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Modal Matching for 
Correspondence and Recognition 

Stan Sclaroff and Alex P. Pentland 

Abstract---Modal matching is a new method for establishing 
correspondences and computing canonical descriptions. The 
method is based on the idea of describing objects in terms of gen- 
eralized symu&ries, as defined by each object’s eigenmodes. The 
resulting modal description is used for object recognition and 
categorization, where shape simihuities are expressed as the 
amounts of modal deformation energy needed to align the two 
objects. In general, modes provide a global-to-local ordering of 
shape deformation and thus allow for selecting which types of 
deformations are used in object alignment and comparison. In 
contrast to previous techniques, which required correspondence 
to be computed with an initial or prototype shape, modal match- 
ing utilixes a new type of finite element formulation that allows 
for au object’s eigenmodes to be computed directly from available 
image information. This improved formulation provides greater 
generality aud accuracy, and is applicable to data of any dimen- 
sionality. Correspondence results with 2D contour and point fea- 
ture data are shown, and recognition experiments with 2D images 
of hand tools and airplanes are described. 

Index Terms-Correspondence, shape description, shape in- 
variants, object recognition, deformation, finite element methods, 
modal analysis, vibration modes, eigenmodes. 

I. INTRODUC~ON 

A key problem in machine vision is how to describe fea- 
tures, contours, surfaces, and volumes so that they can be 

recognized and matched from view to view. The primary diffi- 
culties are that object descriptions are sensitive to noise, that 
an object can be nonrigid, and that an object’s appearance de- 

forms as the viewing geometry changes. These problems have 
motivated the use of deformable models [6], [7], [9], [14], 

1171, [22], [34], [36], [37] to interpolate, smooth, and warp 
raw data. 

Deformable models do not by themselves provide a method 
of computing canonical descriptions for recognition, or of es- 
tablishing correspondence between sets of data. To address the 
recognition problem we proposed a method of representing 
shapes as canonical deformations from some prototype object 
1181, [22]. By describing object shape terms of the eigenvec- 
tors of the prototype object’s stiffness matrix, it was possible 
KO obtain a robust, frequency-ordered shape description. 
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Moreover, these eigenvectors or modes provide an intuitive 
method for shape description because they correspond to the 
object’s generalized axes of symmetry. By representing objects 
in terms of modal deformations we developed robust methods 
for 3D shape modeling, object recognition, and 3D tracking 
utilizing point, contour, 3D, and’optical flow data [18], [20], 

WI. 
However this method still did not address the problem of 

determining correspondence betweeen sets of data, or between 
data and models. This was because every object had to be de- 
scribed as deformations from a single prototype object. This 
implicitly imposed an a priori parameterization upon the sen- 
sor data, and therefore implicitly determined the correspon- 
dences between data and the prototype. 

In this paper we generalize our earlier method by obtaining 
the modal shape invariants directly from the sensor data. This 
will allow us to compute robust, canonical descriptions for 
recognition and to solve correspondence problems for data of 
any dimensionality. For the purposes of illustration, we will 
give a detailed mathematical formulation for 2D problems, and 
demonstrate it on gray-scale image and point feature data. The 
extension to data of other dimensionality is described in a 
technical report [28]. To illustrate the use of this method for 
object recognition and category classification, we will present 
an example of recognizing and categorizing images of hand 
tools. 

II. THE BASIC IDEA 

Imagine that we are given two sets of image feature points, 
and that our goal is to determine if they are from two similar 
objects. The most common approach to this problem is to try 
to find distinctive local features that can be matched reliably; 
this fails because there is insufficient local information, and 
because viewpoint and deformation changes can radically alter 
local feature appearance. 

An alternate approach is to first determine a body-centered 
coordinate frame for each object, and then attempt to match up 
the feature points. Once we have the points described in in- 
trinsic or body-centered coordinates rather than Cartesian co- 
ordinates, it is easy to match up the bottom-right, top-left, etc. 
points between the two objects. 

Many methods for finding a body-centered frame have been 
suggested, including moment-of-inertia methods, symmetry 
finders, and polar Fourier descriptors (for a review see [l]). 
These methods generally suffer from three difficulties: sam- 
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pling error, parameterization error, and nonuniqueness. The 
main contribution of this paper is a new method for computa- 
tion of a local coordinate frame that largely avoids these three 
difficulties. 

Sampling error is the best understood of the three. Everyone 
in vision knows that which features you see and their location 

can change drastically from view to view. The most common 
solution to this problem is to only use global statistics such as 

moments-of-inertia; however, such methods offer a weak and 
partial solution at best. 

Parameterization error is more subtle. The problem is that 
when (for instance) fitting a deformable sphere to 3D meas- 
urements one implicitly imposes a radial coordinate system on 
the data rather than letting the data determine the correct co- 
ordinate system. Consequently, the resulting description is 
strongly affected by, for instance, the compressive and shear- 
ing distortions typical of perspective. The number of papers on 
the topic of skew symmetry is indicative of the seriousness of 

this problem. 
Nonuniqueness is an obvious problem for recognition and 

matching, but one that is all too often ignored in the rush to get 
some sort of stable description. Virtually all spline, thin-plate, 
and polynomial methods suffer from this inability to obtain 
canonical descriptions; this problem is due to fact that in gen- 
eral, the parameters for these surfaces can be arbitrarily de- 
fined, and are therefore not invariant to changes in viewpoint, 
occlusion, or nonrigid deformations. 

Our solution to these problems has three parts: 

1) We compute a shape description that is robust with re- 

spect to sampling by using Galerkin interpolation, which 
is the mathematical underpinning of the finite element 
method (FEM). 

2) We introduce a new type of Galerkin interpolant based 
on Gaussians that allows us to efficiently derive our 
shape parameterization directly from the data. 

3) We then use the eigemnodes of this shape description to 
obtain a canonical, frequency-ordered orthogonal coordi- 
nate system. This coordinate system may be thought of as 
the shape’s generalized symmetry axes. 

By describing feature point locations in this body-centered 
coordinate system, it is easy to match corresponding points, 
and to measure the similarity of different objects. This allows 
us to recognize ob,jects, and to determine if different objects 
are related by simple physical transformations. 

A flow-chart of our method is shown in Fig. 1. For each im- 
age we start with feature point locations X = [xt . . . x,] and use 
these as nodes in building a finite element model of the shape. 
We can think of this as constructing a model of the shape by 
covering each feature point with a Gaussian blob of rubbery 
material; if we have segmentation information, then we can fill 
in interior areas and trim away material that extends outside of 
the shape. 

We then compute the eigenmodes (eigenvectors) @ of the 
finite element model. The eigenmodes provide an orthogonal 
frequency-ordered description of the shape and its natural de- 
formations. They are sometimes refered to as mode shape 

vectors since they describe how each mode deforms the shape 
by displacing the original feature locations, i.e., 

Xdcfo-d = X + ah 

where a is a scalar. 

(1) 

The first three eigenmodes are the rigid body modes of 
translation and rotation, and the rest are nonrigid modes. The 
nonrigid modes are ordered by increasing frequency of vibra- 
tion; in general, low-frequency modes describe global defor- 
mations, while higher-frequency modes describe more local- 
ized shape deformations. This global-to-local ordering of 
shape deformation will prove very useful for shape matching 
and comparison. 

Inptd: fsstlum output: strongsst 
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Fig. 1, System diagram. 

The eigenmodes also form an orthogonal object-centered 
coordinate system for describing feature locations. That is, 

each feature point location can be uniquely described in terms 
of how it moves within each eigenmode. The transform be- 
tween Cartesian feature locations and modal feature locations 
is accomplished by using the FEM eigenvectors as a coordi- 
nate basis. In our technique, two groups of features are com- 
pared in this eigenspace. The important idea here is that the 
low-order modes computed for two similar objects will be very 
similar-even in the presence of affine deformation, nonrigid 
deformation, local shape perturbation, or noise. 

To demonstrate this, Fig. 2 shows a few of the low-order 
nonrigid modes computed for four related tree shapes: (a) up- 
right, (b) stretched, (c) tilted, and (d) two middle branches 
stretched. Each row in the figure shows the original shape in 
gray, and its low-order mode shapes are overlaid in black out- 
line. By looking down a column of this figure, we can see how 
a particular low-order eigenmode corresponds nicely for the 
related shapes. This eigemuode similarity allows us to match 
the feature locations on one object with those of another de- 
spite sometimes large differences in shape. 

Using this property, feature correspondences are found via 
modal matching. The concept of modal matching is demon- 
strated on the. two similar tree shapes in Fig. 3. Correspon- 
dences are found by comparing the direction of displacement 
at each node. The direction of displacement is shown by vec- 
tors in the figure. For instance, the top points on the two trees 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17. NO. 6, JUNE 1995 

in Figs. 2a and 2b have very similar displacements across a 
number of low-order modes, while the bottom point (shown in 
Fig. 2c) has a very different displacement signature. Good 
matches have similar displacement signatures, and so the sys- 

tem matches the top points on the two trees. 

Fig. 2. Similar shapes have similar low-order modes. This figure shows the 
first five low-order eigenmodes for similar tree shapes: (a) prototypical, (b) 
stretched, (c) tilted, and (d) two middle branches stretched. 

Fig. 3. Computing correspondences in modal signature space. Given two 
similar shapes, correspondences are found by comparing the direction of 
displacement at each node (shown by vectors in figure). For instance, the top 
points on the two trees (a, b) have very similar displacement signatures, while 
the bottom point (shown in c) has a very different displacement signature. 
lJsing this property, we can reliably compute correspondence affinities in this 
modal signature space. 

Point correspondences between two shapes can be reliably 
determined by comparing their trajectories in this modal space. 
In the implementation described in this paper, points that have 
the most similar unambigous coordinates are matched via mo- 
dal matching, with the remaining correspondences determined 
by using the physical model as a smoothness constraint. Cur- 
rently, the algorithm has the limitation that it cannot reliably 
match largely occluded or partial objects. 

Finally, given correspondences between many of the feature 
points on two objects, we can measure their difference in 
shape. Because the modal framework decomposes deforma- 
tions into an orthogonal set, we can selectively measure rigid- 
body differences, or low-order projective-like deformations, or 

deformations that are primarily local. Consequently, we can 
recognize objects in a very flexible and general manner. 

Alternatively, given correspondences we can align or warp 
one shape into another. Such alignment is useful for fusing 
data from different sensors, or for comparing data acquired at 
different times or under different conditions. It is also useful in 
computer graphics, where the warping of one shape to another 
is known as “morphing.” In current computer graphics appli- 

cations the correspondences are typically determined by hand 

[41, [311, [441. 

III. BACKGROUNDANDN~TATION 

A. Eigen-Representations 

In the last few years there has been a revival of interest in 
pattern recognition methods, due to the surprisingly good re- 
sults that have been obtained by combining these methods with 
modem machine vision representations. Using these ap- 
proaches researchers have built systems that perform stable, 
interactive-time recognition of faces [39], cars [16], and bio- 
logical structures [6], 1191 and allowed interactive time track- 
ing of complex and deformable objects [5], [8], [20], [38]. 

Typically, these methods employ eigen-decompositions like 
the modal decomposition or any of a family of methods de- 

scended from the Karhunen-Loeve transform. Some are fea- 
ture-based eigenshapes [3], [8], [26], [27], [30], [32], others 
are physically based eigensnakes [5], [6], [19], [22], [27], and 
still others are based on (preprocessed) image intensity infor- 
mation, eigenpictures [ 111, [15], [16], 1211, [38], [39]. 

In these methods, image or shape information is decom- 
posed into an ordered basis of orthogonal principal compo- 
nents. As a result, the less critical and often noisy high-order 
components can be discarded in order to obtain overcon- 
strained, canonical descriptions. This allows for the selection 
of only the most important components to be used for efficient 
data reduction, real-time recognition and navigation, and ro- 
bust reconstruction. Most importantly, the orthogonality of 
eigen-representations ensures that the recovered descriptions 
will be unique, thus making recognition problems tractable. 

Modal matching, the new method described in this paper, 
utilizes the eigenvectors of a physically based shape represen- 
tation, and is therefore most closely related to eigenshapes and 
eigensnakes. At the core of all of these techniques is a positive 
definite matrix that describes the connectedness between fea- 
tures. By finding the eigenvectors of this matrix, we can obtain 
a new, generalized coordinate system for describing the loca- 
tion of feature points. 

One such matrix, the proximity matrix, is closely related to 
classic potential theory and describes Gaussian-weighted dis- 
tances between point data. Scott and Longuet-Higgins [30] 
showed that the eigenvectors of this matrix can be used to de- 
termine correspondences between two sets of points. This co- 
ordinate system is invariant to rotation, and somewhat robust 
to small deformations and noise. A substantially improved 
version of this approach was developed by Shapiro and Brady 
[32], [33]. Similar methods have been applied to the problem 
of weighted graph matching by Umeyama [41], and for Ge- 
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stalt-like clustering of dot stimuli by van Oeffelen and Vos 
[42]. Unfortunately, proximity methods are not information 
preserving, and therefore cannot be used to interpolate inter- 
mediate deformations or to obtain canonical descriptions for 
recognition. 

In a different approach, Samal and Iyengar [26] enhanced 
the generalized Hough transform (GHT) by computing the 
Karhunen-Lo&e transform for a set of binary edge images for 
a general population of shapes in the same family. The family 
of shapes is then represented by its significant eigenshapes, 
and a reference table is built and used for a Hough-like shape 
detection algorithm. This makes it possible for the GHT to 

represent a somewhat wider variation (deformation) in shapes, 
but as with the GH’T, their technique cannot deal very well 
with rotations, and it has the disadvantage that it computes the 
eigenshapes from binary edge data. 

Cootes et al. [3], [8] introduced a chord-based method for 
capturing the invariant properties of a class of shapes, based 
on the idea of finding the principal variations of a snake. Their 
point distribution model (PDM) relies on representing objects 
as sets of labeled points, and examines the statistics of the 
variation over the training set. A covariance matrix is built that 
describes the displacement of model points along chords from 
the prototype’s centroid. The eigenvectors are computed for 
this covariance matrix, and then a few of the most significant 
components are used as deformation control knobs for the 
snake. Unfortunately, this method relies on the consistent 
sampling and hand-labeling of point features across the entire 
training set and cannot handle large rotations. 

Each of these previous approaches is based directly on the 

sampled feature points. When different feature points are pres- 
ent in different views, or if there are different sampling densi- 
ties in different views, then the shape matrix for the two views 
will differ even if the object’s pose and shape are identical. In 
addition, these methods cannot incorporate information about 

feature connectivity or distinctiveness; data are treated as 
clouds of identical points. Most importantly, none of these 
approaches can handle large deformations unless feature cor- 
respondences are given. 

To get around these problems, we propose a formulation 
that uses the finite element technique of Gale&in surface ap- 
proximation to avoid sampling problems and to incorporate 
outside information such as feature connectivity and distinct- 
iveness. The eigenvectors of the resulting matrices can be used 
both for describing deformations and for finding feature corre- 
spondences. The previous work in physically based correspon- 
dence is described briefly in the next section. 

B. Physically Based Correspondence and 
Shape Comparison 

Correspondence has previously been formulated as an equi- 
librium problem, which has the attractive feature of allowing 
integration of physical constraints [18], [22], [20], [37], [36]. 
To accomplish this, we first imagine that the collection of 
feature points in one image is attached by springs to an elastic 
body. Under the load exerted by these springs, the elastic body 
will deform to match the shape outlined by the set of feature 

points. If we repeat this procedure in each image, we can ob- 
tain a feature-to-feature correspondence by noting which 
points project to corresponding locations on the two elastic 
bodies. 

If we formulate this equilibrium problem in terms of the ei- 
genvectors of the elastic body’s stiffness matrix, then closed- 
form solutions are available [ 181. In addition, high-frequency 
eigenvectors can be discarded to obtain overconstrained, ca- 
nonical descriptions of the equilibrium solution. These de- 
scriptions have proven useful for object recognition [22] and 
tracking 1201. 

The most common numerical approach for solving equilib- 
rium problems of this sort is the finite element method. The 

major advantage of the finite element method is that it uses the 
Galerkin method of surface interpolation. This provides an 
analytic characterization of shape and elastic properties over 
the whole surface, rather than just at the nodes [2] (nodes are 
typically the spring attachment points). The ability to integrate 
material properties over the whole surface alleviates problems 
caused by irregular sampling of feature points. It also allows 
variation of the elastic body’s properties in order to weigh 
reliable features more than noisy ones, or to express a priori 
constraints on size, orientation, smoothness, etc. The following 
section will describe this approach in some detail. 

C. Finite Element Method 

Using Gale&in’s method for finite element discretization, 
we can set up a system of shape functions that relate the dis- 
placement of a single point to the relative displacements of all 
the other nodes of an object. This set of shape functions de- 
scribes an isoparametric jkite element. By using these func- 
tions, we can calculate the deformations that spread uniformly 
over the body as a function of its constitutive parameters. 

In general, the polynomial shape function for each element 

is written in vector form as: 

u(x) = H(xW (2) 

where H is the interpolation matrix, x is the local coordinate of 
a point in the element where we want to know the displace- 

ment, and U denotes a vector of displacement components at 
each element node. 

For most applications it is necessary to calculate the strain 
due to deformation. Strain E is defined as the ratio of dis- 
placement to the actual length, or simply the ratio of the 
change in length. The polynomial shape functions can be used 
to calculate the strains over the body provided the displace- 
ments at the node points are known. Using this fact we can 

now obtain the corresponding element strains: 

E(X) = B(x)lJ (3) 

where B is the strain displacement matrix. The rows of B are 
obtained by appropriately differentiating and combining rows 
of the element interpolation matrix H. 

As mentioned earlier, we need to solve the problem of de- 
forming an elastic body to match the set of feature points. This 
requires solving the dynamic equilibrium equation: 

Mij+Dti+KU=R, (4) 
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where R is the load vector whose entries are the spring forces 
between each feature point and the body surface, and where 
M, D, and K are the element mass, damping, and stiffness 
.matrices, respectively. 

Both the mass and stiffness matrices are computed directly: 

M= 
I 

pHrHdV and K= 
I 

BrCBdV, (3 

V V 

where p is the mass density, and C is the material matrix that 
expresses the material’s particular stress-strain law. 

If we assume Rayleigh damping, then the damping matrix is 
simply a linear combination of the mass and stiffness matrices: 

D=c&l+m, (6) 

where 01 and p are constants determined by the desired critical 
damping [2]. 

D. Mode Superposition Analysis 

This system of equations can be decoupled by posing the 
equations in a basis defined by the M-orthonormalized eigen- 

vectors of M-‘K. These eigenvectors and values are the solu- 

tion (&, I$) to the following generalized eigenvalue problem: 

Kgbi =w;M&. (7) 

The vector $ is called the ith mode shape vector and Q is 
the corresponding frequency of vibration. 

The mode shapes can be thought of as describing the ob- 
ject’s generalized (nonlinear) axes of symmetry. We can write 
1:7) as 

where 

.4s mentioned earlier, each mode shape vector A is M- 
orthonormal, this means that 

QTKQ,=Q2 and @‘Mm==. (10) 

This generalized coordinate transform @ is then used to 
transform between nodal point displacements U and decoupled 

modal displacements U : 

U=@ti. (11) 

We can now rewrite (4) in terms of these generalized or modal 
displacements, obtaining a decoupled system of equations: 

6, +%+Q,%, =cg,TR, (12) 

where b is the diagonal modal damping matrix, 
By decoupling these equations, we allow for closed-form 

solution to the equilibrium problem [22]. Given this equilib- 
rium solution in the two images, point correspondences can be 

obtained directly. 
By discarding high frequency eigenmodes the amount of 

computation required can be minimized without significantly 
altering correspondence accuracy. Moreover, such a set of 
modal amplitudes provides a robust, canonical description of 
shape in terms of deformations applied to the original elastic 
body. This allows them to be used directly for object recogni- 
tion [22]. 

IV. A NEW FORMULATION 

Perhaps the major limitation of previous methods is that the 
procedure of attaching virtual springs between data points and 
the surface of the deformable object implicitly imposes a stan- 
dard parameterization on the data. We would like to avoid this 
as much as is possible, by letting the data determine the 
parameterization in a natural manner. 

To accomplish this we will use the data to define the de- 

formable object, by building stiffness and mass matrices that 
use the positions of image feature points as the finite element 
nodes. We will first develop a finite element formulation using 
Gaussian basis functions as Galerkin interpolants, and then use 
these interpolants to obtain generalized mass and stiffness 
matrices. 

Intuitively, the interpolation functions provide us with a 
smoothed version of the feature points, in which areas between 
close-by feature points are filled in with a virtual material that 

has mass and elastic properties. The tilling-in or smoothing of 
the cloud of feature points provides resistance to feature noise 
and missing features. The interpolation functions also allow us 
to place greater importance on distinctive or important fea- 
tures, and to discount unreliable or unimportant features. This 
sort of emphasis/de-emphasis is accomplished by varying the 
“material properties” of the virtual material between feature 
points. 

A. Gaussian Interpolants 

Given a collection of m sample points xi from an image, we 
need to build appropriate stiffness and mass matrices. The first 
step towards this goal is to choose a set of interpolation func- 
tions from which we can derive H and B matrices. We require 
a set of continuous interpolation functions h; such that: 

1) their value is unity at node i and zero at all other nodes 

2) &T!,h,. = 1 .O at any point on the object 

In a typical finite element solution for engineering, Hermite or 
Lagrange polynomial interpolation functions are used [2]. 
Stiffness and mass matrices K and M are precomputed for a 
simple, rectangular isoparametric element, and then this simple 
element is repeatedly warped and copied to tessellate the re- 
gion of interest. This assemblage technique has the advantage 
that simple stiffness and mass matrices can be precomputed 
and easily assembled into large matrices that model topologi- 
tally complex shapes. 

Our problem is different in that we want to examine the ei- 

genmodes of a cloud of feature points. It is akin to the problem 
found in interpolation networks: we have a fixed number of 
scattered measurements and we want to find a set of basis 
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functions that allows for easy insertion and movement of data 
points. Moreover, since the position of nodal points will coin- 
cide with feature and/or sample points from our image, stiff- 
ness and mass matrices will need to be built on a per-feature- 
group basis. Gaussian basis functions are ideal candidates for 
this type of interpolation problem [23], [24]: 

gi(x)~e-//~-4~2~2 (13) 

where xi is the function’s n-dimensional center, and cr its stan- 
dard deviation. 

We will build our interpolation functions h; as the sum of m 
basis functions, one per data point xi: 

hi(x)=~ujkr!fk(x) 
k=l 

(14) 

where aik are coefficients that satisfy the requirements outlined 
above. The matrix of interpolation coefficients can be solved 
for by inverting a matrix of the form: 

By using these Gaussian interpolants as our shape functions 
for Galerkin approximation, we can easily formulate finite 
elements for any dimension. A very useful aspect of Gaussians 
is that they are factorizable: multidimensional interpolants can 
be assembled out of lower dimensional Gaussians. This not 
only reduces computational cost, it also has useful implications 
for VLSI hardware and neural-network implementations [23]. 

Note that these sum-of-Gaussians interpolants are noncon- 
forming, i.e., they do not satisfy condition 2) above. As a con- 
sequence the interpolation of stress and strain between nodes is 

not energy conserving. Normally this is of no consequence for 
a vision application; indeed, most of the finite element formu- 
lations used in vision research are similarly nonconforming 

[37]. If a conforming element is desired, this can be obtained 
by including a normalization term in (14), 

$aikgk(x) 

hi(x)= mk=‘, . 

Cpjkgkb) 

j=l k=l 

(16) 

In this paper we will use the simpler, non-conforming inter- 
polants, primarily because the integrals for mass and stiffness 
can be computed analytically. The differences between con- 
forming and nonconforming interpolants do not affect the re- 
sults reported in this paper. 

B. Formulating a 2D Mass Matrix 

For the sake of illustration we will now give the mathemati- 
cal details for a two dimensional implementation. We begin by 
assembling a 2D interpolation matrix from the shape functions 
developed above: 

1:: “;; ; 1:: h” 
m 1 (17) 

Substituting into (5) and 
trix for the feature data: 

multiplying out we obtain a mass ma- 

M=lpH’HdA=[F ib], (18) 

where the m-by-m submatrices M, and Mbb are positive 
definite symmetric, and M, = Mb,,. The elements of M, have 
the form: 

wrn 

m say =P j j Cnikffj~gk(x)gi(x)drdy. (19) 
a- k,l 

We then integrate and regroup terms: 

(20) 

where gRf = gk(xJ is an element of the G 
This can be rewritten in matrix form: 

matrix in (15). 

M, = Mbb = ,od AT(YjA = pnd G-‘GG-‘, 

where the elements of G are the square roots of the elements of 
the G matrix in (IS). 

C. Formulating a 2D Stiffness Matrix 

To obtain a 2D stiffness matrix K we need to compute a 
stress-strain interpolation matrix B and material matrix C. For 
our 2D problem, B is a (3 x 2m) matrix: 

I 0 

i& . . . vi!& 0 . . . 0 

B(x)= ... 0 0 h 1 5; . . . .i& 1 , (22) 

1 %h, ... &h,,, "h 
2; 1 ... 

and the general form for the material matrix C for a plane 
strain element is: 

la0 

C=pa [ 1 0 0 0 1 5 
(23) 

This matnx embodies an isotropic material, where the con- 
stants a, fl, and j are a function of the material’s modulus of 
elasticity E and Poisson ratio V: 

E(l- v) l-2v 

(l+v)(l-2v)’ 
and t=- 

2(1-v)’ 
(24) 

Substituting into (5) and multiplying out we obtain a stiff- 
ness matrix for the 2D feature data: 

(25) 

where each m-by-m submatrix is positive semidefinite sym- 
metric, and Kd = Kba. The elements of K, have the form: 
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Integrate and regroup terms: 

where ikr = (xk -XI) and j,r = (Yk - yr). Similarly, the elements 

of Kb6 have the form: 

Finally, the elements of K& have the form: 

When integrated this becomes: 

k 
abrbij 

--- 
c 

402 k,/ 

(30) 

V. DETERMINING CORRESPONDENCES 

To determine correspondences, we first compute mass and 
stiffness matrices for both feature sets. These matrices are then 
decomposed into eigenvectors $; and eigenvalues ;li as de- 
scribed in Section 1II.D. The resulting eigenvectors are or- 
dered by increasing eigenvalue and form the columns of the 
modal matrix @: 

T 
"1 

@=[@J,l . ..lezm]= $ (31) 

.T 
-“In _ 

where m is the number of nodes used to build the finite ele- 
ment model. The column vector 4; is called the ith mode 

shape, and describes the modal displacement (u, v) at each 
feature point due to the ith mode, while the row vectors Ui and 
vi are called the ith generalized feature vectors, and together 
describe the feature’s location in the modal coordinate system. 

Modal matrices @i and @Z are built for both images. Corre- 
spondences can now be computed by comparing mode shape 
vectors for the two sets of features; we will characterize each 
nodal point by its relative participation in several eigenmodes. 
Before actually describing how this matching is performed, it 
is important to consider which and how many of these eigen- 
modes should be incorporated into our feature comparisons. 

A. Modal Truncation 

For various reasons, we must select a subset of mode shape 
vectors (column vectors +i) before computing correspon- 

dences. The most obvious reason for this is that the number of 
eigenvectors and eigenvalues computed for the source and 
target images will probably not be the same. This is because 
the number of feature points in each image will almost always 
differ. To make the dimensionalities of the two generalized 
feature spaces the same, we will need to truncate the number 
of columns at a given dimensionality. 

Typically, we retain only the lowest-frequency 25% of the 

columns of each mode matrix, in part because the higher- 
frequency modes are the ones most sensitive to noise. Another 
reason for discarding higher-frequency modes is to make our 
shape comparisons less sensitive to local shape variations. 

We will also want to discard columns associated with the 
rigid-body modes. Recall that the columns of the modal matrix 
are ordered in terms of increasing eigenvalue. For a 2D prob- 
lem, the first three eigenmodes will represent the rigid body 
modes of two translations and a rotation. These first three col- 
umns of each modal matrix are therefore discarded to make the 
correspondence computation invariant to differences in rota- 
tion and translation. 

In summary, this truncation breaks the generalized ei- 
genspace into three groups of feature vectors: 

(32) 

where m and n are the number of features in each image. We 
keep only those columns that represent the intermediate ei- 
genmodes; thus, the truncated generalized feature space will be 
of dimension 2(p - 3) for a 2D problem. 

We now have a set of mode-truncated feature vectors: 

--T - 
“1 

5=[~&..lgp]= $ 7 (33) 

7.T 
_ m- 

where the two row vectors iii and Vi store the displacement 

signature for the ith node point, in truncated mode space. The 
vector iii contains the X, and Vi contains the y, displacements 

associated with each of the p - 3 modes. 

It is sometimes the case that a couple of eigenmodes have 
nearly equal eigenvalues. This is especially true for the low- 
order eigenmodes of symmetric shapes and shapes whose as- 
pect ratio is nearly equal to one. In our current system, such 
eigenmodes are excluded from the correspondence computa- 
tion because they would require the matching of eigenmode 
subspaces. 

B. Computing Correspondence Affinities 

Using a modified version of an algorithm described by 
Shapiro and Brady [33], we now compute what are referred to 
as the affinities zil between the two sets of generalized feature 
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vectors. These are stored in an a#kity matrix 2, where: 

The affinity measure for the ith and jth points, z~, will be zero 
for a perfect match and will increase as the match worsens. 
Using these affinity measures, we ean easily identify which 
features correspond to each other in the two images by looking 
for the minimum entry in each column or row of Z. Shapiro 

and Brady noted that the symmetry of an eigendecomposition 
requires an intermediate sign correction step for the eigenvec- 

tots 4,. This is due to the fact that the direction (sign) of eigen- 
vectors can be assigned arbitrarily. Readers are referred to [32] 
for more details about this. 

To obtain accurate correspondences the Shapiro and Brady 
method requires three simple, but important modifications. 
First, only the generalized features that match with the greatest 
certainty are used to determine the deformation; the remainder 
of the correspondences are determined by the deformation 
Itself as in our previous method. By discarding affinities 
greater than a certain threshold, we allow for tokens that have 
no strong match. Second, as described earlier, only the low- 
order 25% of the eigenvectors are employed, as the higher- 
order modes are known to be noise-sensitive and thus unstable 

[2]. Lastly, because of the reduced basis matching, similarity 
of the generalized features is required in both directions, in- 
stead of one direction only. In other words, a match between 
the ith feature in the first image and the jth feature in the sec- 
ond image can only be valid if zil is the minimum value for its 
row, and zji the minimum for its column. Image points for 
which there was no correspondence found are flagged 
accordingly. 

In cases with low sampling densities or with large deforma- 

lions, the mode ordering can vary slightly. Such cases require 
an extra step in which neighborhoods of similarly valued 
modes are compared to find the best match. 

C. Coping With Large Rotations 

As described so far. our affinity matrix computation method 
works best when there is little difference in the orientation 
between images. This is due to the fact that the modal dis- 
placements are described as vectors (u, v) in image space. 
When the aligning rotation for two sets of features is poten- 
tially large, the affinity calculation can be made rotation in- 
variant by transforming the mode shape vectors into a polar 
1:oordinate system. In two dimensions, each mode shape vector 
takes the form 

$i = [CL, . . . IAm, 1’1 ... V,] 
T 

(35) 

where the modal displacement at the ith node is simply (u;, vi). 
To obtain rotation invariance, we must transform each (u, v) 
component into a coordinate in (r, 0) space as shown in Fig. 4. 
The angle 8 is computed relative to the vector from the ob- 
ject’s centroid to the nodal point x. The radius r is simply the 
magnitude of the displacement vector u = (u, v). 

Once each mode shape vector has been transformed into 
this polar coordinate system, we can compute feature affinities 

as was described in the previous section. In our experiments, 
however, we have found that it is often more effective to com- 
pute affinities using either just the r components or just the 8 
components, i.e.: 

‘ij =Ipl,i -a2.jl~ * (36) 

In general, the r components are scaled uniformly based on the 
ratio between the object’s overall scale versus the Gaussian 
basis function radius 6. The 0 components, on the other hand, 
are immune to differences in scale, and therefore a distance 
metric based on 8 offers the advantage of scale invariance. 

D. Multiresolution Models 

When there are. possibly hundreds of feature points for each 
shape, computing the FXM model and eigenmodes for the full 
feature set can become non-interactive. For efficiency, we can 
select a subset of the feature data to build a lower-resolution 
finite element model and then use the resulting eigenmodes in 
finding the higher-resolution feature correspondences. The 
procedure for this is as follows. 

i 
I 

Fig. 4. Transforming a modal displacement vector u = (u. v) into (0, r). The 
angle 8is computed relative to the vector II from the object’s centroid c to the 
nodal point x. The radius r is simply the length of II. 

First, a subset of m feature points is selected to be finite 
element nodes. This subset can be a set of particularly salient 
features (i.e., corners, T-junctions, and edge midpoints) or a 
randomly selected subset of (roughly) uniformly spaced fea- 
tures. As before, a FEM model is built for each shape, eigen- 
modes are obtained, and modal truncation is performed as de- 
scribed in Section V.A. The resulting eigenmodes are then 
matched and sign-corrected using the lower-resolution models’ 
affinity matrix. 

With modes matched for the feature subsets, we now pro- 
ceed to finding the correspondences for the full sets of fea- 
tures. To do this, we utilize interpolated modal matrices which 
describe each mode’s shape for the full set of features: 

&=I&. (37) 
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The interpolation matrix k relates the displacement at the 
nodes (low-resolution features) to displacements at the higher- 
resolution feature locations Xi: 

(38) 

where each submatrix H(xi) is a 2 x 2m interpolation matrix as 
in (17). 

Finally, an affinity matrix for the full feature set is com- 
puted using the interpolated modal matrices, and correspon- 
dences are determined as described in the previous sections. 

VI. CORRESPONDENCE EXPERIMENTS 

In this section we will first illustrate the method on a few 
classic problems, and then demonstrate its performance on real 
imagery. In each example the feature points are treated inde- 
pendently; no connectivity or distinctiveness information was 
employed. Thus the input to the algorithm is a cloud of feature 
points, not a contour or 2D form. The mass and stiffness ma- 
trices were then computed, and the M-orthonorrnalized eigen- 
vectors determined. In cases where there were greater than 100 
feature points, a roughly uniform subsampling of features was 
used as input to the multiresolution matching scheme. Finally, 
correspondences were obtained as described above. 

The left-hand side of Fig. 5a shows two views of a flat, tree- 

like shape, an example illustrating the idea of skewed symme- 
try adapted from [ 131. The first 18 modes were computed for 
both trees, and were compared to obtain the correspondences 
shown in Fig. 5b. The fact that the two figures have similar 
low-order symmetries (eigenvectors) allows us to recognize 
that two shapes are closely related and to easily establish the 
point correspondences. 

(b) 

Fig. 5. Two flat tree shapes, one upright and one lying flat (a), together with 
the obtained correspondence (b). The 18 low-order modes were computed for 
each tree and then correspondences were determined using the algorithm 
described in the text. 

Fig. 6 shows another classic example [25]. Here we have 
pear shapes with various sorts of bumps and spikes. Roughly 
300 points were sampled regularly along the contour of each 
pear’s silhouette. Correspondences were then computed using 
the first 32 modes. Because of the large number of data points, 
only 2% of the correspondences are shown. As can be seen 
from the figure, reasonable correspondences were found. 

Fig. 6. Correspondence obtained for bumpy, warty, and prickly pears. 
Roughly 300 silhouette points were matched from each pear. Because of the 
large number of data points, only 2% of the correspondences are shown in 
this figure. 

Fig. 7a illustrates a more complex correspondence example, 
using real image data. Despite the differences between these 
two hands, the low-order descriptions are quite similar and 
consequently a very good correspondence is obtained, as 
shown in Fig. 7b. Roughly 400 points were sampled from each 
hand silhouette. Correspondences were computed for all points 
using the first 32 modes. As in the previous example, only 2% 
of the correspondences are shown. 

Figs. 7c and 7d show the same hand data after digital sur- 
gery. In Fig. 7c, the little finger was almost completely re- 
moved; despite this, a nearly perfect correspondence was 
maintained. In Fig. 7d, the second finger was removed. In this 
case a good correspondence was still obtained, but not the 
most natural given our knowledge of human bone structure. 

The next example, Fig. 8, uses outlines of three different 
types of airplanes as seen from a variety of different view- 
points (adapted from [45]). In the first three cases the descrip- 
tions generated are quite similar, and as a consequence a very 
good correspondence is obtained. Again, only 2% of the corre- 
spondences are shown. 

In the last pair, the wing position of the two planes is quite 
different. As a result, the best-matching correspondence has 
the Piper Cub flipped end-to-end, so that the two planes have 
more similar before-wing and after-wing fuselage lengths. De- 
spite this overall symmetry error, the remainder of the corre- 
spondence appears quite accurate. 

Our final example is adapted from [40] and utilizes multi- 
resolution modal matching to efficiently find correspondences 
for a large number of feature points. Fig. 9 shows the edges 
extracted from images of two different cars taken from varying 
viewpoints. Fig. 9a depicts a view of a Volkswagen Beetle 
(rotated 15” from side view), and Fig. 9b depicts two different 
views of a Saab (rotated 15” and 45”). If we take each edge 
pixel to be a feature, then each car has well over 1,000 feature 
points. 

As described in Section V.D, when there are a large number 
of feature points, modal models are first built from a roughly 
uniform subsampling of the features. Figs. 9c and 9d show the 
subsets of between 30 and 40 features that were used in build- 
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( ) 
a 

Fig. 7. (a) Two hand images, (b) correspondences between silhouette points, 
(c), (d) correspondences after digital surgery. Roughly 400 points were sam- 
pled from each hand silhouette. Correspondences were computed for all 
points using the first 32 modes. For clarity, only correspondences for key 
points are shown in this figure. 

different views slightly different planes 

quite different planes very different planes 

Fig. 8. Correspondence obtained for outlines of different types of airplanes. 
The first example shows the correspondences found for different views 
(rotated in 3D) of the same tighter plane. The others show matches between 
increasingly different airplanes. In the final case, the wing position of the two 
planes is quite different. As a consequence, the best-matching correspondence 
has the Piper Cub flipped end-to-end, so that the two planes have more simi- 
lar before-wing and after-wing fuselage lengths. Despite this overall symme- 
try error, the remainder of the correspondence appears quite accurate. 
Roughly 150 silhouette points were matched from each plane. Because of the 
large number of data points, only critical correspondences are shown in this 
figure. 

Fig. 9. Finding correspondence for one view of a Volkswagen (a) and a two 
views of a Saab (b) taken fmm [40]. Each car has well over 1,000 edge 
points. Note that both silhouette and interior points can be used in building 
the model. As described in the text, when there are a large number of feature 
points, modal models are first built from a uniform subsampling of the fea- 
tures as is shown in (c) and (d). In this example, roughly 40 points were used 
in building the finite element models. Given the modes computed for this 
lower-resolution model, we can use modal matching to compute feature 
matches for the higher-resolution. Correspondences between similar view- 
points of the VW and Saab are shown in (e), while in (f) a different viewpoint 
is matched {Ithe viewpoints differ by 30 degrees). Because of the large number 
of data points, only a few of the correspondences are shown in this figure. 

ing the finite element models. Both silhouette and interior 
points were used in building the model. 
The modes computed for the lower-resolution models were 
then used as input to an interpolated modal matching which 
paired off the corresponding higher-resolution features. Some 
of the strongest corresponding features for two similar views 
of the VW and Saab are shown in Fig. 9e. The resulting corre- 
spondences are reasonable despite moderate differences in the 
overall shape of the cars. Due to the large number of feature 
points, only a few of the strongest correspondences are shown 
in this figure. 

In Fig. 9f, the viewpoints differ by 30”. Overall, the result- 
ing correspondences are still quite reasonable, but this exam- 
ple begins to push the limits of the matching algorithm. There 
are one or two spurious matches; e.g., a headlight is matched 
to a sidewall. We expect that performance could be improved 
if information about intensity, color, or feature distinctiveness 
were included in our model. 
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VII. OBJECT ALIGNMENT, COMPARISON, 
AND DESCRIPTION 

An important benefit of our technique is that the eigen- 

modes computed for the correspondence algorithm can also be 
used to describe the rigid and non-rigid deformation needed to 
align one object with another. Once this modal description has 
been computed, we can compare shapes simply by looking at 
their mode amplitudes or-since the underlying model is a 
physical one-we can compute and compare the amount of 
deformation energy needed to align an object and use this as a 
similarity measure. If the modal displacements or strain energy 
required to align two feature sets is relatively small, then the 
objects are very similar. 

Recall that for a 2D problem, the first three modes are the 
rigid body modes of translation and rotation, and the rest are 
nonrigid modes. The nonrigid modes are ordered by increasing 
frequency of vibration; in general, low-frequency modes de- 
scribe global deformations, while higher-frequency modes 
describe more localized shape deformations. Such a global-to- 
local ordering of shape deformation allows us to select which 
types of deformations are to be compared. 

For instance, it may be desirable to make object compari- 
sons rotation, position. and/or scale independent. To do this, 
we ignore displacements in the low-order or rigid body modes, 
thereby disregarding differences in position, orientation, and 
scale. In addition, we can make our comparisons robust to 
noise and local shape variations by discarding higher-order 

modes. As will be seen later, this modal selection technique is 
also useful for its compactness, since we can describe devia- 
tion from a prototype in terms of relatively few modes. 

But before we can actually compare two sets of features, we 

first need to recover the modal deformations U that deform the 
matched points on one object to their corresponding positions 
on a prototype object. A number of different methods for re- 
covering the modal deformation parameters are described in 
the next section. 

A. Recovering Deformations 

We want to describe the deformation parameters 6 that 
take the set of points from the first image to the corresponding 

points in the second. Given that cbi and aZ have been com- 
puted, and that correspondences have been established, then 
we can solve for the modal displacements directly. This is 
done by noting that the nodal displacements U that align corre- 
sponding features on both shapes can be written: 

u, =x,,; -x2,;. (39) 

where xi,i is the ith node on the first shape and x2,i is its 
matching node on the second shape. 

Recalling that U = @U and using the identity of (IO), we 
find: 

ti=@-lU=@TMU. (40) 

Normally there is not one-to-one correspondence between 
the features, In the more typical case where the recovery is 

underconstrained, we would like unmatched nodes to move in 
a manner consistent with the material properties and the forces 
at the matched nodes. This type of solution can be obtained in 
a number of ways. 

In the first approach, we are given the nodal displacements 
Ui at the matched nodes, and we set the loads Ci at unmatched 
nodes to zero. We can then solve the equilibrium equation, 

KU = R, where we have as many knowns as unknowns. Modal 
displacements are then obtained via (40). This approach yields 
a closed-form solution, but we have assumed that forces at the 
unmatched nodes are zero. 

By adding a strain-energy minimization constraint, we can 
avoid this assumption. The strain energy can be measured di- 
rectly in terms of modal displacements and enforces a penalty 
that is proportional to the squared vibration frequency associ- 
ated with each mode: 

Since rigid body modes ideally introduce no strain, it is logical 
that their CQ = 0. 

We can now formulate a constrained least squares solution, 
where we minimize alignment error that includes this modal 
strain energy term: 

This strain term directly parallels the smoothness functional 
employed in regularization [35]. 

Differentiating with respect to the modal parameter vector 
yields the strain-minimizing least squares equation: 

u=[@T@+m2]-1 eu. (43) 

Thus we can exploit the underlying physical model to enforce 
certain geometric constraints in a least squares solution. The 
strain energy measure allows us to incorporate some prior 
knowledge about how stretchy the shape is, how much it re- 
sists compression, etc. Using this extra knowledge, we can 
infer what “reasonable” displacements would be at unmatched 
feature points. 

Since the modal matching algorithm computes the strength 
for each matched feature, we would also like to utilize these 
match-strengths directly in alignment. This is achieved by in- 
cluding a diagonal weighting matrix: 

(44) 

The diagonal entries of W are inversely proportional to the 
affinity measure for each feature match. The entries for un- 
matched features are set to zero. 

B. Dynamic Solution: Morphing 

So far, we have described methods for finding the modal 
displacements that directly deform and align two feature sets. 
It is also possible to solve the alignment problem by physical 
simulation, in which the finite element equations are integrated 
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over time until equilibrium is achieved. In this case, we solve 
for the deformations at each time step via the dynamic equa- 
tion (12). In so doing, we compute the intermediate deforma- 
tions in a manner consistent with the material properties that 
were built into the finite element model. The intermediate de- 
formations can also be used for physically based morphing. 

When solving the dynamic equation, we use features of one 

image to exert forces that pull on the features of the other im- 
age. The dynamic loads R(t) at the finite element nodes are 
therefore proportional to the distance between matched 

features: 

ri(t+At)=ri(t)+k(x,,i +ui(t)-x2,i), (45) 

where k is an overall stiffness constant and Ui(t) is the nodal 
displacement at the previous time step. These loads simulate 
“ratchet springs,” which are successively tightened until the 

surface matches the data [ 101. 
The modal dynamic equilibrium equation can be written as 

a system of 2m independent equations of the form: 

ii(t)+;iiiii(t)+w’iii(t)={(t), (46) 

where the {(t) are components of the transformed load vector 

i(t) = aTR(t). These independent equilibrium equations can 

be solved via an iterative numerical integration procedure 

(e.g., Newmark method [2]). The system is integrated forward 
in time until the change in load energy goes below a threshold. 
The loads ri(t) are updated at each time step by evaluating 

(45). 

C. Coping With Large Rotations 

If the rotation needed to align the two sets of points is po- 
tentially large, then it is necessary to perform an initial align- 
ment step before recovering the modal deformations. Orienta- 
tion, position, and (if desired) scale can be recovered in 
closed-form via quaternion-based algorithms described by 
Horn [ 121 or by Wang and Jepson [43].’ 

Using only a few of the strongest feature correspondences 
(recall that strong matches have relatively small values in the 
affinity matrix Z) the rigid body modes can be solved for di- 
rectly. The resulting additional alignment parameters are: 

PO position vector 

9 unit quaternion defining orientation 
S scale factor 
c, and c2 centroids for the two objects. 

Since this initial orientation calculation is based on only the 
strongest matches, these are usually a very good estimate of 
the rigid body parameters. 

The objects can now be further aligned by recovering the 

modal deformations G as described previously. As before, we 
compute virtual loads that deform the features in the first im- 
age towards their corresponding positions in the second image. 
Since we have introduced an additional rotation, translation, 

1. While all the examples reported here are in ZD, it was decided that for 
generality, a 3D orientation recovery method would be employed. For 2D 
orientation recovery problems, simply set z coordinates to zero. 

and scale, (39) will be modified so as to measure distances 
between features in the correct coordinate frame: 

1 
ui= --CRT x2;-po-cl]+c,-xli ( [ , 

s ’ J 
(47) 

where CR is a rotation matrix computed from the unit qua- 
ternion q. 

Through the initial aligment step, we have essentially re- 
duced virtual forces between corresponding points; the spring 
equation accounts for this force reduction by inverse trans- 
forming the matched points X2.i into the finite element’s local 

coordinate frame. The modal amplitudes ?r are then solved for 
via a matrix multiply (40) or by solving the dynamic system 

(12). 

D. Comparing Objects 

Once the mode amplitudes have been recovered, we can 
compute the strain energy incurred by these deformations by 
plugging into (41). This strain energy can then be used as a 
similarity metric. As will be seen m the next section, we may 
also want to compare the strain in a subset of modes deemed 
important in measuring similarity, or the strain for each mode 
separately. The strain associated with the ith mode is simply: 

(48) 

Since each mode’s strain energy is scaled by its frequency of 
vibration, there is an inherent penalty for deformations that 
occur in the higher-frequency modes. In our experiments, we 
have used strain energy for most of our object comparisons, 
since it has a convenient physical meaning; however, we sus- 
pect that (in general) it will be necessary to weigh higher- 
frequency modes less heavily, since these modes typically only 
describe high-frequency shape variations and are more sus- 
ceptible to noise. 

Instead of looking at the strain energy needed to align the 
two shapes, it may be desirable to directly compare mode 
amplitudes needed to align a third, prototype object with each 
of the two objects. In this case, we first compute two modal 

descriptions c, and e2 and then utilize our favorite distance 

metric for measuring the distance between the two modal 
descriptions. 

VIII. RECOGNITION EXPERIMENTS 
A. Alignment and Description 

Fig. 10 demonstrates how we can align a prototype shape 
with other shapes, and how to use this computed strain energy 
as a similarity metric. As input, we are given the correspon- 
dences computed for the various airplane silhouettes shown in 
Fig. 8. Our task is to align and describe the three different tar- 
get airplanes (shown in gray) in terms of modal deformations 
of a prototype airplane (shown in black). In each case, there 
were approximately 150 contour points used, and correspon- 
dences were computed using the first 36 eigenmodes. On the 
order of 50 strongest corresponding features were used as in- 
put to (43). 
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Fig. 10. Describing planes in terms of a prototype. The graphs show the 36 mode amplitudes used to align the prototype with each target shape. (a) shows that 
similar shapes can be aligned with little deformation; (b) shows that viewpoint changes produce mostly low-frequency deformations, and (c) shows that to align 
different shapes requires both low- and high-frequency deformations 



558 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 17, NO, 6, JUNE 1995 

The modal strain energy was computed using (41). 
Fig. lob depicts an airplane that is from the same class of 

airplanes as the prototype, but viewed from a very different 
angle. In this case, the graph of mode amplitudes shows a siz- 
able strain in the first few modes. This makes sense, since gen- 
erally the first six to nine deformation modes account for af- 
fine-like deformations that are similar to the deformations pro- 
duced by changes in viewpoint. 

The graphs in Fig. 10 show the values for the 36 recovered 
modal amplitudes needed to align or warp the prototype air- 

plane with each of the target airplanes. These mode amplitudes 
are essentially a recipe for how to build each of the three target 
airplanes in terms of deformations from the prototype. 

Fig. 10a shows an airplane that is similar to the prototype 
and is viewed from a viewpoint that results in a similar image 
geometry. As a consequence the two planes can be accurately 
aligned with little deformation, as indicated by the graph of 
mode amplitudes required to warp the prototype to the target 
shape.The final example, Fig. lOc, is very different from the 
prototype airplane, and is viewed from a different viewpoint. 
In this case, the recovered mode deformations are large in both 
the low- and high-frequency modes. 

This figure illustrates how the distribution of strain energy 
in the various modes can be used judge the similarity of differ- 
ent shapes, and to determine if differences are likely due pri- 
marily to changes in viewpoint. Fig. 10a shows that similar 
shapes can be aligned with little deformation; Fig. lob shows 
that viewpoint changes produce mostly low-frequency defor- 
mations, and Fig. 10~ shows that to align different shapes gen- 
erally requires deformations of both low and high 

frequency. 

B. Determining Relationships Between Objects 

By looking more closely at the mode strains, we can pin- 
point which modes are predominant in describing an object. 
Fig. 11 shows what we mean by this. As before, we can de- 
scribe one object’s silhouette features in terms of deformations 
from a prototype. In this case, we want to compare different 
hand tools. The prototype is a wrench, and the two target ob- 
jects are a bent wrench and hammer. Silhouettes were ex- 
tracted from the images, and thinned down to approximately 
80 points per contour. Using the strongest matched contour 
points, we then recovered the first 28 modal deformations that 
warp the prototype onto the other tools. A rotation, translation, 
and scale invariant alignment stage was employed as detailed 
in Section V.C. 

The strain energy attributed to each modal deformation is 
shown in the graph at the bottom of the figure. As can be seen 
from the graph, the energy needed to align the prototype with a 
similar object (the bent wrench) was mostly isolated in two 
modes: modes 6 and 8. In contrast, the strain energy needed to 
align the wrench with the hammer is much greater and spread 
across the graph. 

Fig. 12 shows the result of aligning the prototype with the 
two other tools using only the two most dominant modes. The 
top row shows alignment with the bent wrench using just the 
sixth mode (a shear) and then just the eighth mode (a simple 

prototype wrench 

bent wrench hammer 

;: / bent wrench ~ 

hammer ------ 

I 
3c 

mode number 

Fig. 11. Describing a bent wrench and a hammer in terms of modal &forma- 
tions from a prototype. wrench. Silhouettes were extracted from the images, 
and then the strongest corresponding contour points were found. Using these 
matched contour points, the first 28 modal deformations that warp the proto- 
type’s contour points onto the other tools were then recovered and the result- 
ing strain aenergy computed. A graph of the modal strain attributed to each 
modal deformation is shown at the bottom of the figure. 

bend). Taken together, these two modes do a very good job of 
describing the deformation needed to align the two wrenches. 

In contrast, aligning the wrench with the hammer (bottom row 
of Fig. 12) cannot be described simply in terms of a few de- 
formations of the wrench. 

By observing that there is a simple physical deformation 
that aligns the prototype wrench and the bent wrench, we can 
conclude that they are probably closely related in category and 
functionality. In contrast, the fact that there is no simple physi- 
cal relationship between the hammer and the wrench indicates 
that they are likely to be different types of object, and may 
have quite different functionality. 

C. Recognition of Objects and Categories 

In the next example (Figs. 13 and 14) we will use modal 
strain energy to compare three different prototype tools: a 
wrench, hammer, and crescent wrench. As before, silhouettes 
were first extracted and thinned from each tool image, and 
then the strongest corresponding contour points were found. 

Mode amplitudes for the first 22 modes were recovered and 
used to warp each prototype onto the other tools. The modal 
strain energy that results from deforming the prototype to 
each tool is shown below each image. Total CPU time per 
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mode 6 mode 8 6 and 8 

mode 11 mode 23 11 and 23 

Fig. 12. Using the two modes with largest strain energy to deform the proto- 
type wrench to two other tools. The figures demonstrate how the top two 
highe&strain modal deformations contribute to the alignment of a prototype 
wrench to the bent wrench and a hammer of Fig. 11. 

1.6 1.9 2.1 2.4 

13.0 15.3 60.8 98.7 

prototype 0.8 2.1 3.2 

3.9 4.8 5.1 8.2 

23.1 24.2 28.1 28.8 

Fig. 13. Using modal strain energy to compare a prototype wrench with dif- 
ferent hand tools. As in Fig. 11, silhouettes were first extracted from each tool 
image, and then the strongest corresponding contour points were found. Mode 
amplitudes for the first 22 modes were recovered and used to warp the proto- 
type onto the other tools. The modal strain energy that results from deforming 
the prototype to each tool is shown below each image in this figure. As can be 
seen, strain energy provides an good measure for similarity. 

trial (match, align, and compare) averaged 11 seconds on an 

HP 735 workstation. 
Fig. 13 depicts the use of modal strain energy in comparing 

a prototype wrench with 13 other hand tools. As this figure 
shows, the shapes most similar to the wrench prototype are 
those other two-ended wrenches with approximately straight 
handles. Next most similar are closed-ended and bent 
wrenches, and most dissimilar are hammers and single-ended 
wrenches. Note that the matching is orientation and scale in- 
variant (modulo limits imposed by pixel resolution). 
Fig. 14 continues this example using as prototypes the hammer 
and a single-ended wrench. Again, the modal strain energy that 
results from deforming the prototype to each tool is shown 

below each image. 

prototype 1.3 

3.5 5.1 5.7 18.2 

23.7 25.8 31.0 45.5 

Fig. 14. Using modal srrain energy to compare a crescent wrench with differ- 
ent hand tools, and a prototype hammer with different hand tools. Strain 
energies were computed as in Fig. 13. The modal strain energy that results 

from deforming the prototype to each tool is shown below each image. 

When the hammer prototype is used, the most similar 
shapes found are three other images of the same hammer, 
taken with different viewpoints and illumination. The next 
most similar shapes are a variety of other hammers. The least 
similar shapes are a set of wrenches. 

For the single-ended wrench prototype, the most similar 
shapes are a series of single-ended wrenches. The next most 
similar is a straight-handled double-ended wrench, and the 
least similar are a series of hammers and a bent, double-ended 
wrench. 

The fact that the similarity measure produced by the system 
corresponds to functionally similar shapes is important. It al- 
lows us to recognize the most similar wrench or hammer from 
among a group of tools, even if there is no tool that is an exact 
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match. Moreover, if for some reason the most-similar tool 
cannot be used, we can then find the next-most-similar tool, 
and the next, and so on. We can find (in order of similarity) all 
the tools that are likely to be from the same category. 

IX. CONCLUSION 

The advantages afforded by our method stem from the use of 
the finite element technique of Gale&in surface approximation 
to avoid sampling problems and to incorporate outside infor- 
mation such as feature connectivity and distinctiveness. This 
formulation has allowed us to develop an information- preserv- 
ing shape matrix that models the distribution of “virtual mass” 
within the data. This shape matrix is closely related to the 

proximity matrix formulation [30], [32], [33] and preserves its 
desirable properties, e.g., rotation invariance. In addition, the 
combination of finite element techniques and a mass matrix 
formulation have allowed us to avoid setting initial parameters, 
and to handle much larger deformations. 

Moreover, it is important to emphasize that the tmnsforma- 

tion to modal space not only allows for automatically estab- 
lishing correspondence between clouds of feature points; the 
same modes (and the underlying FEM model) can then be used 
to describe the deformations that take the features from one 
position to the other. The amount of deformation required to 
align the two feature clouds can be used for shape comparison 
and description and to warp the original images for alignment 
and sensor fusion. The power of this method lies primarily in 
its ability to unify the correspondence and comparison tasks 
within one representation. 

Finally, we note that the descriptions computed are canoni- 
cal and vary smoothly even for very large deformations. This 
allows them to be used directly for object recognition as illus- 
trated by the airplane and hand-tool examples in the previous 
section. Because the deformation comparisons are physically 
based, we can determine whether or not two shapes are related 
by a simple physical deformation. This has allowed us to iden- 
tify shapes that appear to be members of the same category. 
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