretable in the above sense.

7.8 It is perhaps worth noting what happens if one takes the modal
interpretations for Hp and Gp which are mentioned by Prior (PTL) p. 153:
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(1) Hp is interpreted as p and Gp is interpreted as Lp (in the absence of
the rule MI) of the system T of Feys plus Geach’s axiom S4.3. In this
case—as Prior states—all axioms of GH1, except axiom 3, are valid. If we
take instead of the system T (and Geach’s axiom) the system SS1M the
axioms 1, 2, 4 and 5 are strongly valid in SSIM; axiom 3 is not valid in
SSIM (but contingent) under this interpretation. Axiom 6 and axiom 7
which are the only axioms containing Hp are not representable in SSIM if
one interprets Hp as p (in the absence of the rule MI). However if one
assumes the rule MI to be valid then axiom 6 is strictly valid and axiom 7
is strongly valid in SS1M.

(2) Hp and Gp are interpreted as Lp of SSIM. Then the axioms 3 and 7 are
not valid (contingent) in SS1M, all other axioms are valid in SSIM,

(3) Hpis interpreted as Pp. This interpretation violates definition 7.32. If
one accepts definition 7.31 and interprets Gp as MLp and Pp as LMp of
SSIM then all axioms of GH1 are valid in SS1M. This is also the case if
Pp is interpreted as MLp of SSIM.

7.81 Not all of the interpretations of Pp, Hp, Fp and Gp which are stated in
7.8 satisfy the reasons given in 7.52 for the interpretation in 7.51. Thus
although there may be interpretations of 7.8 and some similar ones
under which all the axioms of GH1 become valid statements of SSIM,
they need not satisfy the reasons given in 7.52. It is interesting to
observe that under interpretation (3) the axioms of GH1 are valid in SSIM
no matter if interpreting Pp as LMp or as MLp of SSIM. If Pp is
interpreted as LMp then—for CpPLMp is valid in SSIM and Hp = Pp—the
statement ‘if p is true then it has always been the case that p’ must be
valid. But this seems odd for p may be only contingently true and not
necessarily. One may conclude: The equating of Hp with Pp seems
counterintuitive if Pp is interpreted as LMp in SSIM. If one looks for the
other case of equating Hp and Pp, taking Pp as MLp then—for CMLpp is a
theorem of SS1M-—the statement ‘if it has been the case (at some time) that
p then p is the case’ must be valid. But also this statement seems to be
counterintuitive because the truth of p (even if it is a contingent truth)
is not restricted to a certain time. These considerations (7.81) seem to
substantiate the interpretation of Pp, Hp, Fp and Gp which has been given in
7.51 and which satisfies the conditions of 7.52.

SUMMARY

The following summary was given by Prof. K. R, Popper (in a letter to the author
from April 1967) summarizing three talks of the author on the topics of this paper at
the University of London in February 1967,

“(l) You have given a demonstrably consistent method of introducing the modalities
“logically necessary (possible, impossible, . . .)’’ and ‘““physically necessary (possi-
ble, impossible)”’ into propositional logic, (These modalities may perhaps also be
differently interpreted,)

(2) You have, furthermore, given a method of introducing, in addition to the
modalities, an epistemic logic. This is a much discussed problem; and although I
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personally believe that it is a mistake to expect that epistemic logic is of special
interest for epistemology, the solution of the problem you have given is transparent
and probably the best that can be expected.

(3) You have done all this with the help of a very simple and straightforward idea:
that of introducing a new couple of (positive and negative) truth values for each of the
new levels (level of physical modality; level of logical modality; epistemic level)
which you introduce.

(4) By doing all this you have at the same time given the first useful and philosophi-
cally interesting interpretation of many-valued formal systems of which I know; and
you have given reason to expect that only 2x-valued systems can be expected to
furnish philosophically interesting interpretations.”

NOTES

1. Works and essays on Aristotle’s modal logics: A, Becker (IND), (ATM), O.
Becker (UMo), Bochefiski (FLg) 15.01-15.23, (AFL) p. 55-62, McCall (AMS),
Feys (SMA), Hintikka (IIn}, (NUT), (FSF), Kneale (DLg) p. 81-96, tukasiewicz
(ASS), (CPA), Patzig (ASy), Prior (TMo), Weingartner (VFW).

2. Under the ‘‘dictum’’ they understood an expression which originates from a
statement and begins with ‘‘that’’: the dictum of the statement ‘‘Socrates runs”’
is ‘‘that Socrates runs’’. Cf, Thomas Aquinas (PMo), Bochefiski (LTh), (FLg),
15.13, 17.12-17.17, 29.09-29.14, (NHP), Kneale (MDR), Prior (MDR).

3. Cf. Bochefiski (AFL) p. 57ff. and A, Becker (ATM). Cf.the references under
footnote 2.

4. Cf. Alexander Aphrodisiensis (AAP) p. 183, 42 ff. Epictetus (DAD) II, 19,1.
Bochefski (FLg) p. 132, Kneale (DLg) p. 117-128. Mates (SLg) p. 36-41. For
the master-argument of Diodorus: Prior (DMe), Hintikka (AMD).

5. For Quotations from these works see Bochefiski (FLg) 33.04-33.05, 29.10-29.11,
33.09-33.19, 29.12.

6, For a detailed bibliography see ¥eys (MoL).
7. Cf. also Hermes (TAM).

8. The system as it is developed in this paper lacks precision in some (unessential)
points. For instance, when it is said that propositional variables are considered
as formulas to which truth-values can be assigned. Most precisely speaking
one should give truth-values only to quantified propositional functions i.e. to full
propositions as it is done for instance inthe system of Leéniewski (GZN), (BFM)
and Tarski (PTL). The reasons for not having established a propositional cal-
culus with quantification are the following: 1. This lack of precision does not
touch the validity of any statement of the system. 2. The addition of quantifica-
tion would rather complicate the system and would not help for a better under-
standing of it. 3. There are methods of interpreting quantification for proposi~
tional logic in SS1 but the scope of the paper is too restricted to discuss this in
detail, The following remark may suffice to indicate the idea: the matrix of the
proposition ‘“for all p, it yields that p*’ is interpreted as the conjunction (1.12)
of the values of p; i.e, if p has the basic matrix, the matrix of this conjunction
consists of the only value 6. Similarly the matrix of the proposition ‘‘for some
p, it yields that p*’ is interpreted as the disjunction (1.11) of the values of p; i.e.



154

10.

11.
12.
13.

14.
15.

16.

17.

18.

19.
20.
21.
22,

23.
24,

25,

PAUL WEINGARTNER

if p has the basic matrix the matrix of this disjunction consists of the only
value 1, See: Weingartner (KBB). 4. In almost all of the systems of proposi-
tional calculus there is the same lack of precision, i.e. these systems are not
quantified, Also for the sake of simplicily no metalanguage (with certain
metalinguistic symbols) is introduced. The main reason is that the system SS1
does not contain rules, except a kind of substitution rule. As it is shown later
(1.62) there is no need for deduction rules as in other systems which are built
on the axiomatic method or on the method of natural deduction,

“iff’ is to be understood as *‘if and only if”’.

The concept of consequence class owes its originto Tarski. It is formulated and
defined in his fundamental studies (FBM), (FMD) and (GZS).

Cf. Kleene (IMM) p. 129,
Cf. Kleene (IMM) p. 136f,

In order to be able to read more easily the formulas I left some space between
the main-connective and the rest of the formula and between those two parts of
the formula which are connected by the main-connective,

The number in brackets under the current number of the formulas (in this
case: 7) is the number of variations proved. If the number of the variations
which have been proved, does not equal the number of the valid variations (of the
proved ones) in SS1 or SS1M—but is smaller—then this number of the valid vari~
ations is written (in brackets) under the number of the proved variations as in
2.24, The number of proved (decided) formulas in chapters 2, and 3, are about
18,300; of these about 14,400 have been proved valid in SS1(SS1M).

The VO LLK of 2.24 is CLLKLLKpqvLLKpLLKqvr.

‘k’ stands for ‘contingent’; i.e. the cwv is either 4 or 5 or 6 and the matrix con~
tains at the same time at least one value between 1 and 3.

The VA\Mp of the VOMA, MMA, LMA of 2.311 are: CMAMpMpMp, CMMAMpMpMp
and CLMAMpMpMp.

The VO+VA LC... MLK of 2.427 are: LCLCpqLCMLKvpMLKvq and its VA~
variations.

From here on—if not explicitly the contrary is said—all the operations C are
varied only with L, LL and ML, but no longer with M, MM and LM.

Cf. Kleene (IMM) p. 131,
Cf. Tarski (FBM) Theorem 3*,
Definition 5.

As it is well-known Gd&del (I1A) gave an interpretation of the intuitionistic calcu-
lus with the help of laws of the system S4 of Lewis.

O. Becker (UMo) p. 16ff,

A full axiomatization of CS was first given by tukasiewicz in (ASS). A different
one is due to Bochefiski (KSy). Cf. Lorenzen (FLg) ch. I. Lorenzen gives an
interesting new interpretation of syllogistic.

Cf. Bochefiski (KSy) in: Bochefiski (LPS) p. 32f. Or: (CSy) p. 28ff.
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27,

28.
29,
30.

31.

32,

33.

34.
35.
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Cf. Xukasiewicz (ASS) p. 88; Bochefiski (KSy) in Bochefiski (LPS) p. 24 and 31,
Or: (CSy) in: (LPSe) p. 22 and 28.

Cf. Brentano (PES) II, p. 78ff, and 176f., Prior (FLg) p. 164ff., Scholz (MUn) p.
330f., Weingartner (VFW) p. 61ff., Juhos (EZM) p. 71ff.

Cf. Bochefiski (KSy) in: Bochefiski (LPS) p. 33. Or: (LPSe) p. 29f.
Cf. Bochefiski (AFL) p. 57.

Note: Hintikka, in his (KBe) p. 59, says that the statements ‘it is not the case
that @ knows that p’ and ‘it is possible for all that a knows that not-p’ are inter~
changeable in his system; the same holds for the two statements ‘it is not the
case that it is possible, for all that a knows. that!pf and ‘a knows that not-p’ i.e.
they are also interchangeable in his system. If one interprets ‘it is possible for
all that @ knows that not-p? by aWMNp (perhaps Hintikka would not agree with
that interpretation) then NaWp and a WMNp are interchangeable in the system
proposed in 6.12 but not in the system proposed in 6.13 and not in SS1E, If one
interprets further ‘it is not the case that it is possible, for all that ¢ knows that
p’ with NeWMp then again aWNp and NaWMp are interchangeable in the system
proposed in 6.12 but not in the system proposed in 6.13 and not in SS1E. If how-
ever the statement ‘it is not the case that it is possible for all that a knows that
p’ is interpreted with aWNMp then in both systems of 6.12 and 6.13 and in SS1E
only the implication C aWNMp aWNp holds but no interchangeability.—From all
this it seems that the concept of knowledge, which Hintikka has in mind, is not
so understood as to include in its negation a kind of not~knowing which one may
call ignorance, Because in the case of ignorance (put for not-knowing) the laws
of interchangeability of Hintikka’s system do not seem to hold.

For the operation signs of the extented system SS1E bold-face letters are used
to keep in mind the difference between the operations of 881 and SS1E.

These criteria of consistency are due to Hintikka (KBe) p. 16ff.

For a discussion in defense for using such a concept of knowledge see Hintikka
(KBe) p. 48f.. and Weingartner (CoA) footnote 59, in: Weingartner (DAE) p. 310
and the discussion (DAE) p. 403f.

For a discussion of connected problems see Hintikka (KBe) ch. 5.

For a discussion of problems concerning introspection see Weingartner (CoA),
in: Weingartner (DAE) p. 303 ff. and the discussion (DAE) p. 401f, Cf. Brentano
(PES) Bd. I p. 128, 178, 196.
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