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Modal parameter tuning of an axisymmetric

resonator via mass perturbation
David Schwartz, Dennis Kim, Philip Stupar, Jeffrey DeNatale, and Robert T. M’Closkey, Member, IEEE

Abstract—This paper reports the permanent frequency mis-
match reduction of the primary wineglass modes in a planar
axisymmetric resonator by strategic mass loading. The resonator
consists of a set of concentric rings that are affixed to neighboring
rings by a staggered system of spokes. The outer layers of
spokes are targets for mass deposition. The paper develops
modified ring equations that guide the mass perturbation process
and despite the fact that the deposited mass and deposition
locations are quantized, it is possible to systematically reduce
the frequency difference of the wineglass modes to effective
degeneracy such that two modes cannot be distinguished in a
frequency response plot. Results on five resonators are reported
with nominal wineglass modes near 14 kHz, quality factors of
50 k, and frequency mismatches exceeding 30 Hz in some cases
but with post-perturbation mismatches smaller than 80 mHz.
Furthermore, it is also shown that the quality factors remain
unchanged.

Index Terms—Gyroscopes, microsensors, sensor phenomena
and characterization

I. INTRODUCTION

This paper develops an integrated testing and modeling ap-

proach to support the systematic and permanent modification

of the dynamics of a micromachined axisymmetric resonator

and culminates in the demonstration of modal frequency

matching of the first pair of “wineglass” modes. Instead of

ablation or electrostatic tuning, the resonator was designed to

accommodate two types of mass loading at specific locations

on the resonator. The interest in matching the modal frequen-

cies derives from the increase in the signal-to-noise ratio of

the angular rate estimate when the resonator is used as a

closed-loop coriolis vibratory gyro (CVG) under the condition

that the electrical noise associated with the pick-off signal

conditioning circuits is the dominant noise source [1]. Matched

modal frequencies also facilitate the operation of the resonator

as a whole angle gyroscope [2], [3]. The resonator introduced

in this paper is a bulk micromachined planar structure that

is axisymmetric under discrete rotations so, consequently, the

theory most relevant to this resonator are the results developed

for modifying the dynamics of rings. For example, [4], [5],

[6] address thin rings where it is assumed that the deviation

from perfect symmetry is small, so consequently the required

perturbations to the ring mass and stiffness to bring pairs of

modes to degeneracy are small compared to their nominal

values.
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Microscale resonators present special challenges, though,

because even with a sound theory to guide the perturbation

process, the physical means to create the perturbation will

often be constrained by the resonator size and compatibility

with its fabrication technique. The literature for MEM CVGs

is quite extensive so this brief review is limited to microscale

axisymmetric resonators and excludes designs such as tun-

ing forks. The most ubiquitous approach to modifying the

dynamics of microscale resonators is to employ electrostatic

force gradients to modify the effective stiffness associated

with one or more modes. For planar axisymmetric resonators

this approach has been successfully used for some time [7],

[8], and is still employed because of its simple and effec-

tive implementation [9], [10]. More recently, a number of

fabrication results have been published on microscale three-

dimensional resonators. The effects of electrostatic biasing or

outright modal frequency tuning has been reported for hemi-

spheres [11], [12], hemitoroids [13], [14], and cylinders [15].

Few results, however, have been reported on the permanent

modification of microscale resonators. This is understandable

since the fabrication of the resonator itself, much less the

development of post-fabrication perturbation techniques, often

requires a great deal of innovation.

Permanent modification of the resonator dynamics still

holds appeal if only to eliminate the biasing electronics

that must produce stable biasing potentials over the sensor

operating environment, especially with regard to temperature.

There is also the underlying concern that if a mistake is made,

it cannot simply be reversed as in the case of electrostatic

tuning. Laser ablation has been reported in [16] for reducing

the frequency mismatch of a ring resonator, but it appears

to be at the expense of the quality factors. Recently, [17]

demonstrated a large reduction in frequency mismatch by

ablating mass from the rim of a hemispherical resonator. The

quality factors were not adversely effected and although the

mismatch was reduced by two orders of magnitude, further

reduction would still be necessary to take full advantage of

the mechanical gain afforded by its high quality factors. Mass

deposition, as compared to mass removal, is appealing because

potential damage to, or contamination of, the resonator can

be avoided and until now no results have been reported in

which mass deposition has been used to modify microscale

axisymmetric resonators.

This paper presents a systematic approach for vastly reduc-

ing the detuning frequency of the n = 2 pair of modes by

strategic mass loading. The resonator introduced in Sec. II

accepts the deposition of 75µm diameter precision solder

spheres for coarse point mass perturbations and individual
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droplets of silver particle-loaded ink for fine point mass pertur-

bations. In contrast to [5] and [6] which have no constraints

on the location and amount of the deposited/removed mass,

the present resonator has a fixed number of locations where

mass can be deposited and furthermore this mass is quantized

and cannot be deposited in arbitrarily fine increments. The

perturbation masses are consistent enough, however, so that

their effect on the dynamics of the structure are readily

predictable from the modified ring models developed in this

paper. The novel resonator design has enough freedom in

the deposition locations to render the n = 2 wineglass

modes effectively degenerate despite the quantized deposition

locations and mass. In other words, after the deposition is

complete, the difference in the modal frequencies is less than

the mechanical bandwidth of the modes so two distinct peaks

cannot be discerned in a frequency response plot. It is also

shown that the resonator quality factors at the conclusion of

the mass deposition remain at their initial values, typically

near 50 k for the n = 2 modes that are approximately 14 kHz

(3 dB bandwidth of 0.3 Hz). The performance of several tuned

resonators operated in a force-to-rebalance mode are reported

in [18] and show that the unpackaged prototypes can achieve

0.1 deg/hr minimum rate bias instability and an ARW figure

of 0.02 deg/
√

hr. Only a single voltage bias applied to the

resonator is required for sensor operation.

The paper is organized as follows. Sec. II discusses the

design and fabrication of the resonator, the mass perturbations

and the resonator testing. Sec. III reviews a published model

for a ring resonator and under an appropriate assumption,

further manipulates it into an intuitive form that relates the

pre- and post-perturbation frequency detuning values and anti-

node orientations as a function of the point mass perturbations

and their location on the resonator. The quantization of the

deposited mass leads to the notion of sensitivity parameters

and it is described how to empirically estimate these quantities.

This section also discusses the parametric modeling of the

resonator from multi-channel frequency data. Although the

parametric modeling is only superficially discussed because

details have been reported elsewhere, it is an integral piece of

the tuning algorithm since the modal frequencies and anti-node

parameters for a given resonator are derived from analysis of

the model. Sec. IV follows a resonator with an initial n = 2
detuning frequency of over 25Hz through a sequence of three

mass depositions that ultimately reduce the detuning to about

60mHz. Deposition experiments with another four resonators

are discussed in Sec. V, and Sec. VI concludes the paper.

II. RESONATOR DESIGN AND FABRICATION

The resonator used for the mass deposition and frequency

mismatch reduction study is depicted in Fig. 1. The resonator

consists of nine concentric rings, each 20µm in width, which

are connected to their neighbors by a staggered system of

spokes. The diameter of the outermost ring is 10 mm. The

outer ring is surrounded by twenty four discrete electrodes,

each of which subtends a 15◦ arc. Any electrode can be config-

ured for in-plane electrostatic actuation or capacitance sensing.

The gap between the electrodes and outer ring sidewall is

S  electrodes

S  electrodes

D  electrodes

D  electrodes

2

2

1

1

angle reference

Fig. 1. Isometric view of the resonator with 96 large spokes arranged at
four different radii. Mass deposited on the large spokes approximates a point-
mass perturbation of the resonator. There are 24 circumferential electrodes,
however, only those used for actuation (D1 and D2 electrodes) and those
used for sensing (S1 and S2 electrodes) are shown. The centroid of the S1

electrode provides a physical reference on the resonator and all angles are
measured counterclockwise with respect to this reference.

electrodes

reservoirs

solder sphere pads

Fig. 2. Detail of resonator showing circumferential electrodes, and reservoirs
and gold pads on the large spokes. The central “stem” of the resonator that
is bonded to the base wafer is a visible at the top of the photograph.

20µm. The four outermost layers of spokes are larger and

are designed to accommodate mass loading of the structure at

these points. Furthermore, in the four outer layers, the spokes

are spaced 15◦ from their neighbors so there are 24 spokes per

layer. The outermost layer of spokes have shallow reservoirs

etched into them, whereas the remaining large spokes have a

130µm diameter gold film pad, 1µm thick, deposited on the

top surface. In all, there are 24 reservoirs and 72 gold pads.

The reservoirs and pads are visible in Fig. 2.

The modeshape of an n = 2 mode is shown in Fig. 3. The

deflection of each layer of mass perturbation spokes is close

to the elliptical deflection experienced by a single thin ring,

however, the deflection amplitude associated with each layer

is distinct and in fact increases the further inboard the spoke.

The differences in amplitude produce the different sensitivity

parameters discussed in Sec. III.
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Fig. 3. Resonator top view showing the mode shape associated with an
n = 2 mode. The five outer rings where the mass perturbation spokes are
located largely conform to the elliptical shape associated with an isolated thin
ring although the deflection amplitude of each outer ring is distinct from the
others.

A. Resonator Fabrication

The resonator is fabricated using a bonded wafer approach.

The resonator wafer is 270um thick (111) Si. The base

wafer is 450um thick (100) Si. A schematic of the process

sequence is shown in Fig. 4. The base wafer is etched to

create recessed gaps for clearance of the resonator rings and

thermally oxidized for electrical isolation. Openings in the

oxide for substrate electrical contact are etched in the oxide

layer, and Au metal deposited for the wafer-wafer bonding

and electrical connection to the base wafer. Separately, the

resonator wafer is patterned with the mating bond metal

pattern. The resonator and base wafers are bonded using

an aligned Au/Au thermocompression bond process. The Au

pads for solder deposition were patterned on the resonator

wafer surface of the bonded structure using a deposition and

liftoff process. Definition of the resonator rings and reservoir

structures is then done using a two-level mask and DRIE

etching, see Fig. 5. This uses an oxide layer on the Si opened at

the reservoir locations. A resist mask is subsequently applied

and patterned to define the resonator structure. The oxide layer

is etched in these locations, and a partial Si DRIE is performed

using the same resist mask. The resist is then stripped, and the

DRIE etch continued using the oxide mask to complete the

etch of the resonator rings through the top wafer thickness,

while simultaneously etching the shallow reservoirs into the

Si.

B. Mass Perturbations

Two types of mass perturbations are used to modify the

resonator dynamics. Coarse perturbations are achieved by de-

positing and reflowing 75µm diameter SnAgCu solder spheres

(Profound Material Technology) onto the gold pads. Fine

perturbations are achieved by depositing individual droplets

Fig. 4. Process flow for resonator fabrication.

Fig. 5. Reservoir etch and final ring release.

of silver nano-particle-loaded ink (Cima NanoTech silver

conductive ink) into the etched reservoirs. Placement of the

solder spheres is achieved with a wire bonder ceramic capillary

while individual 60µm diameter droplets of ink are dispensed

using a MicroFab Technologies printhead. Photos of a reflowed

solder sphere and a reservoir with ink are shown in Fig. 6.

The effect on the resonator dynamics of the thermal expansion

mismatch of the dissimilar metals has not been quantified.

C. Resonator Testing

The dynamic properties of the n = 2 modes are of particular

interest so the forcer and pick-off electrodes are customized to

excite and measure the response of these modes. Each sensing

pick-off is created by combining three adjacent electrodes into

a single electrode that subtends approximately 45 degrees. The

centroids of the two pick-offs themselves subtend 45 degrees

as shown in Fig. 1. The pick-offs are denoted as the S1 and

S2 electrodes. The electrodes that are antipodal to the pick-

offs are used as electrostatic forcers, shown in Fig. 1 as the

D1 and D2 electrodes. The resonator is biased up to 40 volts

and the forcer electrode potentials are specified about a mean

of 0 volts. The pick-off electrodes are buffered by high-gain

trans-resistance amplifiers that hold the pick-off electrode at

ground potential. The current induced on the electrode by a
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Fig. 6. Top: Reflowed solder sphere on gold pad. Bottom: Silver particle
ink deposited into reservoir.

change in the resonator-electrode gap is amplified into a low

impedance voltage. All unused electrodes are held at either

ground potential or at the gyro bias for the duration of the

deposition experiments.

Resonators are tested in a vacuum chamber at a pressure

lower than 1mT to minimize squeeze film damping. In a

typical experiment the forcer electrodes are directly driven

by test signals generated from a digital signal processor. The

subsequent response of the resonator is measured as the trans-

resistance amplifier output voltage. Multi-channel test data are

recorded and analyzed to generate frequency responses using

standard auto- and cross-spectral estimation. The test signals

are usually chosen to be band-limited chirps with energy

concentrated around the modes of interest. Fig. 7 shows a

broadband frequency response of a single channel.

III. RESONATOR MODELING AND MASS DEPOSITION

ALGORITHM

The effect of point mass perturbations on the modal fre-

quencies and anti-nodes of a thin ring are first reviewed

and a relationship between the frequency detuning (difference

in modal frequencies) and anti-node orientations before and

after the mass perturbation is derived. This expression is used

in a search procedure for enumerating the mass deposition

locations that reduce the detuning below a specified threshold.

This process is iteratively applied until the frequency detuning

is smaller than the resonance bandwidth. Since it is necessary

to measure the frequency detuning and anti-node orientations,

this section also presents a systematic approach for extracting

Fig. 7. Broadband frequency response showing the in-plane n = 1, n = 2,
n = 3 and n = 4 modes near 6.5 kHz, 13.5 kHz, 24.5 kHz, and 29 kHz,
respectively. The floor is due to stray capacitance.

these parameters from a model that is fit to multi-channel

frequency response data. Since the model is developed from

the perspective of the built-in electrodes, the electrode arrange-

ment around the resonator establishes a physical reference for

the anti-node orientations as well as the angular position of

the mass deposition locations.

A. Mass Perturbation Model for a Ring

The relationship between the modal frequencies {ω1, ω2}
and anti-node orientations {ψ1, ψ2} of the in-plane modes

with n = 2 modal diameters in a perturbed ring resonator

are reproduced below from [6],

tan 4ψ1 =

∑

kmk sin 4φk
∑

kmk cos 4φk

ω2
1 = ω2

0

(

(1 + α2
2)M0

M(1 + α2
2)− (1− α2

2)
∑

kmk cos 4(φk − ψ1)

)

ω2
2 = ω2

0

(

(1 + α2
2)M0

M(1 + α2
2) + (1− α2

2)
∑

kmk cos 4(φk − ψ1)

)

(1)

where mk, k = 1, . . . , Nm, represent the perturbing point

masses, and φk the corresponding angular location on the

ring relative to a ring-fixed coordinate system, M0 is the

nominal ring mass and M = M0 +
∑

kmk is the perturbed

ring mass. Furthermore, ω0 represents the natural frequency of

the degenerate modes of the unperturbed perfect ring and α2

the amplitude ratio of the radial and tangential displacement

for modes with n = 2 modal diameters. The notation in [6]

is largely retained, and although the n = 2 case is studied

exclusively in this paper, the results developed below can be

extended to any pair of nominally degenerate modes. The anti-

node orientation associated with the ω1 mode is is given by

ψ1 and the analysis in [6] assumes ψ2 = ψ1 + 45◦.
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The present paper uses (1) as a starting point but manip-

ulates these equations into a form that is more conducive

to inserting parameters that can be readily determined from

experiments. The analysis will be developed for a ring and

then extended to the resonator of Sec. II. The following is

derived from (1),

ω2
0

ω2
2

− ω2
0

ω2
1

=
2(1− α2

2)

M0(1 + α2
2)

Nm
∑

k=1

mk cos 4(φk − ψ1)

=
2(1− α2

2)

M0(1 + α2
2)

[(

Nm
∑

k=1

mk cos 4φk

)

cos 4ψ1

+

(

Nm
∑

k=1

mk sin 4φk

)

sin 4ψ1

]

.

(2)

The left-hand side can be rewritten as ω2
0(ω1 − ω2)(ω1 +

ω2)/(ω
2
2ω

2
1) and at this point a reasonable approximation is

made: ω1/ω0 ≈ ω2/ω0 ≈ 1 so that ω2
0(ω1 + ω2)/(ω

2
2ω

2
1) ≈

2
ω0

. This approximation is justified since the original frequen-

cies and the final tuned frequencies are within 0.2% for the

resonators considered in this paper. Furthermore, when (2)

is adapted for purposes of developing an iterative tuning

algorithm, there are other error sources associated with experi-

mentally measured quantities that dominate the uncertainty of

the predicted frequency split. Thus, for resonators in which

difference in perturbed frequencies is orders of magnitude

smaller than their nominal values, we may assume equality

with the understanding that this relation predicts the frequency

difference to within a few tenths of a percent,

ω1 − ω2 = ω0
1− α2

2

M0(1 + α2
2)

[(

Nm
∑

k=1

mk cos 4φk

)

cos 4ψ1

+

(

Nm
∑

k=1

mk sin 4φk

)

sin 4ψ1

]

.

(3)

The solder sphere or ink deposition described in Sec. II pro-

vides a quantized amount of mass, though, so (3) is modified

such that each mass mk is replaced by the fixed mass quanta

denoted m0,

ω1−ω2 = γ

(

Nm
∑

k=1

cos 4φk

)

cos 4ψ1+γ

(

Nm
∑

k=1

sin 4φk

)

sin 4ψ1,

(4)

where γ = ω0m0(1 − α2
2)/(M0(1 + α2

2)) is a sensitivity

parameter that is associated with the quantized mass m0.

Sec. IV-A describes how γ is experimentally estimated. Given

an initially perfect ring resonator with nominal n = 2 modal

frequencies equal to ω0, (4) and the tan 4ψ1 relation in (1)

can be used to predict the difference in modal frequencies and

the anti-node orientations after perturbing the ring with Nm
masses of mass m0 at locations {φk}, k = 1, . . . , Nm.

The inverse trimming problem in which an imperfect ring

is to be mass loaded so that the modal frequency difference is

eliminated is also governed by (4). In this case, the initial

imbalance parameters associated with the n = 2 pair of

modes, denoted σc and σs, are defined to be

σc = ω0
1− α2

2

M0(1 + α2
2)

Nm
∑

k=1

mk cos 4φk

σs = ω0
1− α2

2

M0(1 + α2
2)

Nm
∑

k=1

mk sin 4φk

(5)

so that (3) can be written

ω1 − ω2 = σc cos 4ψ1 + σs sin 4ψ1. (6)

Also note tan 4ψ1 = σs/σc. The imbalance parameters can be

estimated from measurements of the mismatched frequencies

and antinode orientation, in other words,

σc = (ω1 − ω2) cos 4ψ1

σs = (ω1 − ω2) sin 4ψ1.
(7)

Although (5) appears to imply the that imbalance parameters

are a consequence of mass perturbations, in practice, the

imbalance parameters are defined using (7) after the modal

frequencies and anti-node orientations are measured so they

include both mass and stiffness contributions to the frequency

mismatch. Subsequent mass perturbation of the resonator will

modify the frequency mismatch according to

ω̃1 − ω̃2 =

(

σc + γ

Nm
∑

k=1

cos 4φk

)

cos 4ψ̃1

(

σs + γ

Nm
∑

k=1

sin 4φk

)

sin 4ψ̃1

(8)

where ω̃1 − ω̃2 represents the post-perturbation difference in

modal frequency and where the new anti-node orientation ψ̃1

satisfies

tan 4ψ̃1 =
σs + γ

∑Nm

k=1 sin 4φk

σc + γ
∑Nm

k=1 cos 4φk
. (9)

A compact expression relating the pre- and post-perturbation

frequency differences and anti-node orientations can be de-

rived from (8) and (9),

∆̃ej4ψ̃1 = ∆ej4ψ1 + γ

Nm
∑

k=1

ej4φk (10)

where ∆ = ω1−ω2 and ψ1 are the pre-perturbation frequency

difference and anti-node orientation, respectively, and ∆̃ =
ω̃1− ω̃2 and ψ̃1 are the post-perturbation frequency difference

and anti-node orientation, respectively, and j =
√
−1.

The objective is to eliminate the imbalance parameters by

judicious choice of the quantity of added mass and their

corresponding locations, in other words, it is desired to select

φk such that

σc + γ

Nm
∑

k=1

cos 4φk = 0

σs + γ

Nm
∑

k=1

sin 4φk = 0

(11)

It is generally not possible to achieve (11), though, because

of the quantized mass and quantized deposition locations,
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however, the fine and coarse mass perturbations introduced

in Sec. II-B do allow reduction of the modal frequency

mismatch to such a degree that the benefits of degenerate

modal frequencies are fully realized.

B. Extending the Ring Mass Perturbation Model

The frequency difference and anti-node orientation rela-

tion (10) can be extended from a simple ring to the resonator in

Sec. II. The issue is that the sensitivity parameters associated

with the n = 2 modes depend on which layer (radius) of

the nested spokes the mass deposition is performed. The

outboard spokes accept the ink droplet perturbations and the

sensitivity associated with a single droplet on an outboard

spoke is denoted γ1. Similarly, the next inboard layer of spokes

that accept the solder sphere deposition possess sensitivity

γ2 with regard to a single solder sphere. The remaining two

layers of spokes that accept solder sphere deposition possess

sensitivities γ3 and γ4, with γ4 being associated with the most

inboard layer of large spokes. Thus, (10) is modified to

∆̃ej4ψ̃1 =∆ej4ψ1 + γ1

N1
∑

k=1

ej4φ
(1)
k + γ2

N2
∑

k=1

ej4φ
(2)
k

+ γ3

N3
∑

k=1

ej4φ
(3)
k + γ4

N4
∑

k=1

ej4φ
(4)
k .

(12)

where N1 is number of ink droplets deposited at positions

φ
(1)
k , N2 is the number of solder spheres deposited with

sensitivity γ2 at positions φ
(2)
k and so forth. Although ad hoc,

this extension performs very well in practice and relies on the

deflection of the various layers of spokes for a given mode to

conform to the mode shape associated with the ring, albeit with

different relative amplitudes, and, hence, different sensitivity

parameter values, but with the same anti-node orientation.

C. Estimating ψ and ∆ from Frequency Domain Models

Estimates of ω1, ω2, and ψ1 are required to guide the mass

deposition process. A model-based approach for extracting this

information from empirical frequency response data is now

described and offers an efficient alternative to estimating the

nodes/anti-node with a vibrometer, for example. The n = 2
anti-nodes subtend an approximately 45◦ angle between them

so the forcer and pick-off electrode configuration shown in

Fig. 1 are arranged to optimally excite and sense the n = 2
pair. This forcer and pick-off configuration guarantees that a

two-mode model can be fit to the data even when the modal

frequencies are degenerate, that is ∆ = 0.

The two forcer electrodes and two pick-off electrodes are

used to generate a two-input/two-output empirical frequency

response of the resonator dynamics in a narrow frequency band

encompassing the n = 2 modes. Although a single channel of

measurement data can be adequate for estimating the modal

frequencies when their difference is sufficiently large, it is not

possible to uniquely determine the anti-node orientations, thus,

additional independent forcers and pick-offs are necessary

to resolve the anti-nodes. Furthermore, when the frequency

mismatch is relatively small, a single channel of measurement

data is not enough to discriminate both modes, especially

if one mode dominates the measurement channel. Once the

two-input/two-output frequency response data is acquired, the

following transfer function model is fit to this data

ŷ = (Ms2 + Cs+K)−1H(s)f̂ (13)

where ŷ and f̂ are Laplace transforms of the two-channel

pick-off signals and two-channel forcer voltage signals, re-

spectively, M , C, and K are positive definite mass, damping

and stiffness matrices, respectively, and s is the Laplace

transform variable. It is also necessary to introduce a low-

order polynomial transfer function, denoted H , to capture

the effects of buffer and signal conditioning dynamics and

any other out-of-band resonator dynamics that may contribute

phase and magnitude offsets in the frequency response data

in a neighborhood of the n = 2 modes. The n = 2 modes

are well-isolated from other modes in the resonator so M ,

C, and K can be taken to be 2 × 2 matrices and this leads

to a very convenient formulation of an optimization problem

to determine the second order model matrices {M,C,K}.

The reader is referred to [19] where the parameter fitting is

discussed in detail and to [20] where it is applied to the modal

analysis of another axisymmetric resonator.

The n=2 mode shapes of the outermost ring of resonator in

Sec. II are closely approximated by those of a simple ring,

which are

wk(θ, t) =u0α2 cos (2 (θ − ψk)) sin(ωkt)

uk(θ, t) =u0 sin (2 (θ − ψk)) sin(ωkt)
, k = 1, 2 (14)

where wk and uk are the radial and tangential displacements

with respect to the at-rest circular shape at a location θ on the

ring [6]. The amplitude of the tangential motion is denoted

u0 and α2 ≈ 2 for high aspect ratio rings. It is assumed that

the pick-off electrodes sense only the radial component of the

outer ring displacement and since each electrode also subtends

a 45◦ arc, it can be shown that for the n = 2 modes, the small

radial displacement averaged over the electrode arc is 2
√
2/π

times the radial displacement at the centroid of the electrode

and that this scaling is independent of ψi. Thus, the centroids

of the pick-off electrodes define a physical coordinate system

for the resonator and establish the coordinates in which the

{M,C,K} parameters in (13) are defined.

The objective is to determine ψk from the identified model

parameters. The modal frequencies satisfy

(

−ω2
kM +K

)

vk = 1, k = 1, 2.

where {v1,v2} are the corresponding normalized eigenvectors

and the anti-node orientations, ψi, can be determined from

these eigenvectors. Consider the case in which the resonator

is undamped and unforced. If the initial state has zero velocity

and is a scalar multiple of one of the two generalized eigen-

vectors of M and K, then the free response will be a scalar

multiple of that eigenvector, i.e.

y(t) = y0 cos(ωkt)vk k ∈ 1, 2 (15)

where y0 is the scalar displacement magnitude of the initial

state. On the other hand, the time response y(t) can also be
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Fig. 8. Empirical frequency response magnitude of the resonator derived from
narrow band chirp tests (black points) versus the model frequency response
(thin gray line). This resonator is taken through a series of mass deposition
steps described in Sec. IV in order to reduce the initial frequency detuning
value ∆ = 25.41Hz.

found by using the approximate mode shape,

y(t) =
2
√
2

π
ke

[

wk(θ1, t)
wk(θ2, t)

]

=
2
√
2

π
keα2u0

[

cos(2(θ1 − ψk))
cos(2(θ2 − ψk))

]

cos(ωkt)

=
2
√
2

π
keα2u0

[

cos(2θ1) sin(2θ1)
cos(2θ2) sin(2θ2)

] [

cos(2ψk)
sin(2ψk)

]

cos(ωkt).

(16)

where ke represents the pick-off electrode displacement-to-

voltage gain, and θ1 and θ2 represent the centroids of the

S1 and S2 pick-off electrodes with respect to a resonator-

fixed coordinate system. As previously described, the angle

reference passes through the centroid of the S1 electrode (see

Fig. 1) so θ1 = 0◦ and θ2 = 45◦ radians. Equating (15)

and (16) yields,

ψk =
1

2
tan−1

(

e2 · vk
e1 · vk

)

(17)

where the standard unit vectors are defined e1 =
[

1 0
]T

and

e2 =
[

0 1
]T

, and · is the scalar product. Thus, estimates for

the anti-node orientations in addition to the modal frequencies

can be obtained from the identified frequency domain model

parameters.

A detailed example demonstrating the systematic reduction

of an initial frequency mismatch of 25.41 Hz to 0.06 Hz

is given in Sec. IV. The frequency response of the unper-

turbed resonator that is featured in this example is shown

in Fig. 8. Overlaid on the data is the frequency response of

the identified model (13) and analysis of this model reveals

ω1 = 13530.08Hz, ω2 = 13504.67Hz, ψ1 = 33.5◦.

TABLE I
SUMMARY OF SOLDER SPHERE SENSITIVITY EXPERIMENTS

Sensitivity parameter Mean (Hz) Standard deviation (Hz)

γ2 -2.77 0.13

γ3 -3.30 0.12

γ4 -3.74 0.16

IV. DEMONSTRATION OF MODAL FREQUENCY

MISTMATCH REDUCTION

A. Estimating the Mass Perturbation Sensitivities

The sensitivity of the modal properties to ink or solder

sphere deposition are experimentally determined. Three res-

onators were chosen on which twelve individual solder sphere

depositions (four per resonator) were performed in order to

estimate γ2, γ3 and γ4. It is necessary to establish a labeling

convention for the modal frequencies since the sensitivity

parameters are determined with respect to this convention. As

suggested by the test data in Sec. III-C, the higher frequency

mode is labeled ω1 with corresponding anti-node orientation

ψ1. Thus, the detuned frequency parameters are defined such

that ∆ = ω1 − ω2 > 0. With this convention, all mass

loading perturbations will have an associated sensitivity that is

negative, i.e. γk < 0. For example, in order to determine γ2,

a single solder sphere is deposited on one of the spokes that

comprises the most outboard spoke layer that accepts solder

spheres. The pre- and post-deposition parameters, {∆, ψ1} and

{∆̃, ψ̃1}, respectively, are measured and (12) is solved for γ2,

∆̃ej4ψ̃1 = ∆ej4ψ1 + γ2e
j4φ

(2)
1 (18)

where φ
(2)
1 is the location of the spoke where the deposition

is performed. In the exceptional case where φ
(2)
1 = ψ1, then

ψ̃1 = ψ1 and sensitivity reduces to γ2 = ∆̃−∆. In practice,

however, ψ1 will not bisect a spoke, so a real value of γ2 is

determined according to a least square error criterion. Tests

with a single solder sphere were carried out on four separate

occasions to estimate γ2. Analogous tests on different spoke

layers were performed for identifying the remaining solder

sphere sensitivities γ3 and γ4 as well as the sensitivity of a

single ink droplet. The droplet sensitivity γ1 was estimated to

be approximately 0.05Hz/droplet but there was a large spread

due to the fact that as the ink deposition system was operated,

the silver particles would settle and produce droplets with

more mass. The solder sphere estimated sensitivities exhibited

much greater consistency and the results of these tests are

summarized in Table I and show that the sensitivity is inversely

proportional to the spoke’s radial location. Although this result

appears counterintuitive, finite element analysis reveals that

for the four layers of spokes where mass deposition can take

place, the spoke velocity is actually larger the more inboard

the spoke position. This is due to the fact that the higher

density of spokes in the outer rings stiffens the structure so

that among the four spoke layers where mass is deposited, the

most outboard spokes actually have the smallest velocity.
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B. Mass Deposition Procedure Applied to a Resonator

The resonator with the as-fabricated frequency response

shown in Fig. 8 is taken through a series of mass deposi-

tion steps to reduce ∆ from its initial value of 25.41 Hz.

The quantized angular locations of the mass perturbations

coupled with the 4φ dependency, means that there are only

24 unique perturbation positions as far as the n = 2 modes

are concerned. Of these positions, 18 are associated with the

solder spheres and the remaining 6 are associated with ink

deposition. The general strategy is to perform two rounds of

solder sphere deposition to reduce ∆ to approximately 1 Hz

so that subsequent ink deposition can be used to reduce ∆
below 100 mHz. For the present resonator, it was desired

to reduce ∆ by about 12 Hz after the first deposition step.

This can be achieved with four solder spheres based on the

identified sensitivities, so (12) is used as follows: all possible

combinations of four solder spheres are evaluated for the nine

closest spokes to the identified ψ1 axis as shown in Fig. 9. In

other words, the higher frequency mode is preferentially mass-

loaded and will be effected to a greater degree than the lower

frequency mode. The computational burden to enumerate these

choices is minimal because it requires evaluating (12) 94

times and additional criteria can be used to further down-

select from the deposition scenarios that yield a reduction of

at least 12 Hz (for example, the desire to distribute the mass as

symmetrically as possible). The final selection is 3 depositions

on the inner-most spokes (corresponding to sensitivity γ4)

at the following positions φ
(4)
1 = 22.5◦, φ

(4)
2 = 37.5◦, and

φ
(4)
3 = 37.5◦, and one solder sphere with sensitivity γ2 at

position φ
(2)
1 = 37.5◦. Note that due to the 4φ dependency,

the solder spheres are arranged in a compass-points pattern

to minimize the imbalance of forces exerted on the resonator

stem due to the deposition. The 4φ dependency also permits

the specification of up to four solder spheres at the same

angular location because they can be physically arranged as

φ + n90◦, n = 0, 1, 2, 3. This feature is exploited in the

first deposition because φ
(4)
2 = φ

(4)
3 . The predicted detuning

frequency ∆̃ after the deposition is 12.86Hz and the measured

value is 13.08 Hz. The solder sphere positions and pre- and

post-deposition frequency responses are shown in Fig. 9 where

ψ1 = 33.5◦ and ψ̃1 = 32.0◦.

The second step of mass deposition also employs four solder

spheres and the objective is to reduce the frequency detuning

to less than 1 Hz. The second step does not exploit the fact that

the resonator has already been modified; the modal frequencies

and anti-nodes are simply measured and another deposition

scenario is selected. Thus, ψ1 = 32.0◦ and the next four

solder sphere deposition sites are selected to be φ
(4)
1 = 37.5◦,

φ
(3)
1 = φ

(3)
2 = φ

(3)
3 = 30◦. Fig. 10 shows the cumulative

depositions and compares the empirical frequency responses

measured at the conclusion of the first deposition to those

measured after the second deposition. The predicted frequency

detuning after this second round of mass deposition is 0.19Hz

compared to the measurement of 1.06 Hz. After the second

round of deposition, the anti-node orientation is estimated to

be ψ̃1 = 14.7◦.

The final deposition round uses the silver particle loaded

angle
reference

ψ̃1

ψ1

φ
(4)
1

φ
(4)
2

φ
(4)
3

φ
(2)
1

Fig. 9. Top: The ψ1 anti-node associated with the higher frequency mode
is shown for the as-fabricated resonator. Four solder spheres are deposited at
the spoke locations shown as black dots. Bottom: The as-fabricated resonator
frequency response (light grey trace) compared the frequency response after
the first round of deposition (black trace). Only the frequency response data
are shown (no model frequency responses are shown). The frequency detuning

has been reduced from ∆ = 25.41Hz to ∆̃ = 13.08Hz.

ink. Since ψ1 ≈ 15◦, the ink deposition can be made into the

reservoirs that effectively lie on the anti-node, in other words,

φ
(1)
k = 15◦, and 25 ink droplets are distributed among the four

reservoirs shown in Fig. 11. Due to the uncertainty associated

with the droplet mass, an intermediate measurement of the

resonator dynamics was performed midway through the ink

deposition. Fig. 11 compares the frequency response after the

conclusion of the second round of solder sphere deposition

to the frequency response after the conclusion of the ink

deposition. The final estimated frequency detuning is 60 mHz,

which is well within the resonance bandwidth, and the anti-

node orientation is ψ̃1 = 70.2◦.
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ψ1

ψ̃1

φ
(4)
1

φ
(3)
2

φ
(3)
1

φ
(3)
3

Fig. 10. Top: The ψ1 anti-node associated with the higher frequency mode
is shown before the second round of mass deposition. Four more solder
spheres are deposited and complement the spheres deposited in the previous
step (the cumulative number of spheres are shown). At the conclusion of

the deposition the anti-node orientation is now ψ̃1 = 14.7◦. Bottom: The
resonator frequency response after the first round of deposition (light grey
trace) is compared the frequency response after the second round of deposition
(black trace). The frequency detuning has been reduced from ∆ = 13.08Hz

to ∆̃ = 1.06Hz.

V. DISCUSSION

Four additional resonator examples are summarized in Ta-

ble II and show the initial frequency detuning and the final

detuning achieved after three iterations of mass deposition.

These experiments reveal that many different combinations

of mass perturbations can adequately reduce the frequency

detuning of a resonator. Three different costs are apparent

when modifying a resonator: the total amount of mass that

needs to be added to the resonator to achieve a tolerable

level of detuning, the total number of iterations required,

and the computational cost in evaluating (12) to enumerate

the various perturbation choices in each step. An exhaustive

search using (12) is not prohibitive so an optimal solution

φ
(1)
3

φ
(1)
1

φ
(1)
2

φ
(1)
4

ψ1

ψ̃1

Fig. 11. Top: Ink deposition in the reservoirs along the ψ1 anti-node is the
last step. Bottom: The resonator frequency response after the second round
of deposition (light grey trace) is compared the frequency response after the
ink deposition (black trace). The frequency detuning has been reduced from

∆ = 1.06Hz to ∆̃ = 0.06Hz.

can be determined for any given fixed number of deposited

solder spheres. The main decision is the desired reduction

in detuning frequency for a given round of deposition. For

example, Resonators 4 and 5 have initial frequency detunings

exceeding 27 Hz, and an aggressive deposition strategy was

employed for these resonators whereby the initial split was to

be reduced by at least 25 Hz after the first round of solder

sphere deposition. The detuning reduction was successful for

these resonators, however, as the number of deposited solder

spheres increases in a given step, the deviation from the

predicted post-deposition value of detuning also increases due

to variations in sphere mass, errors in estimating ∆ and ψ1,

and errors in estimating the sensitivity parameters. The most

reliable predictions resulted from reducing the large initial

detuning over the course of two depositions of more moderate

size as described for Resonator 1.

The solder sphere deposition was also performed to mini-
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TABLE II
DATA SUMMARY FOR FIVE RESONATORS

Resonator # As fab Dep #1 Dep #2 Dep #3

1

s/i - 4s 4s 25i

∆ (Hz) 25.41 13.08 1.06 0.06

Q (k) 51/51 51/51 51/51 52/52

2

s/i - 4s 2s 3i

∆ (Hz) 14.17 1.62 0.13 0.08

Q (k) 52/52 53/53 43/53 53/52

3

s/i - 5s 2s 7i

∆ (Hz) 16.92 1.28 0.42 0.03

Q (k) 49/47 51/51 51/51 51/51

4

s/i - 9s 2s 8i

∆ (Hz) 32.17 5.44 0.35 0.05

Q (k) 45/47 51/51 40/50 51/51

5

s/i - 9s 1s 8i

∆ (Hz) 28.50 2.50 0.45 0.03

Q (k) 55/55 56/56 55/55 55/55

The “s” and “i” denote “solder spheres” and “ink droplets”,
respectively. Resonator #1 is discussed in detail in Sec IV.
Quality factors are denoted by Q.

mize the reaction forces and torques on the resonator stem as a

result of the added mass, and for the n = 2 modes, complete

cancellation of the forces and torques would be achieved if

for every sphere deposited, three additional spheres at the

same radii but n90◦ from the deposition location, n = 1, 2, 3,

are also deposited. This can only be approximately achieved

in practice as shown in Figs. 9 thru 11. Nevertheless, no

degradation in the modal quality factors was noted when

comparing the initial Q values to the values after the final

deposition and a cleaning step (the quality factors are listed

in Table II).

The resolution of the detuning reduction with solder sphere

deposition is actually significantly better than what is sug-

gested in Table I. For example, if two solder spheres are

deposited at the same radius but their angular locations

differ by 45◦, then the frequency split remains unchanged

because γ(ej4φ + ej4(φ+π/4)) = 0, so despite the fact that

both modal frequencies decrease due to the additional mass,

the detuning does not change. Now consider moving one

sphere to a different radius, for example let one sphere be

located at φ
(2)
1 and the other at φ

(3)
1 = φ

(2)
1 + 45◦, then

γ2e
j4φ

(2)
1 + γ3e

j4φ
(3)
1 = (γ2 − γ3)e

j4φ
(2)
1 . Thus, the maximum

change in frequency detuning cannot exceed the difference

between the sensitivities, which for the solder spheres is

considerably smaller than any given value of γ2, γ3 or γ4.

This property is exploited in reducing the detuning below

the sensitivities associated with the solder spheres and is the

reason why after two iterations of solder sphere deposition,

the frequency detuning is significantly less than the smallest

sensitivity listed in Table I.

Finally, from the perspective of testing a resonator, there

is a practical advantage to working with the detuning fre-

quency ∆ instead of absolute modal frequencies. The Sec. II

resonators’ modal frequencies have an approximate -0.5 Hz/◦C

dependency so if absolute frequency measurements are used in

making mass deposition decisions, the resonator temperature

must be regulated to the same value for each test. This is

certainly achievable but it adds to the complexity of testing

the resonator. On the other hand, because the temperature

dependency of each mode is effectively the same for broad

temperature range about room temperature, ∆ is insensitive

to the precise resonator temperature and this facilitates more

rapid characterization of its modal properties.

VI. CONCLUSION

A model-based approach has been developed and applied to

a novel micro-resonator to eliminate the as-fabricated differ-

ence in modal frequencies of two nominally degenerate modes.

The resonator was specifically designed to accommodate point

mass perturbations in the form of precision solder spheres and

silver particle loaded ink. Although the deposition locations

and the mass perturbations themselves are quantized, results

were reported for five resonators and showed that the n = 2
modal frequency detuning was systematically reduced to less

than 80mHz in all cases, even when starting from an initial

detuning of over 30Hz. Parametric resonator models were

fit to frequency response data and the models were used to

determine modal frequencies and anti-node orientations. This

approach is in contrast to more traditional vibrometer-based

techniques in which the anti-nodes are located by scanning

the vibrometer spot across the resonator as a single mode

is excited. The testing time is significantly reduced with the

modeling approach because the frequency response data can

be gathered in just a few minutes.

There are a number of potential directions for future re-

search. A recent result by the authors reports on the per-

formance of the resonator operated as a force-to-rebalance

vibratory gyro and shows how the anti-node orientation with

respect to the pick-offs/forcers can impact the noise associated

with the sensor’s zero rate bias [18]. Thus, it is useful to

be able to specify the anti-node orientation as well as the

maximum tolerable frequency detuning. The challenge lies in

systematically changing ψ, though, because it becomes very

sensitive to the perturbations when the frequency detuning

becomes small (note the change in ψ in Figs. 10 and 11).

Multi-mode tuning is discussed in [6] and an approach is

presented to minimize the number of mass perturbations in

order to achieve the tuning objectives, however, these results

don’t obviously extend to the present resonator because of

the mass and deposition location quantization constraints.

Nevertheless, it may be possible to simultaneously reduce the

frequency detuning of the n = 2 and n = 3 modes, however,

such results will be left for future publications.
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