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Abstract. Modal structuralism promises an interpretation of set theory that avoids commit-
ment to abstracta. This article investigates its underlying assumptions. In the first part, I start by
highlighting some shortcomings of the standard axiomatisation of modal structuralism, and pro-
pose a new axiomatisation I call MSST (for Modal Structural Set Theory). The main theorem is
that MSST interprets exactly Zermelo set theory plus the claim that every set is in some inacces-
sible rank of the cumulative hierarchy. In the second part of the article, I look at the prospects
for supplementing MSST with a modal structural reflection principle, as suggested in Hellman
(2015). I show that Hellman’s principle is inconsistent (Theorem 5.32), and argue that modal struc-
tural reflection principles in general are either incompatible with modal structuralism or extremely
weak.

§1. Introduction. What counts as evidence for a mathematical statement? This is a
central question in the philosophy of mathematics. On some accounts, it looks like nothing
could count as enough evidence to justify the statements of accepted mathematics. After
all, those statements appear to be about abstract objects, disconnected from us in space
and time.1 A common response to this problem is to deny that mathematics is about
abstracta after all. Modal structuralism—the view that mathematics is about logically
possible structures—is one of the leading examples of this response.2

In set theory, a structure is a pair of sets: one set as its domain together with another set
of ordered pairs as its relation. This is not the notion employed by the modal structuralist,
however, since sets are abstract objects. Rather, they use the resources of plural quantifi-
cation and mereology to define a similar notion without appeal to abstracta. The thought is
that a structure can consist of some things as its domain together with some mereological
fusions that behave suitably like ordered pairs as its relation.3 Moreover, it is natural to
think that neither pluralities nor fusions incur ontological commitments over and above the
things they are pluralities and fusions of.4 If that is right, then structures constituted by
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large cardinals, reflection principles.
1 This is the Benacerraf problem. See Benacerraf (1973), and Clarke-Doane (2017) for an

illuminating and up-to-date discussion.
2 The locus classicus for modal structuralism is Hellman (1989), with Hellman (1996) adding plural

quantification and mereology. Putnam (1967) was the first to suggest the general strategy.
3 To make things easier, I will frequently talk of possible objects, pluralities, structures, and worlds.

For example, I will say “there is a possible plurality containing an object o . . . ” instead of the
strictly correct “there could have been some things such that o is among them . . . ”. Nothing I
say will depend on misspeaking in this way, and can always be reformulated using the primitive
modal operator, plural quantification, and mereology introduced below.

4 See Hellman (1996) and Lewis (1991).
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824 SAM ROBERTS

nonabstract objects will also be nonabstract. The core idea of modal structuralism is that
this is indeed right and that mathematics is about logically possible structures constituted
by nonabstract objects.

To support this, the modal structuralist provides a systematic translation of mathemat-
ical statements, which appear to be about abstracta, as statements merely about possible
structures. For example, the claim that there is a non-self-membered set is translated as the
claim that there could have been a structure containing an object x in its domain such that
the mereological fusion coding the ordered pair 〈x, x〉 is not contained in its relation. To
ensure that the statements of accepted mathematics come out true under the translation,
the modal structuralist restricts their attention to a particular class of structures: namely,
those satisfying the axioms of second-order Zermelo–Fraenkel set theory with the axiom
of choice (ZFC2).5

Avoiding abstracta may be necessary to solve the epistemological problem we started
with, but it is not sufficient. That problem also arises for the modal structural translations:
it is not obvious that possible ZFC2 structures are more epistemically tractable than the
abstract objects they are used to avoid.6 As a first step to assessing the evidence for the
translations of accepted mathematics, we have to get clear on the assumptions needed to
prove them. That will be the primary goal of this article.

Here’s the plan. In §2, I start by outlining the standard axioms of modal structuralism.
I show that they fail to interpret even the logical axioms of set theory (Theorem 5.40),
and propose a new axiomatisation I call MSST (for Modal Structural Set Theory). I show
that MSST exactly interprets Zermelo set theory plus the claim that every set is in some
inaccessible rank of the cumulative hierarchy the main theorem. An immediate upshot is
that MSST fails to interpret the axiom schema of Collection of ZFC (Lemma 5.13). In
§3, I look at the prospects for supplementing MSST with a modal structural reflection
principle, as suggested in Hellman (2015). I show that Hellman’s principle is inconsistent
(Theorem 5.32), and argue that modal structural reflection principles in general are either
incompatible with modal structuralism or extremely weak. §5 is a technical appendix.

§2. Axiomatising modal structuralism.

2.1. The language. The modal structuralist wants to interpret set theory using
logically possible structures satisfying the axioms of ZFC2, where a structure is a pair
of pluralities: some things as a domain together with some mereological fusions that be-
have suitably like ordered pairs as a relation. Their language will thus have to contain a
modal operator, �, expressing logical possibility, the usual resources of first-order logic,
and suitable plural and mereological resources. In this article, I will use capital letters
X, Y, Z . . . etc to range over pluralities; x ∈ X to express that x is among the Xs; and
first-order terms 〈x, y〉 for the ordered pair of x and y.7 I will also take the claim that plural-
ities X and Y are identical, X = Y , to be well-formed. Let L� denote this
language.

5 See §5.1 for a definition of ZFC2.
6 See, for example, Hale (1996).
7 I have taken ordered pairing as a primitive because it allows for a simpler and more general theory.

My results can then be extended to a wider range of approaches to coding ordered pairs. In fact, it
will turn out that even more minimal resources will do. My results go through when the language
contains just the primitive relation 〈x, y〉 ∈ X for ordered pairs. See the remarks after the lower
bound theorem in §5.3.3.
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MODAL STRUCTURALISM AND REFLECTION 825

2.2. Structures and satisfaction. A structure will simply be any pluralities X, Y,
where X is taken as its domain and Y its relation.8 For simplicity, and where it won’t cause
confusion, I will identify the structure X, Y with its relation Y , write dom(Y ) for X , and
write x ∈ Y for x ∈ dom(Y ). The notion of satisfaction in a structure is straightforward.
For formulas ϕ in the language of second-order set theory, L2∈,9 we say that Y satisfies ϕ (in
symbols, Y � ϕ) just in case ϕ is true when its membership relation is interpreted according
to Y , its first-order quantifiers are interpreted as ranging over dom(Y ), and its second-order
quantifiers are interpreted as ranging over the subpluralities of dom(Y ). Formally: Y � ϕ
abbreviates the result of replacing each occurrence of x ∈ y in ϕ with 〈x, y〉 ∈ Y , each
occurrence of ∃x with ∃x ∈ dom(Y ), and each occurrence of ∃X with ∃X ⊆ dom(Y )
(where X ⊆ Y abbreviates ∀x(x ∈ X → x ∈ Y )). I will use variables M,M ′,M ′′, etc for
structures satisfying ZFC2.

2.3. The translation schema. The modal structural translation schema provides a way
to systematically interpret claims about sets as claims about possible ZFC2 structures. It is
motivated by a now standard result in ZFC: a set-theoretic structure satisfies ZFC2 just in
case it is isomorphic to some Vα , for α an inaccessible cardinal.10,11 Each ZFC2 structure
thus contains isomorphic copies of all and only the sets in some such Vα .12 Moreover, we
can show that if there are arbitrarily large Vα , for α inaccessible, then any ZFC2 structure
can be extended to contain an isomorphic copy of any particular set. This means that we can
talk about the sets via their isomorphic copies in ZFC2 structures. In particular, suppose
that �x are isomorphic copies in M of some sets �y. Then, if we want to say that there is a
ϕ(�y), we just say that M can be extended to a ZFC2 structure M ′ containing a ϕ(�x).13 The
translation schema attempts to replicate this using possible ZFC2 structures and thereby
capture talk that is ostensibly about sets without appeal to sets.

DEFINITION 2.1. Y ′ is an end-extension of Y , Y ′ � Y , if Y is a transitive substructure of
Y ′. Formally: Y ′ � Y if (i) EY, Y ′; (ii) Y ⊆ Y ′; (iii) for any x, y ∈ dom(Y ), 〈x, y〉 ∈ Y
iff 〈x, y〉 ∈ Y ′; and (iv) for any x ∈ dom(Y ) and y ∈ dom(Y ′), if 〈y, x〉 ∈ Y ′, then
〈y, x〉 ∈ Y (where E X abbreviates ∃Z(Z = X)).14

DEFINITION 2.2. Let pt
Y be the following translation from the language of first-order set

theory, L∈,15 to L�.16

8 Whether or not Y contains nonpairs, it can play the role of a relation in virtue of the ordered pairs
it does contain: Y relates x and y just in case 〈x, y〉 ∈ Y .

9 See §5.1 for the definition of L2∈.
10 See Zermelo (1996) and Theorem 6 of Uzquiano (1999). The Vα’s are defined by transfinite

recursion on the ordinals: V0 = ∅, Vα+1 = P(Vα), and Vλ = ⋃
α<λ Vα (where P(x) is the

powerset of x , and λ is a limit cardinal). An ordinal α is inaccessible if it is uncountable and
regular, and 2β < α whenever β < α.

11 For simplicity, I will use “structure” for the notion of structure in first-order set theory, second-
order set theory, and modal structuralism. Context will make clear which is intended.

12 Formally, we can say that element x of some structure 〈D, R〉 is an isomorphic copy of a set y
if the structure we get by restricting 〈D, R〉 to the elements in x’s transitive closure according to
〈D, R〉 is isomorphic to the membership relation on y’s transitive closure.

13 See Lemma 5.29 for a precise statement and proof.
14 Similarly, for Ex and E〈x, y〉.
15 See §5.1 for the definition of L∈.
16 This translation closely follows the semantics given in Hellman (1989, p. 76). The “pt” stands

for “Putnam translation”, since it was first outlined in Putnam (1967), with structures satisfying
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826 SAM ROBERTS

• (x = y)pt
Y = x = y

• (x ∈ y)pt
Y = Y � x ∈ y

• pt
Y commutes with the connectives

• (∃xϕ)pt
Y = �∃M � Y∃x ∈ Mϕ pt

M (making sure to avoid clashes of variables).17

When ϕ is a sentence, I will let ϕ pt denote ϕ pt
∅ and call it the ms-translation of ϕ (where ∅

is the empty plurality).18

2.4. The standard theory. Given the language of modal structuralism, its theory will
have to consist of four components: a modal logic, general axioms governing pluralities
and ordered pairs, and specific axioms governing ZFC2 structures. I will now outline the
standard articulation of these components.19

2.4.1. Logic. The logic of modal structuralism is a positive free version of S5 modal
logic. This is just the modal logic sound and complete for Kripke models with variable
domains and a universal accessibility relation.20

2.4.2. Pluralities. The general axioms governing pluralities are the instances
of a comprehension schema which says that every condition determines a plurality.
Formally:

∃X∀x(x ∈ X ↔ ϕ), (comp)

where ϕ ∈ L� and X is not free in ϕ.21

2.4.3. Pairs. There are two general axioms governing ordered pairs. The first is a
defining axiom: it says that ordered pairs 〈x, y〉 and 〈x ′, y′〉 are equal just in case x = x ′

second-order Zermelo set theory replacing those satisfying ZFC2. See §2.8.4 for a discussion of
the use of structures that don’t satisfy ZFC2.

17 It is helpful to contrast this with the modal structural translation schema used for arithmetic. In
ZFC, a structure satisfies the axioms of second-order arithmetic (PA2) just in case it is isomorphic
to the natural numbers. So, any PA2 structure contains isomorphic copies of all and only the
natural numbers. This means that instead of talking about the natural numbers directly, we can talk
about their isomorphic copies in any or all PA2 structures. For this reason, a simpler translation
schema is used: namely, ϕtr = �∀Y (Y � P A2 → Y � ϕ). In principle, this kind of translation
is available for set theory. In ZFC2, there are structures isomorphic to the sets: trivially, the sets
together with their membership relation is such a structure. Moreover, Zermelo’s (1930) results
extend to show that in ZFC2, a structure satisfies ZFC2 just in case it is either isomorphic to
the sets or to some Vα , for α inaccessible. This can then be used to provide a characterisation of
the structures isomorphic to the sets: they are exactly the ZFC2 structures that cannot be end-
extended by other ZFC2 structures. Call these maximal ZFC2 structures. The modal structuralist
could thus translate claims about the sets as claims about what is true in any or all possible
maximal ZFC2 structures. However, as we will see in §2.4.4, they have good reason to deny that
there could have been maximal ZFC2 structures.

18 The axioms below guarantee that an empty plurality necessarily exists, and that there is at most
one possible empty plurality. More precisely, comp implies �∃X∀x(x �∈ X), and PL1 and PL2
imply that �∀X (∀x(x �∈ X) → �∀Y (∀x(x �∈ Y ) → X = Y )). It is therefore legitimate, given
those axioms, to definitionally expand L� with ∅.

19 They can be found in Hellman (1989) and Hellman (2005).
20 See §5.2.1 for an explicit version of the logic, and §2.8.2 for why the modal structuralist needs

a free logic. See Hughes & Cresswell (1996) Chapter 16 for the soundness and completeness
results.

21 For simplicity, I will use “comp” to denote this comprehension schema in various languages. It
will be clear from context which is intended.
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MODAL STRUCTURALISM AND REFLECTION 827

and y = y′. The second is an existence axiom: it says that the pair of x and y exists
whenever x and y exist.22 Formally:

∀x, x ′, y, y′(〈x, y〉 = 〈x ′, y′〉 ↔ (x = x ′) ∧ (y = y′)) (P1)

∀x, yE〈x, y〉. (P2)

Arguably, these axioms are false when � expresses logical possibility. After all, P1 and P2
jointly imply that there are infinitely many objects if there are at least two,23 and it seems
logically possible that there be exactly three objects. Nonetheless, they are harmless. The
modal structuralist can simply restrict their attention to worlds where P1 and P2 hold:
without loss, they can read claims of the form �ϕ as �(P1 ∧ P2 ∧ ϕ). On this reading,
P1 and P2 become necessary, and it is straightforward to check that the rest of the theory
remains as plausible as it was on the original reading.

2.4.4. Structures. There are two axioms governing the existence and behaviour of
ZFC2 structures. The first says that there could have been at least one ZFC2 structure.
Formally:

EXISTENCE (E)

�∃M(M = M).

It is easy to see that E is equivalent to the ms-translation of the claim that there is at least
one set: formally, �∃M∃x ∈ M(x = x). So, E is non-negotiable.

The second axiom embodies the modal structuralist’s response to paradox. Briefly, we
can see the set-theoretic paradoxes as arising from a tension between two plausible claims:
namely, that any condition determines a plurality and that any plurality determines a set.
In other words, it can be seen as a tension between comp and:

∀X∃x(x ≡ X), (collapse)

where x ≡ X abbreviates ∀y(y ∈ x ↔ y ∈ X).24 As usual, by considering a plurality
of all and only the non-self-membered sets, we are quickly led to a contradiction. The
modal structuralist proposes to resolve this tension by first observing that comp in L� is
consistent with a natural modal structural analogue of collapse: namely, that any subplu-
rality of any possible ZFC2 structure could have determined a set in some end-extension.
Formally:

THE EXTENDABILITY PRINCIPLE (EP).

�∀M∀X ⊆ M�∃M ′ � M∃x ∈ M ′(M ′ � x ≡ X).

22 The mereological principles underlying these axioms are those of classical mereology together
with the claim that there are infinitely many mereological atoms (that is, objects with no proper
parts). See (Hellman, 2005, p. 554–555).

23 Proof: Let x0, . . . , xn be distinct existing objects. By P2, 〈xi , xi 〉 exists for i ≤ n. By
P1, they are all distinct. Finally, by P2, 〈x0, x1〉 exists, and by P1, it is distinct from each
〈xi , xi 〉.

24 This formulation of the paradoxes relies heavily on Linnebo (2010), but the resolution is arguably
implicit in Hellman (1989, 2002), Putnam (1967), and Zermelo (1996). See Linnebo (2010) for
an extended argument in favour of collapse and a similar resolution in the modal nonstructural
setting.
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828 SAM ROBERTS

They then claim that our reasons for accepting collapse are at most reasons for accepting
EP.25,26

Say that a formula ϕ is a closure of ψ if it is the result of prefixing ϕ with a string of
universal quantifiers and necessity operators in any order. Over the modal logic, let the
standard theory consist of comp, P1, P2, E, and EP together with their
closures.

2.5. The new theory.
2.5.1. Invariance. The standard theory faces an immediate problem: its plurality and

pairing axioms tell us how pluralities and pairs behave within worlds, but ms-translations
concern their behaviour across worlds. In particular, the ms-translations of simple theorems
of ZFC require that pluralities and pairs are invariant between worlds: that pluralities
cannot change the things they comprise, and that pairs cannot change the things they pair.
For example, consider the ms-translation of the claim that there is an empty set (formally,
∃x∀y(y �∈ x)):

�∃M∃x ∈ M�∀M ′ � M∀y ∈ M ′(〈y, x〉 �∈ M ′). (1)

Now, suppose pluralities can comprise different things in different worlds. Then, M may
fail to contain a pair 〈y, x〉 in some world, but contain it in another: so, x could go from
being empty in M in some world to being nonempty in M in another, leading to failures of
(1). Similarly, if pairs can change the things they pair.

Is this kind of invariance plausible? For pluralities, it seems to be implied by a
natural conception according to which a plurality is nothing over and above the things it
comprises. To see this, consider the following formalisation of that conception. It has three
principles. The first says that pluralities are sufficient for the things they comprise: that
pluralities cannot exist without them, and without continuing to comprise them.
Formally:

x ∈ X → �(E X → Ex ∧ x ∈ X). (PL1)

The second says that pluralities are necessary for the things they comprise: that individual
things cannot co-exist without a plurality of them. Formally, this gives us the compre-
hension schema comp. Finally, there is an extensionality principle: it says that pluralities
comprising the same things are identical. Formally:

25 Once the ms-translation schema is extended to the language of second-order set theory in §2.8.3,
EP will be equivalent to the ms-translation of collapse, and the inconsistency of collapse and
comp will be preserved under ms-translation. So, they will have to reject the ms-translation of
some instance of comp, and consequently claim that our reasons for accepting comp do not
extend to those ms-translations. This seems plausible if comp is motivated as I suggest in the
next section.

26 EP has an alternative formulation in Hellman (1989): it says that any ZFC2 structure M has
a proper end-extension M ′, which is to say M � M ′ and dom(M ′) �⊆ dom(M). Over the
other axioms of the theory to be proposed below, these two formulations are equivalent. Proof:
If we let X = dom(M), then the M ′ in EP will have to be a proper end-extension of M . Now,
suppose that M ′ is a proper end-extension of M . In ZFC2 we can show that any transitive X
satisfying ZFC2 either contains all sets or all and only the sets in some Vα . (This is a simple
generalisation of Theorem 6 in Uzquiano (1999). See also (Drake, 1974, p. 112).) Since M �
M ′, dom(M) will be transitive in M ′ and thus contain all and only the sets in some Vα in M ′,
because dom(M ′) �⊆ dom(M). Thus, all of M’s subpluralities will form sets in Vα+1 in M ′. �
This alternative formulation was first proposed in Zermelo (1996), and independently in Putnam
(1967).
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MODAL STRUCTURALISM AND REFLECTION 829

�∀x[�(x ∈ X) ↔ �(x ∈ Y )] → X = Y.27 (PL2)

It is often claimed that mereological fusions are also nothing over and above the things they
fuse. But it is unclear whether this supports the relevant kind of invariance. At a minimum,
we seem to need a principle which says that if the pair 〈x, y〉 is among the Xs, then it is
logically impossible that X exists without 〈x, y〉 being among the Xs. Formally:

〈x, y〉 ∈ X → �(E X → 〈x, y〉 ∈ X). (P3)

This essentially requires that the mereological fusions playing the role of ordered pairs
cannot logically change their parts. But parthood does not appear to be a logical relation.28

Let me briefly discuss one way around this problem.
Suppose we enrich the language of modal structuralism with the resources to cross-

reference worlds: to say of things in one world what they are like in another.29 Then, we
could say of a plurality in one world that it contains the same pairs as it does in another,
and thus of a structure in one world that it has the same structure it has in another. The
ms-translation schema could be modified accordingly. For example, we could translate the
claim that every set is contained in another set along the lines of: for any M in any world
w, and any x ∈ M , there is some M ′ � M in a world w′ where M has the same structure
as it does in w, and M ′ contains a y for which 〈x, y〉 ∈ M ′. Using such a translation, P3
could be dropped.

Nonetheless, I will work with P3 as it allows for a simpler overall theory. The results I
prove can then be adapted to more complicated theories and translations schemas.

How much set theory do these new axioms allow us to interpret? It turns out not very much
at all. In fact, the standard theory together with PL1, PL2, and P3 fails to interpret even the
logical axioms of ZFC. In particular, it fails to prove ms-translation of the logical axiom
for vacuous quantification (Theorem 5.40):

∀�x(ϕ ↔ ∀yϕ), (L3)

where ϕ ∈ L∈ with free variables among �x − {y}.
2.5.2. Stability. What went wrong? The problem is that different structures can have

radically different kinds of end-extensions, and thus have access to radically different kinds
of sets. For example, it is consistent with the theory considered so far that some M only has
end-extensions containing finitely many inaccessible cardinals whereas another structure
M ′ has end-extensions containing infinitely many. From the perspective of M , it will look
like there are only finitely many inaccessible cardinals; whereas, from the perspective of
M ′, it will look like there are infinitely many.30

This is precisely what the ms-translation of L3 rules out: it says that the same kinds of
sets are accessible from all structures. In particular, it implies that if (∃xϕ)pt

M for some M ,

27 See Uzquiano (2011) and Linnebo (2013) for further discussion of the interaction between plural
and modal logic, and see §5.2.2 for a discussion of this particular formulation of the extensionality
principle.

28 See Uzquiano (2014), Sid, and the articles in Cotnoir & Baxter (2014) for discussion.
29 See, for example, Pettigrew (2012). He uses a new pair of modal operators to express the claim

that the physical part of a world w has the same structure as the physical part of some other world
w′.

30 See the proof of Theorem 5.40.
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830 SAM ROBERTS

then (∃xϕ)pt
M ′ for any other possible M ′ when ∃xϕ is a sentence.31 Similarly, it implies

that if (∃xϕ)pt
M for some M , then (∃xϕ)pt

M ′ for any possible end-extension M ′ of M when
∃xϕ’s parameters are in M . So, just as ms-translations require that pluralities and pairs are
invariant between worlds, they also require that ms-translations themselves are invariant or
stable between structures.

STABILITY (S).

[∀�x(ϕ ↔ ∀yϕ)]pt ,

where ϕ ∈ L2∈’s free variables are among �x − {y}.
2.5.3. Summary. The ms-translations of basic theorems impose significant constraints

on the uniformity of modal space beyond the standard theory: they require that pluralities
and pairs are invariant between worlds, and that ms-translations are stable between struc-
tures. But, as I will now show, imposing those constraints suffices to interpret a significant
fragment of ZFC plus a large cardinal hypothesis.

2.6. The main theorem.

DEFINITION 2.3. Let MSST (for Modal Structural Set Theory) be the standard theory
together with PL1, PL2, P3, and S; let In be the claim that there are arbitrarily large
inaccessible cardinals (formally, ∀α∃β > α(β is an inaccessible cardinal)); and, for any
theory T, let T∗ be T plus the claim that every set is in some Vα (formally, ∀x∃α(x ∈ Vα)).
Z is ZFC minus the axiom schema of Collection.32

MAIN THEOREM 2.4. MSST exactly interprets Z∗ + In via ms-translation. In other
words, MSST proves ϕ pt if and only if Z∗ + In proves ϕ, for sentences ϕ ∈ L∈.

It follows immediately from the main theorem that MSST proves the ms-translations of
all the axioms of ZFC other than instances of the axiom schema of Collection. Standardly,
those instances are classified according to their syntactic complexity: the more alternations
of quantifiers, the more complex. It turns out that although Z∗ + In proves all instances of
Collection at the lowest level of complexity, it fails to prove all instances at the very next
level (Claim 3 and Lemma 5.13). In the jargon, it proves all �0 instances, but not all �1
instances.33 So, by the main theorem, MSST proves the ms-translations of all�0 instances
of Collection, but not the ms-translations of all �1 instances.

2.7. Discussion. I will now look at some questions and issues raised by the main
theorem.

2.7.1. Deriving S. Can we derive S from more obvious principles? In ZFC, the ana-
logue of S holds because any two structures co-exist: when M ′ contains an isomorphic
copy of some set, we can use it to construct an end-extension of M also containing such
a copy.34 So, in ZFC, the same kinds of sets are accessible from all structures. But this
can fail in the modal setting: it may not be possible for M to co-exist with enough objects

31 Proof: Suppose E M and ϕ pt
M , for ϕ a sentence. The ms-translation of an instance of L3 implies

that if (¬ϕ)pt , then �∀M∀y ∈ M(¬ϕ)pt
M and thus (¬ϕ)pt

M . So, ϕ pt . By another instance, we

then get that �∀Mϕ pt
M .

32 See §5.1 for details, including a presentation of the axiom schema of Collection.
33 See §5.1.
34 See the proof of Lemma 5.29.
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MODAL STRUCTURALISM AND REFLECTION 831

to construct the relevant kind of end-extension. So, perhaps the modal structuralist should
require that any two possible structures can co-exist. Formally:

�∀M�∀M ′�(E M,M ′)35. (s-compossible)

Indeed, s-compossible seems plausible for logical possibility: there appears to be nothing
logical stopping any two structures co-existing. However, s-compossible sets a dangerous
precedent for the modal structuralist. If logical possibility is permissive enough that any
two possible structures can co-exist, it seems as though it should be permissive enough that
all possible objects can co-exist. Formally:

�∃X�∀x(x ∈ X). (u-compossible)

Although u-compossible is consistent with MSST (Theorem 5.42), it is inconsistent with
a natural generalisation of EP that I will argue in the next section the modal structuralist
should adopt. They should thus reject u-compossible, and with it s-compossible.
Hellman suggests an alternative to s-compossible in the case of arithmetic.36 The idea is
that even though it may not be possible for two structures M and M ′ to co-exist, structures
satisfying the same sentences can. Formally:

�∃M(M � ϕ) ∧ �∃M(M � ψ) → �∃M,M ′(M � ϕ ∧ M ′ � ψ), (AP)

where ϕ,ψ ∈ L2∈ are sentences. Unfortunately, AP fails to prove S over the other axioms
of MSST (Theorem 5.40).37,38

2.7.2. Paradox. Above, I took the set-theoretic paradoxes to arise from a tension
between comp and collapse. The modal structuralist proposed to resolve this tension
by replacing collapse with EP, which says that any subplurality of a possible struc-
ture determines a set in some possible end-extension. There are, however, other natural
analogues of collapse in the modal structural setting. In particular, there is the principle
which says that any possible plurality whatsoever forms a set in some structure.
Formally:

�∀X�∃M∃x ∈ M(E X ∧ M � x ≡ X). (EP∗)

35 It is routine to extend the proof of the analogue of S in ZFC to show that MSST - S +
s-compossible proves S.

36 See (Hellman, 1989, p. 43) and (Hellman, 1996, p. 106).
37 Underlying the accumulation principle is a more general principle which says that isomorphic

copies of M and M ′ can co-exist. Formally:

�∀M�∀M ′�∃M ′′(∃i : M ≈ M ′′ ∧ �∃M ′′′(∃i : M ′ ≈ M ′′′ ∧ �(E M ′′,M ′′′))),
where ∃i : M ≈ M ′ formalises the claim that there is a plurality of ordered pairs coding an
isomorphism between M and M ′. This principle also fails to prove S over the other axioms of MSST
(see the remarks after Theorem 5.40). Thanks to Øystein Linnebo and Leon Horsten for suggesting
this way of handling isomorphisms between structures that cannot co-exist.
38 Hellman’s justification for the accumulation principle is that “anything internal to a given

structure cannot conflict with anything internal to another” (Hellman, 1996, p. 106), and that
it is internal to a structure which sentences it satisfies. The problem is that ms-translation is not
internal to a structure: it concerns not merely the structure itself, but also its end-extensions. We
might say that satisfaction is a local property of structures, whereas ms-translation is a global
property. It is precisely because ms-translation is a global property of structures that S is such a
substantial assumption.
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832 SAM ROBERTS

Since the usual reasons for thinking that pluralities should determine sets are not sensitive
to whether they are subpluralities of structures or not,39 the modal structuralist should also
adopt EP∗.

EP∗ implies EP over the other axioms of MSST, and goes beyond it in at least one
crucial way:40 it is inconsistent with u-compossible. This forces the modal structuralist to
adopt a free logic, since u-compossible is derivable in MSST over classical logic.41,42,43

Since EP is easier to work with and since it will not affect the main results of the article,44

however, I will leave MSST as it is.
2.7.3. Second-order set theory. So far, I have focused on the interpretation of first-

order set theory. But set theorists frequently make use of the language of second-order set
theory. For example, systematic connections have been discovered between large cardinal
hypotheses by reformulating them in terms of second-order functions over the universe of
sets.45 For readability, I will refer to whatever second-order variables range over as classes.

So, what second-order set theory can the modal structuralist interpret? To answer this
question, we first need to extend the ms-translation schema to its language. The most obvi-
ous way to do this is by interpreting second-order variables as ranging over subpluralities
of structures. Formally:

DEFINITION 2.5. • (x ∈ X)pt
Y = (x ∈ X)

• (∃Xϕ)pt
Y = �∃M � Y∃X ⊆ Mϕ pt

M .

Unfortunately, this results in an extremely weak second-order set theory according to which
classes are completely redundant. Let Z∗

2 be Z∗ with its logical axioms extended to L2∈. The
following minimal instance of comp says that at least every set determines a class.

∀x∃X (x ≡ X). (min-comp)

We can then take collapse to say that at most every set determines a class. Together,
collapse and min-comp say that classes and sets are equivalent: any claim we can make

39 See, for example, the arguments in Hellman (2002) and Linnebo (2010).
40 Proof sketch: Suppose E M . By EP∗, M determines a set in some M ′. By the plurality axioms,

M will exist and continue to be a ZFC2 structure. The results of Zermelo (1996) then show that
M is isomorphic to a Vα in M ′, and the plurality and pairing axioms can be used to construct
an end-extension of M isomorphic to M ′. Since all of dom(M)’s subpluralities determine sets in
Vα+1 in M ′, they will also determine sets in such an end-extension, verifying EP.

41 Proof: Ex and E X are axioms of classical logic (see §5.2.1). By comp, let X be a plurality
of everything, and assume �(Ex ∧ x �∈ X). By classical logic, Ex and thus x ∈ X . Then, by
classical logic and necessitation, we have �E X , and thus �(x ∈ X) by PL1, contradicting our
assumption.

42 If the move from EP to EP∗ can plausibly be blocked, then that would open the way to an
interesting nonmodal structuralism. MSST and thus EP can be true in Kripke models with
a single world (Theorem 5.42). So, the theory that results by deleting the modal operators in
MSST is consistent. I am sometimes tempted to read Zermelo (1996) as proposing a nonmodal
structuralism of this kind.

43 In some places, Hellman recognises something like the distinction between EP and EP∗. See, for
example, (Hellman, 2005, p. 544), where he distinguishes “the extendability principle” from “the
general extendability principle”. But in other places, this is less clear. See, for example, (Hellman,
2011, p. 636).

44 In particular, the upper and lower bound theorems are easily seen to hold when MSST is replaced
with MSST + EP∗.

45 See Kanamori (2003) for details, and Uzquiano (2003) for discussion.
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MODAL STRUCTURALISM AND REFLECTION 833

with classes, we can make with sets. More precisely, for ϕ ∈ L2∈, let its first-orderisation,
ϕ∗, be the result of replacing its second-order variables with first-order variables. Then,
collapse and min-comp are jointly equivalent to the schema:

ϕ ↔ ϕ∗

for sentences ϕ ∈ L2∈.46 Finally, let MSST2 be MSST together with the stability axiom S
extended to all formulas in L2∈. Then:

THEOREM 2.6. MSST2 exactly interprets Z∗
2 + collapse + min-comp via ms-translation.

In other words, MSST2 proves ϕ pt if and only if Z∗
2+ collapse + min-comp proves ϕ, for

sentences ϕ ∈ L2∈.47

Can the modal structuralist interpret a stronger second-order set theory using some other
extension of the ms-translation schema? One standard way to measure the strength of
a second-order set theory is by the instances of comp it proves: the more instances it
proves, the stronger it is. So, the question is: how many instances of comp can the modal
structuralist interpret?

Given EP∗, pluralities will only get us min-comp. But even if we expand the language
of modal structuralism with new resources, there appear to be limits on the number of
instances of comp the modal structuralist can interpret. For, whatever kind of collections
the modal structuralist uses to interpret second-order variables, they must be nonabstract.
The problem is that the more collections there are of certain kind, the less likely they are
to be nonabstract.48,49

2.7.4. Using ZFC2 structures. The ms-translation schema was motivated by the fact
that in ZFC + In, truth in the ZFC2 structures is equivalent to truth in the sets. But,
it turns out that this holds for many other classes of structures. For example, in ZFC,
truth throughout the well-founded extensional structures is equivalent to truth in the sets
(see Lemma 5.29). Consequently, the main theorem extends to a similarly broad class of
theories (Corollary 5.15). Let me mention one interesting example. Let Z2 be second-order

46 Proof: Given collapse and min-comp, we show by a simple induction on the complexity of
ϕ that ϕ( �X , �y) is equivalent to ϕ∗(�x, �y) when ϕ’s free variables are among �X , �y and �x ≡ �X .
Moreover, it is easy to see that collapse∗ and min-comp∗ are the same trivial logical truth. So,
collapse and min-comp follow immediately from the schema.

47 See Corollary 5.34 and the remarks following it.
48 Though see Rayo & Yablo (2001) for a dissenting voice.
49 Hellman makes the stronger point that any nonset sized collections are likely to be abstract. He

says:

Ordinary mathematical abstracta seem tame compared to such extravagances
[like a collection of all possible objects]; indulging them would deprive [modal
structuralism] of much of its interest as a distinctive program. (Hellman, 2005,
p. 554)

See also (Hellman, 1989, p. 31). The force of this point relies heavily on how we understand
“collection”. Using a primitive satisfaction predicate, it is straightforward to code nonset sized
collections as formulas. For example, the formula “x = x” (understood a particular natural number
in any or all possible ZFC2 structures) codes a collection of all possible objects: in any world, it
satisfies every object and thus “contains” all possible objects (see Parsons, 1974). Nonetheless, this
strategy is limited, and only suffices to interpret a small number of instances of comp (see Fujimoto,
2012). So, it is not the size of collections of some kind that gives us a reason to they are abstract, but
rather the number of collections of that kind.
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834 SAM ROBERTS

Zermelo set theory,50 MSSTZ2∗ be MSST with Z2∗ structures replacing ZFC2 structures,
and Beth be the claim that there are arbitrarily large fixed points in the enumeration of
the � cardinals, defined by �0 = ω, �α+1 = 2�α , �λ = ⋃

α<λ �α (formally, Beth is
∀α∃β > α(β = �β)).51 Then, we have:

THEOREM 2.7. MSSTZ2∗ exactly interprets Z∗ + Beth via ms-translation. In other words,
MSSTZ2∗ proves ϕ pt if and only if Z∗ + Beth proves ϕ, for sentences ϕ ∈ L∈.52

This is interesting because although Z2∗ is a much weaker theory than ZFC2, there is
a precise sense in which Z∗ + Beth and Z∗ + In prove the same amount of ZFC. In
particular, they both prove all�0 instances of Collection, but not all�1 instances (Claim 1
and Lemma 5.13). So, the main theorem and Theorem 2.7 imply that MSSTZFC2 and
MSSTZ2∗ prove the ms-translations of the same amount of ZFC.

2.7.5. Incompleteness. The primary upshot of the main theorem is that MSST fails
to interpret Collection.53 The success of modal structuralism thus depends on whether we
can find and justify principles beyond MSST that imply the ms-translations of its instances.
But there are also other reasons to be interested in principles beyond MSST. First, many
set theorists accept most of the so-called small large cardinal hypotheses.54 Although the
main theorem shows that MSST interprets the large cardinal hypothesis In, it also shows
that it interprets no stronger hypotheses.55 Second, even if they are not part of accepted
mathematics, large cardinal hypotheses are interesting in their own right. Indeed, there
are a huge number of questions independent of accepted mathematics which are settled
by large cardinal hypotheses. So, it is independently interesting to see whether there are
well-motivated principles beyond MSST that imply their ms-translations.56 The rest of this
article will look at the prospects for interpreting Collection and large cardinal hypotheses
using reflection principles.

§3. Reflection principles. Typically, reflection principles say that the universe of sets
is indescribable: whatever is true in the sets is also true in some Vα .57 Formally:

50 See §5.1 for a definition of Z2.
51 In Z∗, the � cardinals can be defined by �α = |Vω+α |. Moreover, it is easy to see that the

inaccessible cardinals are exactly the regular � fixed points (i.e., the uncountable α for which
|Vα | = α). So, in Z∗, Beth is a weakening of In.

52 See Theorem 5.7.
53 (Hellman, 1989, p. 78) is aware that E and EP fail to interpret Collection. In response, he proposes

the following strengthened version of EP.

Let ϕ(x, y) be a formula “defining a function”, where this is spelled out by
writing out the [ms-translation] of the usual condition; further let a be any set
in any full model such that, for any x in a, Mβ is the least full model containing
the unique y such that ϕ(x, y). Then it is possible that there exists a common
proper extension, M , of all such Mβ . (p. 79, 1989)

The problem with this suggestion is that there will be many possible ‘least’ structures containing
such a y, all isomorphic to one another, and no way to choose between them.
54 See, for example, Maddy’s contribution to Feferman, Friedman, Maddy, & Steel (2000).
55 In particular, it is straightforward to verify that given the least upper bound κω of the first ω

inaccessible cardinals, Vκω models Z∗ + In. But, ZFC + In proves that κω and thus Vκω exist.
56 See Gödel (1964) for a classic statement of this project in the non-modal-structural setting, and

Koellner (2006) for an illuminating discussion in light of recent developments in set theory.
57 See Koellner (2009) and the references therein.
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MODAL STRUCTURALISM AND REFLECTION 835

ϕ → ∃αϕVα , (R)

where ϕVα formalises the claim that ϕ is true in Vα . We can obtain specific principles from
R by specifying (i) a class of formulas for which it is to hold, and (ii) what it means for
formulas in that class to be true in a Vα (that is, what ϕVα means). For formulas in the
language of first-order set theory, ϕVα is usually taken to be the result of re-interpreting its
quantifiers as ranging over Vα: that is, of replacing occurrences of ∃x in ϕ with ∃x ∈ Vα .
Let R1 denote this restriction of R. For formulas in the language of second-order set theory,
it is usually taken to be the result of re-interpreting its first-order quantifiers as ranging over
Vα and re-interpreting its second-order variables as ranging over subsets of Vα: that is, of
replacing occurrences of ∃x in ϕ with ∃x ∈ Vα , ∃Xψ(X) with ∃x ⊆ Vαψ(x), and free
variables X with X ∩ Vα . Let R2 denote this restriction of R.58

Many find reflection principles like R1 and R2 compelling. Indeed, many take them
to “follow from” the iterative conception of set that underlies the axioms of ZFC.59 Ac-
cording to this conception, the sets occur in an unending series of stages: at each stage,
there are sets of any sets occurring at some previous stage.60 The thought is that it is part
of the unending nature of the stages that whenever some claim is true, they extend far
enough to make it true in some stage. Since each stage is co-extensive with a Vα , that gives
us R.

Although R1 is relatively weak,61 R2 is quite strong. Over Z2, it implies all instances
of Collection and the existence of arbitrarily large inaccessible, Mahlo, weakly compact,
and �1

n-indescribable cardinals.62 Moreover, recently proposed reflection principles that
generalise R2 go much further. For example, the principle RS in Roberts (2017) also
implies the existence of arbitrarily large Ramsey, Measurable, Woodin, and 1-extendible
cardinals.63 It is therefore natural to ask whether there are modal structural versions of R2
that are similarly strong and well-motivated.

3.1. Modal structural reflection principles. The most obvious version of R2 in the
modal structural setting is its ms-translation. However, this turns out to be inconsistent
when we use the extension of the ms-translation schema from §2.7.3, where second-order
variables are interpreted as ranging over subpluralities of structures. As I mentioned, that
makes the ms-translation of collapse true (Theorem 2.6). But R2 implies comp,64 and
thus its ms-translation will imply the ms-translation of comp. Moreover, as I pointed out,
it is unclear in general whether the modal structuralist can interpret comp on any extension
of the ms-translation schema whilst avoiding abstracta. So, they need a less obvious version
of R2.

58 Finding a suitable notion of truth in Vα for the language of third-order set theory has proved
difficult. The most natural notion, for example, yields an inconsistent principle. See Tait (1998)
and Koellner (2009) for discussion.

59 See, for example, (Gödel, 1964, p. 258–259) footnote 16 and Tait (1998). See Paseau (2007) for
discussion.

60 See (Gödel, 1964, p. 259) and Boolos (1998).
61 In particular, it is provable in ZFC and Z∗ + �2-Col proves there is a model of Z∗ + R1. See

Lévy & Vaught (1961). The proof can be extracted from the proof of Lemma 5.38.
62 See Bernays (1976) and Kanamori (2003) §6 for details.
63 See Welch (2017) for an alternative generalisation of R2 employing embeddings.
64 Proof: For contradiction, suppose ¬∃X∀x(x ∈ X ↔ ϕ). Then, by R2, there would be a Vα with

no subset of all and only the ϕVα ’s. But that is impossible. By Separation, there will always be a
subset of Vα of all and only the ϕVα ’s.

bib-hiwi-kops-01
Notiz
None festgelegt von bib-hiwi-kops-01

bib-hiwi-kops-01
Notiz
MigrationNone festgelegt von bib-hiwi-kops-01

bib-hiwi-kops-01
Notiz
Unmarked festgelegt von bib-hiwi-kops-01



836 SAM ROBERTS

3.1.1. MSR. Hellman (2015) motivates an alternative version of R2.

The mathematical possibilities of ever larger structures are so vast as
to be “indescribable”: whatever condition we attempt to lay down to
characterize that vastness fails in the following sense: if indeed it is
accurate regarding the possibilities of mathematical structures, it is also
accurate regarding a mere segment of them, where such a segment can
be taken as the domain of a single structure. (p. 271, 2015)

There are two ideas here. The first is an indescribability idea: whatever is true in all possible
structures is also true in a “segment” of them. I will assume for now that a segment of
structures is just a suitably small collection of them, and that for ϕ to be true in all possible
structures is for its ms-translation to be true. Then, we can formalise the idea as

ϕ pt → ∃X (ϕ pt )X , (S-indes)

where (ϕ pt )X is the result of binding the structure quantifiers in ϕ pt to the segment X , and
ϕ pt is defined as in §2.7.3. The second idea is that a segment of structures X “can be taken
as the domain of a single structure”: whatever is true in X is also true in some particular
structure. Formally:

(ϕ pt )X → �∃M(M � ϕ). (ident)

Together, S-indes and ident imply Hellman’s principle:

ϕ pt → �∃M(M � ϕ). (MSR)

As Hellman notes (p. 272), however, MSR is inconsistent. Just like the ms-translation of
R2, it implies the ms-translation of comp.65

In response, Hellman proposes a restriction of MSR “to sentences. . . that are consis-
tent with. . . [ZFC2]” (p. 272, 2015). There are two ways to implement this restriction,
corresponding to two notions of consistency: semantic and syntactic.

If ϕ is semantically consistent with ZFC2, i.e., �∃M(M � ϕ), then: (MSRsem)

ϕ pt → �∃M(M � ϕ)
and:

If ϕ is syntactically consistent with ZFC2, i.e., (ZFC2 �� ¬ϕ)pt , then: (MSRsyn)

ϕ pt → �∃M(M � ϕ).
Since it is trivially true, MSRsem cannot be what Hellman has in mind. But, it turns out
that MSRsyn is inconsistent (Theorem 5.32).

3.1.2. Saving MSR from inconsistency. It might be tempting at this point to look for
other restrictions of MSR. But this strategy is unpromising. Any restriction should be well-
motivated, and it is unclear whether there are any well-motivated restrictions of MSR that
are strong and consistent. Indeed, even if MSRsyn were consistent, it would still have been
entirely mysterious why MSR held for sentences syntactically consistent with ZFC2, but
not for all sentences.

Once we give up on trying to find restrictions, it is easy to see that the problem with
Hellman’s suggestion is ident. Just as collapse is true in all possible ZFC2 structures, it
can also be true in a segment of them. In fact, it will be true in any segment of structures

65 Since each instance of comp is true in every possible M .
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MODAL STRUCTURALISM AND REFLECTION 837

without a greatest structure by end-extension. But, collapse is trivially false in any partic-
ular structure. So, ident is false. Nonetheless, I think S-indes suggests a crucial insight
for implementing reflection in the modal structural setting. Both S-indes and R2 are
instances of a much more general indescribability idea: namely, that whatever is true in all
entities of some kind, is true in a small collection of them. Call this the general reflection
principle. For S-indes, the entities in question are structures; for R2, they are classes and
sets. In contrast, neither MSR nor the ms-translation of R2 are instances of the general
reflection principle. For example, MSR says that when ϕ pt is true in all possible ZFC2
structures, then the distinct claim ϕ is true in the subpluralities and sets of some particular
ZFC2 structure.66 So, it is natural to take our question to be whether there are strong and
consistent instances of the general reflection principle in the modal structural setting. To
answer this question, I will start by formalising S-indes and calibrating its strength, and
then move on to look at other possible instances.

3.1.3. R�. Formalising S-indes is just a matter of formalising the notion of a segment
of structures. What constraints should we impose on such a formalisation? By analogy with
the Vαs used in R2, we might require that the segment be set-sized. Similarly, since the Vαs
are transitive, we might require that the segment be downward closed under structures in
the sense that whenever M ∈ X and M ′ � M , then M ′ ∈ X . The most natural way to
satisfy these constraints is by taking a segment of structures to be the structures in some
Vα , which in turn will be in some possible structure. So, the formalisation of S-indes will
say that if the ms-translation of ϕ is true in all possible ZFC2 structures, then it is true in
the ZFC2 structures in some Vα of some possible ZFC2 structure. For simplicity, I will
further assume that Vα satisfies the claim that every set is in some transitive set satisfying
ZFC2 (which I’ll abbreviate TransZFC2).67

For ϕ ∈ L�, let ϕ∗ be the result of deleting ϕ’s modal operators, and replacing its
second-order variables with first-order variables. Then, we can state the principle more
precisely as follows.

ϕ pt → �∃M∃α ∈ M(M � (TransZFC2 ∧ (ϕ pt )∗)Vα ) (1)

for sentences ϕ ∈ L2∈. Moreover, we can extend (1) to arbitrary formulas in L2∈ by rela-
tivising it to a structure.

If E M , �Y ⊆ M , �x ∈ M , and ϕ pt
M , then: (R�)

�∃M ′ � M∃�y, z, α ∈ M ′(M ′ � �y, z ≡ �Y , dom(M)∧z ∈ Vα∧(TransZFC2∧(ϕ pt
Z )

∗(�y, z))Vα ),

where ϕ ∈ L2∈’s free variables are among �x, �Y .
Unfortunately, R� is extremely weak. In particular, it is equivalent to the ms-translation

of R1 (Lemma 5.35). So, the main theorem extends to show that:

THEOREM 3.1. MSST + R� exactly interprets Z∗ + In + R1 via ms-translation. In other
words, MSST + R� proves ϕ pt if and only if Z∗ + In + R1 proves ϕ.68

It can be shown that Z∗ + In + R1 proves all �1 instances of Collection, but not all �2
instances (Lemmas 5.37 and 5.38). So, Theorem 3.1 implies that MSST + R� only proves
the ms-translations of instances of Collection of the two lowest levels of complexity. It can
also be shown that Z∗ + In + R1 proves the existence of the least upper bound of the first

66 Of course, ϕ pt and ϕ are related; but they are also very different claims.
67 See §5.3.1 Definition 5.
68 See Theorem 5.36.
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838 SAM ROBERTS

ω inaccessible cardinals, but not an inaccessible cardinal with arbitrarily large inaccessible
cardinals below it.69

3.1.4. Generalising R�. Are there stronger instances of the general reflection princi-
ple? There is reason to think not. In particular, there is a principle that appears to subsume
all such instances, but which is no stronger than R�. The principle says that whatever is
true, is true in some possible world structure. Formally,

ϕ → �∃M∃K ∈ M(M � ∃w ∈ K (w � ϕ)), (2)

where ϕ ∈ L� is a sentence and K is an S5 Kripke model in M . For simplicity, I will
assume that K ’s worlds are Vαs, that plural quantifiers at a world range over its subsets,
and that pairing terms are interpreted in the obvious way by set-theoretic ordered pairs.
Given this assumption, it is straightforward to verify that (2) implies the corresponding
instance of R�, because ϕ can be an ms-translation. In general, if we extend (2) to arbitrary
formulas as we did with R�, then that extension will imply all instances of R�. Moreover,
it is straightforward to modify the proof of Theorem 5.30 to show that this extension of (2)
is interpretable in Z∗+ In + R1. It follows that its addition to MSST would exactly interpret
Z∗+ In + R1, just like MSST + R�.

3.1.5. Summary. Given the failure of Hellman’s MSRsyn , I suggested that the prospects
for reflection principles in the modal structural setting turn on whether there are strong and
consistent instances of the general reflection principle. I then argued that there are not: that
instances of the general reflection principle in L� are extremely weak. In particular, that
they fail to interpret Collection.

§4. Conclusion. Modal structuralism promises an epistemology of mathematics. The
results in this article give us reason to be cautious about its success. In the first instance,
they show that the standard axioms need to be supplemented with something like the
stability principle S (Theorem 5.40), whose justification is unclear. Once S is added to
those axioms, a significant fragment of ZFC becomes interpretable, but many instances of
the axiom schema of Collection remain out of reach (the main theorem).70 In the second
instance, they show that one of the most promising ways to justify the axiom schema
of Collection and many of the small large cardinal hypotheses—namely, using reflection
principles—is unavailable to the modal structuralist (Theorem 3.1 and §3.1.4). Finally, they
show that the translations of second-order set theories involving a large number
of instances of the comprehension schema comp may simply be incompatible with modal
structuralism (Theorem 2.6 and §2.7.3). Although there is little consensus among set
theorists concerning second-order set theory, there is a growing interest in such theories.71

If they become accepted, this would be a serious problem for the modal structuralist.

§5. Technical appendix. This appendix contains proofs of the results mentioned in
the main text. I start with an axiomatisation of MSST. I then establish some results con-
cerning the ms-translations provable in a broad class of theories like MSST. Finally, I
establish similar results for reflection principles.

5.1. Preliminaries. The language of first-order set theory, L∈, has in addition to the
usual resources of first-order logic, the nonlogical membership relation ∈. It takes x ∈ y

69 It is straightforward to verify that if κ is such a cardinal, then Vκ models ZFC + In and thus Z∗ +
In + R1.

70 Moreover, these instances continue to be uninterpretable when we replace ZFC2 structures with
T structures for any plausible set theory T (Lemma 5.13 and the upper bound theorem).

71 For example, by Joel Hamkins and Victoria Gitmam.
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MODAL STRUCTURALISM AND REFLECTION 839

and x = y to be well-formed. The language of second-order set theory, L2∈, extends L∈
with second-order variables X, Y, Z , . . . etc. It takes x ∈ X to be well-formed, although
not X = Y .

I will use the following modified Levy hierarchy to measure the complexity of formulas
in L∈. If ϕ’s quantifiers are all of the form ∃x ∈ y, then it is �0, 
0, and �0. If its
quantifiers are all of the form ∃x ∈ y or ∃x ⊆ y, then it is�∗

0, 
∗
0 , and�∗

0. In general, if ϕ

is �(∗)n , then ∃�xϕ is 
(∗)n+1, and if ϕ is 
(∗)n , then ∀�xϕ is �(∗)n+1. A formula is �(∗)Tn , 
(∗)Tn ,

or �(∗)Tn if it is equivalent in the theory T to a �(∗)n , 
(∗)n , or to both a �(∗)n and a 
(∗)n ,
formula, respectively.72

Let ZFC be the L∈ theory consisting of Extensionality, Infinity, Pairing, Union, Power-
set, Foundation, Separation, Choice,73 and:

(Collection) ∀x∃yϕ(x, y, �z) → ∀u∃v(∀x ∈ u)(∃y ∈ v)ϕ(x, y, �z),
where ϕ’s free variables are among x, y, �z and where x, y, �z, u, v are all distinct.�(∗)n -Col
and 
(∗)n -Col denote the restriction of Collection to �(∗)n and 
(∗)n formulas, respectively.
Let ZFC2 denote the conjunction of the axioms of ZFC with Separation, Collection, and
Foundation replaced by their second-order formulations.74 Zermelo set theory (Z(2)) is
ZFC(2) minus Collection. T∗ is T plus the claim that every set is in some Vα .

5.2. An axiomatisation of MSST. MSST consists of four groups of axioms: a modal
logic, general axioms governing pluralities and ordered pairs, and specific axioms govern-
ing ZFC2 structures.

5.2.1. Logic. The underlying logic of MSST is a positive free S5 modal logic. More
precisely, its axioms are the instances in L� of the truth-functional tautologies, the S5
axioms,75 and the following quantificational and identity axioms (where x, y are either
both first- or second-order variables):

(L1) ∀y(∀xϕ → ϕ[y/x]), where y is free for x in ϕ
(L2) ∀x(ϕ → ψ) → (∀xϕ → ∀xψ)
(L3) ϕ ↔ ∀xϕ, where x is not free in ϕ
(L4) x = x
(L5) x = y → (ϕ[x/z] ↔ ϕ[y/z]), where x and y are free for z in ϕ.

The rules of inference are MP, from ϕ and ϕ → ψ infer ψ ; GEN, if ϕ is a theorem, then
so is ∀xϕ; and NEC, if ϕ is a theorem, then so is �ϕ.

REMARK 5.1. This version of S5 is sound and complete for Kripke models with variable
domains and a universal accessibility relation.76 Over the truth-functional tautologies,

72 Throughout the appendix I will claim that various notions have a certain complexity, giving a
partial or full justification where necessary. Where a partial justification is given, Kunen (2011)
can be used to fill it out.

73 I will take Choice to be the claim that every set has an enumeration. Formally,
∀x∃ f ( f is a function ∧ dom( f ) is an ordinal ∧ rng( f ) = x).

74 The second-order formulation of Foundation is ∀X (∃x(x ∈ X) → ∃x ∈ X∀y ∈ X (y �∈ x)).
75 That is: K (i.e., �(ϕ → ψ) → �ϕ → �ψ)—which is valid on all Kripke models—T (i.e.,
ϕ → �ϕ)—which corresponds to the frame condition on Kripke models that accessibility be
reflexive—and 5 (i.e., �ϕ → ��ϕ)—which corresponds to the frame condition on Kripke
models that accessibility be Euclidean (i.e., if x Ry and x Rz, then y Rz).

76 See Hughes & Cresswell (1996) Chapter 16. One useful feature of the logic is that it allows
for existential instantiation within the scope of modal operators. In particular, if ψ is provable

bib-hiwi-kops-01
Notiz
None festgelegt von bib-hiwi-kops-01

bib-hiwi-kops-01
Notiz
MigrationNone festgelegt von bib-hiwi-kops-01

bib-hiwi-kops-01
Notiz
Unmarked festgelegt von bib-hiwi-kops-01



840 SAM ROBERTS

A1-5 is an axiomatisation of positive free logic. Adding the schema Ex results in an
axiomatisation of classical logic.77

5.2.2. Pluralities.

(comp) ∃X∀x(x ∈ X ↔ ϕ)

(PL1) x ∈ X → �(E X → Ex ∧ x ∈ X)

(PL2) �∀x[�(x ∈ X) ↔ �(x ∈ Y )] → X = Y

(PL3) E X, Y ∧ X ⊆ Y → �(EY → E X ∧ X ⊆ Y ).78,79

from premises � and �(E�x ∧ ϕ) (where �x are not free in � or ψ), then ψ is provable from �
and �∃�xϕ. (Proof: Suppose ψ is provable from � and �(E�x ∧ ϕ) as above. By the deduction
theorem, �(E�x ∧ ϕ) → (

∧
�′ → ψ) is a theorem for some finite �′ ⊆ �. The S5 axioms

then imply (E�x ∧ ϕ) → �(
∧
�′ → ψ) (see Hughes & Cresswell (1996), p. 62) and thus

∃�xϕ → �(
∧
�′ → ψ). Similarly, S5 then implies that �∃�xϕ → (

∧
�′ → ψ) (see Hughes &

Cresswell (1996), p. 295). So ψ is provable from � and �∃�xϕ as required.)
77 The difference between classical and positive free logic can be ignored in many contexts. In

particular, a simple induction on the length of proofs shows that ϕ is provable from premises �
in classical S5 using MP and GEN just in case E�x → ϕ is provable from � in positive free logic
using MP and GEN (where ϕ’s free variables are among �x). So, we can reason classically as long
as all the relevant parameters exist and we do not appeal to NEC. Moreover, it follows that classical
and positive free logics agree on the sentences provable from any �, using just MP and GEN.

78 PL3 is redundant, but added for simplicity. Proof: The idea is to show that whenever Y exists,
we can use comp to get a subplurality of Y which is co-extensive with X . PL1 and PL2 can
then be used to show that Z is equal to X . More precisely, assume �(E X,Y ∧ X ⊆ Y ) and
�(E Z , Y ∧ Z = {x ∈ Y : �(x ∈ X)}). Suppose �(x ∈ X). By PL1 and S5, �(E X →
Ex ∧ x ∈ X). So, �(x ∈ Y ). By PL1 and S5, �(EY → Ex ∧ x ∈ Y ∧ �(x ∈ X)). So,
�(x ∈ Z). Conversely, let �(x ∈ Z). Again, �(E Z → Ex ∧ x ∈ Z). So, ��(x ∈ X) and thus
�(x ∈ X) by S5. Since “x” is not free in our assumptions and they are of the form �ϕ, we can
conclude in S5 that:

�∀x(�(x ∈ X) ↔ �(x ∈ Z))

and thus that X = Z by PL2. So, �(E X, Y ∧ X ⊆ Y ) implies:

(EY, Z ∧ Z = {x ∈ Y : �(x ∈ X)}) → X = Z ∧ X ⊆ Y

by S5. But ∃Z(Z = {x ∈ Y : �(x ∈ X)}), by comp. So:

�(E X, Y ∧ X ⊆ Y ) → (EY → (E X ∧ X ⊆ Y ))

and thus, by S5:
E X,Y ∧ X ⊆ Y → �(EY → E X ∧ X ⊆ Y ).

It is worth noting that PL3 does not follow from the weaker but more standard extensionality
principles for pluralities, like E X,Y ∧ ∀x(x ∈ X ↔ x ∈ Y ) → X = Y , �∀x(x ∈ X ↔ x ∈
Y ) → X = Y , and �∀x�(x ∈ X ↔ x ∈ Y ) → X = Y . (See Linnebo (2017) and Uzquiano
(2011).) Proof: consider an S5 Kripke model K with two worlds w0, w1, both with the first-order
domain {0, 1}. Let the pluralities at w0 be ∅, {0}, {1}, and {0, 1} and the pluralities at w1 be ∅, 3, {1},
and {0, 1}. At w0 and w1, we let ∅ contain nothing, {1} contain 1, and {0, 1} contain 0 and 1. At w0,
we let {0} contain 0, but at w1 we make it contain nothing; and at w1, we let 3 contain 0, but at w0
we make it contain nothing. So, K validates �∀x(�(x ∈ {0}) ↔ �(x ∈ 3)). It is straightforward
to check that K validates comp, PL1, and the other versions of PL2. Moreover, at w0, both {0} and
{0, 1} exist and {0} is a subplurality of {0, 1}; but, at w1, {0, 1} exists even though {0} does not. So,
K does not validate PL3.
79 Hewitt (2012) argues that PL1 is false. As he points out, however, PL1 does hold for “rigid”

pluralities. If necessary, the modal structuralist can re-interpret their second-order variables as
ranging over rigid pluralities, without loss.

bib-hiwi-kops-01
Notiz
None festgelegt von bib-hiwi-kops-01

bib-hiwi-kops-01
Notiz
MigrationNone festgelegt von bib-hiwi-kops-01

bib-hiwi-kops-01
Notiz
Unmarked festgelegt von bib-hiwi-kops-01



MODAL STRUCTURALISM AND REFLECTION 841

5.2.3. Pairs.

(P1) ∀x, x ′, y, y′(〈x, y〉 = 〈x ′, y′〉 ↔ (x = x ′) ∧ (y = y′))
(P2) ∀x, yE〈x, y〉
(P3) 〈x, y〉 ∈ X → �(E X → 〈x, y〉 ∈ X)
(P4) 〈x, y〉 = 〈x, y〉
(P5) τ = τ ′ → (ϕ[τ/z] ↔ ϕ[τ ′/z]), where τ, τ ′ are first-order terms free for z in ϕ.

REMARK 5.2. I have separated the identity axioms P4 and P5 from the logic because
they make substantial claims about the pairing operator. For example, on the mereological
reading, P5 essentially implies that fusions coding pairs cannot change their parts: if
x = 〈y, z〉, then �(x = 〈y, z〉). As I will point out below,80 however, the axioms other than
P3 turn out to be redundant in the sense that MSST with those axioms proves exactly the
same ms-translations as without them.

5.2.4. Existence, Extendability, and Stability. EXISTENCE (E)

�∃M(M = M)

THE EXTENDABILITY PRINCIPLE (EP)

�∀M∀X ⊆ M�∃M ′ � M∃x ∈ M ′(M ′ � x ≡ X) .

STABILITY (S)

[∀�x(ϕ ↔ ∀yϕ)]pt ,

where ϕ ∈ L∈’s free variables are among �x − {y}.

In addition these axioms, MSST has as axioms the result of prefixing any of them with a
sequence of ∀’s and �’s in any order. It follows that whenever ϕ is a theorem of MSST, so
are ∀xϕ and �ϕ.

5.2.5. MSSTT. MSST can be easily modified for theories other than ZFC2. Let MSSTT
denote the result of replacing ZFC2 structures in the MSST axioms with T structures
(where T is a sentence in L2∈). As I will show, many central results concerning MSST also
hold for a much broader class of theories of the form MSSTT.

5.3. The ms-translations provable in MSSTT. There are two primary results con-
cerning the ms-translations provable in MSSTT. The first sets a lower bound: it says that
MSSTT at least interprets a certain set theory ST via ms-translation. The second sets an
upper bound: it says that for a broad class of theories T, MSSTT at most interprets ST via
ms-translation. Before proving these results, I will state them more precisely and draw out
some of their consequences.

5.3.1. The lower bound theorem.

DEFINITION 5.3. For ϕ ∈ L2∈, let:

(i) ϕx abbreviate the claim that x satisfies ϕ. Formally: it is the result of replacing first-
order quantifiers ∃y in ϕ with ∃y ∈ x, occurrences of ∃Yψ(Y ) with ∃y ⊆ xψ(y),
and free second-order variables with first-order variables.

80 See the remarks at the end of §5.3.3.
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842 SAM ROBERTS

(ii) Transϕ abbreviate the claim that any sets x, y are in some transitive set satisfying
ϕ (formally, ∀x, y∃z(x, y ∈ z ∧ z is transitive ∧ ϕz)).

(iii) Sϕ denote Separation + Transϕ .

THEOREM 5.4 (The lower bound theorem). Let ϕ ∈ L∈ be a sentence. If ST proves ϕ, then
MSSTT proves ϕ pt .

ST is an extremely simple theory. Nonetheless, by adding various sentences to T, it can be
made to prove increasingly large fragments of ZFC. Ultimately, it can be made to prove all
of Z plus �0-Col. Let’s look at some examples.

It is a standard result, provable in logic alone, that �0 formulas are absolute for transitive
sets,81 and thus that 
1 formulas are upward absolute for transitive sets.82 It follows that:

Claim 1. If ϕ is a �2 sentence provable in T, then ST proves ϕ.

Proof. Suppose ϕ is a sentence of the form ∀�xψ where ψ is 
1. By TransT, any �x are
in some transitive set y satisfying T. Since ϕ is provable in T, y also satisfies ϕ and thus
ψ . So, ψ is true by the upward absoluteness of 
1 formulas. �

EXAMPLE 5.5. Extensionality and Foundation are �1; Infinity is 
1; and Pairing,
Union, and Choice are all �2, as is the Mostowski collapse lemma, which says that every
well-founded extensional structure is isomorphic to a transitive set.83

So, by the lower bound theorem and Claim 1, MSST proves the ms-translations of all
theorems of Z minus Powerset. But this also holds for MSSTT for theories T much weaker
than ZFC2. In particular, it is easy to see that Pairing and Union already follow from
ST. So, the lower bound theorem and Claim 1 imply that when T contains Extensionality,
Foundation, Infinity, and Choice, MSSTT also proves the ms-translations of all theorems
of Z minus Powerset.

REMARK 5.6. Given that ST proves Pairing and Union, it will prove that sequences
of universal quantifiers are equivalent to single universal quantifiers: that is, for any 
n

formula ϕ, it proves that ∀�xϕ is equivalent to ∀xψ for some 
n formula ψ . Similarly,
for existential quantifiers.84 Consequently, it also proves that 
n+1-Col is equivalent to
�n-Col.85

We can extend Claim 1 by requiring that the sets satisfying T in TransT are supertransitive:
that, in addition to being transitive, they contain any subset of any set they contain. In the
presence of Extensionality and Separation, it is straightforward to show that this is equiv-
alent to requiring that they satisfy second-order Separation in addition to being transitive.
Then, just as �0 formulas are absolute for transitive sets, it is easy to see that �∗

0 formulas

81 We say that ϕ is absolute for x when ∀�y ∈ x(ϕx ↔ ϕ), where ϕ’s free variables are among �y.
82 We say that ϕ is upward absolute for x when ∀�y ∈ x(ϕx → ϕ), where ϕ’s free variables are

among �y.
83 Formally, the Mostowski collapse lemma is: ∀x, y((Extensionality ∧

second-order Foundation)x,y → ∃ f ( f is a one–one function ∧ dom( f ) = x ∧
rng( f ) is transitive ∧ ∀z, w ∈ x(〈z, w〉 ∈ y ↔ f (z) ∈ f (w))).

84 See Devlin (1984), Lemma 8.9.
85 See Devlin (1984), Lemma 11.3, of which the mentioned result is a simple generalisation.
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MODAL STRUCTURALISM AND REFLECTION 843

are absolute for supertransitive sets, and thus that 
∗
1 formulas are upward absolute for

supertransitive sets. It follows as before that:

Claim 2. If ϕ is a �∗
2 sentence provable in T and T contains second-order Separation,

then ST + Extensionality proves ϕ.86

EXAMPLE 5.7. ∃x(x is transitive ∧ ϕx ) is 
∗
1 and thus so are ∃x(x is transitive ∧

(ZFC2)x ) and ∃x(x is transitive ∧ (Z2∗)x ). ∀x∃α(x ∈ Vα) is �∗
2,87 as are Powerset and

TransT.

So, by the lower bound theorem and Claims 1 and 2, MSST proves the ms-translations
of all theorems of Z. But again this also holds for theories T much weaker than ZFC2.
It is easy to see that Powerset already follows from ST + Extensionality when T contains
second-order Separation. So, the lower bound theorem and Claim 1 already imply that
when T contains Extensionality, Foundation, Infinity, Choice, and second-order Separation,
MSSTT proves the ms-translations of all theorems of Z.

REMARK 5.8. Recall that, in Z∗, an uncountable ordinal κ is a fixed point in the
enumeration of the � cardinals just in case κ = |Vκ |, and that κ is an inaccessible cardinal
just in case it is also regular. Now, in Z∗, we can show that a transitive set satisfies Z2∗
minus Choice just in case it is of the form Vλ for λ > ω a limit ordinal.88 It is then
straightforward to verify that Vλ satisfies Choice just in case λ = |Vλ|, and that it satisfies
Choice and Collection just in case λ = |Vλ| and λ is regular. So, in Z∗, the claim (Beth)
that there are arbitrarily large fixed points in the � enumeration has the �∗

2 formulation
∀x∃y(y is transitive ∧ x ∈ y ∧ (Z2∗)y), and the claim (In) that there are arbitrarily large
inaccessible cardinals has the �∗

2 formulation ∀x∃y(y is transitive ∧ x ∈ y ∧ (ZFC2)y).

86 Claims 1 and 2 are optimal: there are 
2 sentences ϕ which are unprovable in ST for
some T containing ϕ, Extensionality, and second-order Separation. Proof: Let T contain just
Extensionality, second-order Separation, and the 
2 sentence which says that there is a greatest
ordinal. Working in ZFC, first note that every Vn is supertransitive and contains a greatest
ordinal. Since “x is an ordinal” is �0, each Vn will satisfy T. Moreover, since “x is transitive”
is �0, and “ϕx ” is �∗

0, they will be absolute for the supertransitive Vω. So, Vω � ST. But,
Vω � “there is no greatest ordinal”.

87 In particular, it can be formulated as: ∀x∃y, z(y = Vz ∧ x ∈ y), where “x = Vy” is the �∗
0

(and 
2) formula “∃ f ⊆ x( f is a function ∧ dom( f ) is an ordinal ∧ y is an ordinal ∧ ∀α ∈
dom( f )( f (α) = ⋃{P( f (β)) : β ∈ dom( f )}) ∧ :

(i) y = dom( f ) ∧ x = ⋃{P( f (β)) : β ∈ dom( f )}∨
(ii) y = dom( f )+ 1 ∧ x = P(⋃{P( f (β)) : β ∈ dom( f )})∨

(iii) y = dom( f )+ 2 ∧ x = P(P(⋃{P( f (β)) : β ∈ dom( f )}))),
where “x = ⋃{P( f (β)) : β ∈ dom( f )}” is the �∗

0 (and �1) formula:

∀y ∈ x∃β ∈ dom( f )(y ⊆ f (β)) ∧ ∀β ∈ dom( f )∀z ∈
⋃ ⋃

f (z = f (β) → ∀y ⊆ z(y ∈ x))

and “x = P(⋃{P( f (β)) : β ∈ dom( f )})” is the �∗
0 (and 
2) formula:

∃z ∈ x(z =
⋃

{P( f (β)) : β ∈ dom( f )} ∧ x = P(z)),

where “x = P(y)” is the �∗
0 (and �1) formula “∀z(z ∈ x ↔ z ⊆ x)”. Similarly, for (iii). (See

(Kanamori, 2003, p. 314)).
88 See Theorem 6 in Uzquiano (1999) and (Drake (1974), p. 112).
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844 SAM ROBERTS

It follows from Claims 1 and 2 that SZFC2 proves ∀x∃α(x ∈ Vα) and In. So, SZFC2 = Z∗ +
In. Similarly, it follows that SZ2∗ proves ∀x∃α(x ∈ Vα) and Beth. So, SZ2∗ = Z∗ + Beth.

Finally, we can extend Claim 2 by requiring that 
1 formulas are absolute for the sets
satisfying T in TransT.

DEFINITION 5.9. Let T ≺1 V be the schema which says that 
1 formulas are absolute for
transitive sets satisfying T. Formally:

∀x((x is transitive ∧ Tx ) → ∀�y ∈ x(ϕx ↔ ϕ)),

where ϕ is 
1 with free variables among �y.

Claim 3. If ϕ is a �3 sentence provable in T, then ST + T ≺1 V proves ϕ.89

EXAMPLE 5.10. All instances of �0-Col are �3, as are Powerset, ∀x∃α(x ∈ Vα), and
TransZFC2. Note also that each instance of Z2∗ ≺1 V and ZFC2 ≺1 V are �2.

So, by the lower bound theorem and Claims 1 and 3, MSST proves the ms-translations of
all theorems of Z + �0-Col (because each instance of ZFC2 ≺1 V is provable in ZFC).90

But this also holds for theories weaker than ZFC2. It is easy to see that all instances of
�0-Col already follow from ST + T ≺1 V . And there are relatively weak theories T for
which ST proves T ≺1 V . The simplest example is Z2∗.

LEMMA 5.11. SZ2∗ proves Z2∗ ≺1 V , and thus all instances of �0-Col.

Proof. As usual, let Hκ = {x : |tc(x)| < κ}, where tc(x) is the transitive closure of x .
It is a standard result in ZFC that 
1 formulas are absolute for Hκ when κ > ω.91 I will
reprove that result in SZ2∗ = Z∗ and then show that when x is a transitive set satisfying
Z2∗, x = Hκ for some κ > ω.

Working in Z∗, we can prove the Mostowski collapse lemma. To see this, suppose
that 〈D, R〉 is a well-founded extensional structure with |D| = κ . (Recall that, on the
formulation I am employing, Choice says that every set is equinumerous with an ordinal.
This means κ+ exists for any κ .) A simple induction shows that the range of any collapsing
function from 〈D, R〉—i.e., a function f for which dom( f ) = D, rng( f ) is transitive, and
∀x, y ∈ D(〈x, y〉 ∈ R ↔ f (x) ∈ f (y)))—will be contained in Hκ+ (which exists because
Hα+ ⊆ Vα+ , for any α). So, we can construct such a function by transfinite recursion
using Separation on D × Hκ+ . Now, let �x ∈ Hκ for κ > ω and suppose there is some
y for which ϕ(�x) (where ϕ is �0 with free variables among y, �x). Let Vα contain y and
�x . Then, because ϕ is �0, (∃yϕ(�x))Vα . Let M be an elementary substructure of Vα with

89 Claim 3 is optimal: there are T containing
3 sentences ϕ which are unprovable in ST + T ≺1 V .
Proof: Let T be ZFC2 plus the claim that there are at most finitely many transitive sets satisfying
ZFC2. Formally: ∃ f, n( f is a function ∧dom( f ) = n ∧∀x((x is transitive ∧ (ZFC2)x ) → x ∈
rng( f ))) (which we can abbreviate as �). It is easy to see that � is 
3, since “(ZFC2)x ” is �1.
Working in ZFC plus the claim that there are ω inaccessibles, let 〈κn : n < ω〉 enumerate the first
ω inaccessibles and let κω be their least upper bound. Since the Vκ s for κ inaccessible, are exactly
the transitive sets satisfying ZFC2, there are precisely n many transitive sets satisfying ZFC2 in
Vκn : namely, the Vκm s for m < n. Moreover, the function f enumerating these Vκm s will exist in
Vκn . But “x is transitive” is �0 and “ϕx ” is �∗

0. So, they will be absolute for supertransitive Vα .
Thus, Vκn � � but Vκω � ¬�. Finally, by Lemma 5.11 below, ST proves T ≺1 V .

90 See, for instance, (Kanamori, 2003, p. 299).
91 This was first established by Lévy (1965). See also (Kanamori, 2003, p. 299).

bib-hiwi-kops-01
Notiz
None festgelegt von bib-hiwi-kops-01

bib-hiwi-kops-01
Notiz
MigrationNone festgelegt von bib-hiwi-kops-01

bib-hiwi-kops-01
Notiz
Unmarked festgelegt von bib-hiwi-kops-01



MODAL STRUCTURALISM AND REFLECTION 845

tc( �{x}) ⊆ M and |M | = |tc( �{x}) × ω| < κ , and let i be a collapsing function from M .
Then, rng(i) is transitive, of size < κ , and thus in Hκ . Moreover, (∃yϕ(i(�x)))rng(i). A
simple induction shows that i is the identity on tc( �{x}) ⊆ M . So, (∃yϕ(�x))rng(i) and thus
(∃yϕ(�x))Hκ (because ϕ is �0 and so absolute between rng(i) and Hκ ).

Recall that a transitive set satisfies Z2∗ just in case it is of the form Vκ for κ > ω
with κ = |Vκ |. It follows that κ is a limit cardinal (because it is

⋃
α<κ |Vα|). So, Hκ =⋃

λ<κ Hλ. Thus, because Hλ+ ⊆ Vλ+ for any λ, it follows that Hκ ⊆ Vκ . Conversely, if
x ∈ Vκ , then x ∈ Vα for some α < κ . But, |tc(x)| ≤ |Vα| < |Vκ | = κ . So, x ∈ Hκ . Thus,
Vκ = Hκ . �
So, by the lower bound theorem, Claims 1 and 2, and Lemma 5.11, MSSTZ2∗ proves the
ms-translations of all theorems of Z∗ + Beth + �0-Col.

Instances of �0-Col signal an insuperable limit on the amount of Collection provable in
ST. In particular, it turns out that for any T, ST either contradicts a theorem of ZFC or fails
to prove all instances of �1-Col. To show this, I need the following simple lemma.

LEMMA 5.12. Suppose that any sets are in some supertransitive set. Then,�∗
0 formulas

have �2 formulations.

Proof. Let ϕ be �∗
0 with free variables among �y, and assume that any sets are in some

supertransitive set. Then, since �∗
0 formulas are absolute for supertransitive sets, ϕ is

equivalent to both ∃x(x is supertransitive ∧ �y ∈ x ∧ϕx ) and ∀x((x is supertransitive ∧ �y ∈
x) → ϕx ), which are 
2 and �2, respectively (because “x is supertransitive” is �1). �

LEMMA 5.13. If ST is consistent with Z∗, then it fails to prove all instances of �1-Col.

Proof. Let Z∗
T be Z∗ + TransT. I will start by showing that if Z∗

T is consistent, then it
fails to prove that there is a supertransitive set satisfying all of its axioms other than Separa-
tion.92 Formally, ∃x(x is supertransitive ∧ (ZT − Separation)x ), which we can abbreviate
as ∃x�(x). I will then show that Z∗

T + �1-Col does prove ∃x�(x). It follows immediately
from these two claims that Z∗

T fails to prove all instances of �1-Col, if consistent.
So, suppose Z∗

T proves ∃x�(x). Working in Z∗
T, let x be a least set for which�(x). Since

x is supertransitive, it satisfies each instance of Separation and thus each axiom of Z∗
T. So,

(∃y�(y))x . Now, “x is supertransitive” and “(Z∗
T − Separation)x ” are both absolute for

x , since they are �∗
0 and �0, respectively. So, ∃y ∈ x�(y), contradicting the minimality

of x .
Since every set is in some Vα , a simple induction shows that for each n there is an n-

length sequence f of Vαs such that both f (n) and a function enumerating f (n) are in a
transitive set satisfying T in f (n+1). Formally: ∀n∃ f ( f is a function ∧dom( f ) = n+1∧:

• ∀m ≤ n∃x ⊆ f (n)( f (n) = Vx )∧
• ∀m < n∃y ∈ f (m+1)(y is transitive ∧Ty∧ f (m) ∈ y∧∃ f ′, z ∈ y(z is an ordinal ∧

f ′ is a function ∧ dom( f ′) = z ∧ rng( f ′) = f (m))).

Abbreviate this as ∀n∃ f�(n, f ). Since “x = Vy” and “Tx ” are�∗
0,�(n, f ) is�∗

0 and thus

Z∗

2 by Lemma 5.12 (because the Vαs are supertransitive). So, because �1-Col is equiv-
alent to 
2-Col, it follows that there is a set containing such a function for each n. Using

92 This could also be shown using Gödel’s second incompleteness theorem.
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846 SAM ROBERTS

these functions, we can finally construct anω-sequence of the same kind: namely, for which
f (n) is a Vα , and both f (n) and a function enumerating f (n) are in some transitive set
satisfying T in f (n +1). It is then straightforward to check that when f is such a sequence,⋃

n<ω f (n) is a Vλ satisfying Z∗
T. In particular, we get that Vλ satisfies Choice because

f (n + 1) contains a function enumerating f (n). Thus, Vλ is a witness to ∃x�(x). �

5.3.2. The upper bound theorem. Can MSSTT go beyond ST? In particular, can it
prove the ms-translations of all theorems of ZFC? It turns out that in a broad class of
cases, it cannot. Let S+

T be ST plus TransPairing and the Mostowski collapse lemma.

THEOREM 5.14 (The upper bound theorem). Let ϕ ∈ L∈ be a sentence, and suppose
T proves Extensionality and second-order Foundation. If MSSTT proves ϕ pt , then S+

T
proves ϕ.

By Claim 1, ST proves the Mostowksi collapse lemma when it is provable in T. So, when
T proves Pairing and the Mostowski collapse lemma, S+

T = ST. It follows from the lower
and upper bound theorems that:

COROLLARY 5.15. Let ϕ ∈ L∈ be a sentence, and suppose T proves Extensionality,
second-order Foundation, Pairing, and the Mostowski collapse lemma. MSSTT proves
ϕ pt if and only if ST proves ϕ.

The main theorem is then immediate from this corollary and the fact that SZFC2 = Z∗ + In.

THEOREM 5.16 (The main theorem). Let ϕ ∈ L∈ be a sentence. MSST proves ϕ pt if and
only if Z∗ + In proves ϕ.

Similarly, it follows that:

THEOREM 5.17. Let ϕ ∈ L∈ be a sentence. MSSTZ2∗ proves ϕ pt if and only if Z∗ + Beth
proves ϕ.

Since Z∗ + In and Z∗ + Beth both prove all instances of �0-Col but both fail to prove
some instance of �1-Col, there is a sense in which MSST and MSSTZ2∗ prove the ms-
translations of the maximum and same amount of ZFC.

5.3.3. Proof of the lower bound theorem. A number of questions in MSSTT turn on
whether notions like Y � ϕ, Y � Y ′, and ϕ pt

Y , are invariant between possible worlds. For
example, in §2.5.1, we saw that the truth of:

(∃x∀y(y �∈ x))pt

relied on the invariance of M � y �∈ x (which is to say, 〈y, x〉 �∈ M) between worlds
where M exists and x, y ∈ M . The following lemma shows that in MSSTT a broad class
of notions are invariant between worlds.

DEFINITION 5.18. Say that ϕ ∈ L� with free variables among �x is invariant if:

�∀�x(ϕ → �(E�x → ϕ)).

DEFINITION 5.19. Say that ϕ ∈ L� ∪ L2∈ is quasi-modalised if its quantifiers are either
bounded—i.e., of the form ∃x ∈ y, ∃x ∈ Y , or ∃X ⊆ Y —or modalised—i.e., of the form
�∃�x or �∃ �X. (When a formula contains only bounded quantifiers, I will call it bounded.)

LEMMA 5.20 (MSSTT). All quasi-modalised formulas in L� are invariant.
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MODAL STRUCTURALISM AND REFLECTION 847

Proof. By induction on the complexity of ϕ, I will show that MSSTT proves:

E�x ∧ ϕ → �(E�x → ϕ)

whenever ϕ ∈ L� is quasi-modalised with free variables among �x. For x ∈ X and 〈x, y〉 ∈
X , this is immediate from PL1 and P3; for x = y and τ = τ ′, from L4 and L5, and P4
and P5. The conjunction, negation, �, and �∃�x cases are trivial in S5, given the induction
hypothesis. For ∃y ∈ Yϕ, suppose E�x, Y, y ∧ y ∈ Y ∧ ϕ. By the induction hypothesis and
P3, it follows that �(E�x, Y → Ey ∧ y ∈ Y ∧ ϕ) and thus that �(E�x, Y → ∃y ∈ Yϕ).
The case for ∃Z ⊆ Y is proved similarly using P4. �
So, MSSTT proves that Y � ϕ and ϕ pt

Y are invariant, since each is quasi-modalised. Strictly
speaking, Y � Y ′ is not quasi-modalised, because it involves ∃Z(Z = X). However, it is
easy to see that ∃Z(Z = X) is equivalent to ∃Z ⊆ X (Z = X). So, if we let E X abbreviate
that formula instead, as I will from now on, Y � Y ′ becomes quasi-modalised, and thus
invariant.

Using Lemma 5.20, a simple induction shows that in MSSTT, (∀�zϕ)pt
M is equivalent to

�∀M ′ � M∀�z ∈ M ′ϕ pt
M ′ (when E M , �x ∈ M , and �Y ⊆ M , and where ϕ ∈ L2∈ with free

variables among �z).

In the previous section, I pointed out that �0 formulas are absolute for transitive sets.
The next lemma establishes an analogue of this result for the ms-translations of bounded
formulas.

LEMMA 5.21 (MSSTT). Suppose E M, �x ∈ M, and �X ⊆ M. Then:

(M � ϕ) ↔ ϕ
pt
M ,

where ϕ ∈ L2∈ is bounded, with free variables among �x, �X.

Proof. By induction on the complexity of ϕ. The only difficult cases are the right-to-left
directions for ∃x ∈ y, ∃x ∈ Y , and ∃X ⊆ Y . For the first, suppose E M , �x ∈ M , �X ⊆ M ,
and (∃z ∈ yϕ)pt

M , that is:

�∃M ′ � M∃z ∈ M ′(z ∈ y ∧ ϕ)pt
M ′,

where ϕ’s free variables and y are among �x, �X . By PL1 and PL3, �x and �X exist and are
elements and subpluralities of M whenever M exists. So, by the induction hypothesis:

�∃M ′ � M(E �x, �X ∧ �x ∈ M ∧ �X ⊆ M ∧ M ′ � ∃z ∈ yϕ).

It is easy to see that just as �0 formulas are absolute for transitive sets, bounded formulas
are absolute between structures M and M ′ when M � M ′.93 Thus:

�(E M, �x, �X ∧ M � ∃z ∈ yϕ).

Finally:

M � ∃x ∈ yϕ

by Lemma 5.20. The cases for ∃x ∈ Y and ∃X ⊆ Y are proved similarly. �

93 That is, ∀�x ∈ M∀ �X ⊆ M(M � ψ ↔ M ′ � ψ) when M � M ′ and ψ ∈ L2∈ is bounded with free
variables among �x, �X .
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848 SAM ROBERTS

I also noted in the previous section that �∗
0 formulas are absolute for supertransitive sets.

It is easy to see that when T contains Extensionality and second-order Separation, Lemma
5.21 extends to formulas containing quantifiers of the form ∃x ⊆ y in addition to bounded
quantifiers. For in that case, M will be a supertransitive substructure of M ′ whenever
M � M ′.94

It is an immediate consequence of S that the ms-translations of formulas in L∈ are stable
between end-extensions: that is, ϕ pt

M ↔ ϕ
pt
M ′ whenever M � M ′ and �x ∈ M for ϕ ∈ L∈

with free variables among �x . The next lemma extends this to bounded formulas in general.

LEMMA 5.22 (MSSTT). Suppose M � M ′, �x ∈ M, and �X ⊆ M. Then:

ϕ
pt
M ↔ ϕ

pt
M ′ ,

where ϕ ∈ L2∈ is bounded, with free variables among �x, �X.

Proof. This is immediate from Lemma 5.21 and the fact that bounded formulas are
absolute between M and M ′ whenever M � M ′. �
When S is extended to second-order formulas, we can show that the ms-translation of a
second-order formula is equivalent to the ms-translation of its first-orderisation (Theorem
5.33). The next lemma establishes this for bounded formulas.

LEMMA 5.23 (MSSTT). Suppose E M, �x, �y ∈ M, �Y ⊆ M, and M � �y ≡ �Y . Then:

ϕ
pt
M ↔ (ϕ∗)pt

M ,

where ϕ ∈ L2∈ is bounded, with free variables among �x, �Y .

Proof. By induction on the complexity of ϕ. The only difficult cases are those for
the quantifiers. So, suppose M, �x, �y, �Y are as in the lemma, which we can abbreviate as
�(M, �x, �y, �Y ). Suppose also that (∃Z ⊆ Yϕ)pt

M . By PL1 and PL3, �x, �y, �Y exist whenever
M does; and so, by Lemma 5.20, �(M, �x, �y, �Y ) holds whenever M exists (because � is
bounded and so quasi-modalised). Thus:

�∃M ′ � M∃Z ⊆ M ′((Z ⊆ Y ∧ ϕ)pt
M ′ ∧ E �x, �y, �Y ∧�(M, �x, �y, �Y )).

Similarly, if M ′ � M and E Z ∧ Z ⊆ M ′, then �x, �y, �Y , Z will exist whenever M ′ exists;
and so if M ′ � M and E Z ∧ Z ⊆ M ′, then Z ⊆ M ′, (Z ⊆ Y ∧ ϕ)

pt
M ′ , M ′ � M , and

�(M, �x, �y, �Y ) will hold whenever M ′ exists (because “Z ⊆ M ′”, “(Z ⊆ Y ∧ ϕ)
pt
M ′”,

“M ′ � M”, and “�(M, �x, �y, �Y )” are quasi-modalised). Thus, by EP:

�∃M ′ � M∃Z ⊆ M ′�∃M ′′ � M ′∃z ∈ M ′′(M ′′ � z ≡ Z∧ :

(Z ⊆ Y ∧ ϕ)pt
M ′ ∧ E �x, �y, �Y , Z ∧ Z ⊆ M ′ ∧ M ′ � M ∧�(M, �x, �y, �Y )).

By the transitivity of �, it will be the case that M � M ′′, and thus that�(M ′′, �x, �y, z, �Y , Z)
(because “�y ≡ �Y ” is bounded). Moreover, it will follow from Lemma 5.22 that (Z ⊆
Y ∧ ϕ)pt

M ′′ . So, the induction hypothesis will imply that (z ⊆ y ∧ ϕ∗)pt
M ′′ . Thus:

�∃M ′′ � M∃z ∈ M ′′(z ⊆ y ∧ ϕ∗)pt
M ′′,

which is to say ((∃Z ⊆ Yϕ)∗)pt
M . The proof of the right-to-left direction uses comp to

define Z instead of EP to get z. Other bounded quantifiers are handled similarly. �

94 That is, in addition to M � M ′, for any x ∈ M and y ∈ M ′ such that M ′ � y ⊆ x , y ∈ M .
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MODAL STRUCTURALISM AND REFLECTION 849

THEOREM 5.24 (The lower bound theorem). Let ϕ ∈ L∈ be a sentence. If ST proves ϕ,
then MSSTT proves ϕ pt .

Proof. By induction on the length of proofs in ST, I will show that MSSTT proves

E M, �x ∧ �x ∈ M → ϕ
pt
M (*)

when ST proves ϕ with free variables among �x . It follows that MSSTT proves ϕ pt
∅ when

ST proves ϕ, for sentences ϕ ∈ L∈. To see this, first note that since MSSTT’s theorems
are closed under GEN and NEC, if it proves E M → ϕ

pt
M , it will also prove �∀M � ∅ϕ pt

M .
Then, working in MSSTT, suppose ¬ϕ pt

∅ . By S, �∀M � ∅¬ϕ pt
M . So, �∃M � ∅(ϕ pt

M ∧
¬ϕ pt

M ) by E, which is impossible.

Case 1: Logic.
Axioms. Since ms-translation commutes with the connectives, it is easy to see that (*)
holds for the truth-functional tautologies. It is also straightforward to see that it holds
for instances of L1, L2, L4, L5, and Ex . It holds for instances of L3 because S is its
ms-translation.
Rules of inference. Applications of MP are trivially preserved. So, suppose MSSTT
proves E M, �x, y ∧ �x, y ∈ M → ϕ

pt
M . Since MSSTT’s theorems are closed under GEN

and NEC, it also proves:

�∀M ′ � M(E �x ∧ �x ∈ M ′ → ∀y ∈ M ′ϕ pt
M ′). (3)

PL1 and the definition of end-extension imply �x ∈ M → �∀M ′ � M(E �x ∧ �x ∈ M ′).
So, together with (3), that gives us:

E M, �x ∧ �x ∈ M → (∀yϕ)pt
M .

Case 2: Separation.
Suppose E M, �x, y and �x, y ∈ M , where ϕ’s free variables are among �x, y. Given comp,
let E X and X = {z ∈ M : (z ∈ y ∧ ϕ)pt

M }. By EP:

�∃M ′ � M∃w ∈ M ′(M ′ � w ≡ X).

By PL3, X will exist and be a subplurality of M whenever M � M ′. So, because
“w ≡ X” is bounded, Lemma 5.21 implies:

�∃M ′ � M∃w ∈ M ′(w ≡ X)pt
M ′,

which is to say:

�∃M ′ � M∃w ∈ M ′�∀M ′′ � M ′∀z ∈ M ′′(M ′′ � z ∈ w ↔ z ∈ X).

Now, if M ′ � M , then E �x, y, X , �x, y ∈ M , X ⊆ M , M ′ � M , and X = {z ∈ M :
(z ∈ y ∧ϕ)pt

M } will all hold whenever M ′ exists by PL1, PL3, and Lemma 5.20 (because
“M ′ � M” and “X = {z ∈ M : (z ∈ y ∧ ϕ)pt

M }” are quasi-modalised). So, if M ′′ � M ′,
then E �x, y, X , �x, y ∈ M , X ⊆ M , M ′′ � M , and X = {z ∈ M : (z ∈ y ∧ ϕ)

pt
M }.

Moreover, if E �x, y, X , �x, y ∈ M , and M � M ′′, then:

{z ∈ M : (z ∈ y ∧ ϕ)pt
M } = {z ∈ M ′′ : (z ∈ y ∧ ϕ)pt

M ′′ }.
To see this, note that in this case S implies (z ∈ y ∧ ϕ)pt

M is equivalent to (z ∈ y ∧ ϕ)pt
M ′′

for any z ∈ M ; and if M � M ′′ and y ∈ M , then z ∈ M for any z ∈ M ′′ for which
(z ∈ y)pt

M ′′ (i.e., M ′′ � z ∈ y).
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850 SAM ROBERTS

Putting these observations together, we get:

�∃M ′ � M∃w ∈ M ′�∀M ′′ � M ′∀z ∈ M ′′((M ′′ � z ∈ w) ↔ (z ∈ y ∧ ϕ)pt
M ′′),

which is to say (∃w(w = {z ∈ y : ϕ}))pt
M .

Case 3: TransT.
Suppose that E M and x, y ∈ M . By EP:

�∃M ′ � M∃z ∈ M ′(M ′ � z ≡ dom(M) ∧ z is transitive).

Since “M � T” is bounded, it follows from Lemma 5.20 that:

�∃M ′ � M∃z ∈ M ′(M ′ � (z ≡ dom(M) ∧ z is transitive ∧ dom(M) � T)).

Then, because “z is transitive ∧dom(M) � T” is bounded, Lemma 5.21 implies:

�∃M ′ � M∃z ∈ M ′(M ′ � z ≡ dom(M) ∧ (z is transitive ∧ dom(M) � T)pt
M ′).

Finally, Lemma 5.23 and the fact that “(dom(M) � T)∗(z)” is just “Tz” imply:

�∃M ′ � M∃z ∈ M ′(z is transitive ∧ Tz)
pt
M ′ . �

REMARK 5.25. Let L−
� be L� minus the paring terms 〈x, y〉 plus the three-place

relation 〈x, y〉 ∈ X. Furthermore, let MSST−
T be MSSTT minus the pairing axioms P1,

P2, P4, P5. It is easy to see that Lemma 5.20 is provable in MSST−
T for quasi-modalised

formulas in L−
�; and since that lemma is only used in the subsequent results for notions

in L−
�—like M � M ′, ϕ pt

M , and M � T—it is straightforward to check that those results
also hold for MSST−

T . So, MSST−
T proves the ms-translations of all theorems of ST. It

follows from the upper bound theorem and Claim 1 that when T proves Extensionality,
second-order Foundation, Pairing, and the Mostowski collapse lemma, MSST−

T proves
the ms-translations of all and only the theorems of ST. So, in that case, MSSTT and
MSST−

T prove the same ms-translations.

5.3.4. Proof of the upper bound theorem. I will first establish a natural interpretation
of MSSTT into ST + TransPairing + the Mostowski collapse lemma when T contains
Extensionality and second-order Foundation. As I will show, the most obvious translation
from L� to L∈, which takes possible worlds to be transitive sets closed under pairing,
plural quantification over those sets to be first-order quantification over their subsets, and
pairs 〈x, y〉 to be set-theoretic ordered pairs, is just such an interpretation.

DEFINITION 5.26. Unless otherwise stated, I will assume that T contains Extensionality
and second-order Foundation. Let S+

T be ST + TransPairing + the Mostowski collapse
lemma.95 By Claim 1, S+

T proves Extensionality. So, since it also proves Pairing, it can
be definitionally expanded with the standard axioms for 〈, 〉. Let a world be a nonempty
set closed under pairing, and let w,w′, w′′, . . . etc range over them. Then, let tr

z be the
following translation from L� to the expanded language.96

95 ST proves Pairing and Union, and by Claim 1, Extensionality and Foundation. See §5.3.1.
96 This translation closely follows Linnebo (2013, p. 20).
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MODAL STRUCTURALISM AND REFLECTION 851

• xtr
z = x

• 〈x, y〉tr
z = 〈x, y〉

• Y tr
z = y

• tr
z commutes with the atomic predicates and the connectives

• (∃xϕ)trz = ∃x ∈ zϕtr
z

• (∃Yϕ)trz = ∃y ⊆ zϕtr
z

• (�ϕ)trz = ∃w ⊇ zϕtr
w (making sure to avoid clashes of variables).

So, the translation just replaces all quantifiers with first-order quantifiers and then restricts
them appropriately to worlds. As the next lemma shows, this restriction is redundant for a
broad class of formulas.

DEFINITION 5.27. For ϕ ∈ L�, let ϕ∗ be the result of deleting the modal operators in ϕ
and replacing second-order variables with first-order variables.

LEMMA 5.28 (S+
T ). Suppose �y ⊆ w. Then:

ϕtr
w ↔ ϕ∗

when ϕ ∈ L� is quasi-modalised with free variables among �x, �Y .

Proof. By induction on the complexity of ϕ. The only difficult cases are those for the
quantifiers. So, supposew, �y, and (�∃Zϕ) are as in the lemma. Suppose, also that (�∃Zϕ);
that is:

∃w′ ⊇ w∃z ⊆ w′ϕtr
w′ .

So, by the induction hypothesis, ∃zϕ∗, which is to say (�∃Zϕ)∗. Now, suppose ∃zϕ∗. By
TransPairing , there is a w′ ⊇ w ∪ {z}. So, ϕtr

w′ , by the induction hypothesis, and thus
(�∃Zϕ)trw . The cases for the other quantifiers are proved similarly. �

This lemma shows that the translations of notions like X, Y � ϕ, M � M ′, and ϕ pt
Y in L�

are equivalent to their obvious analogues in L∈. For example, it shows that (X, Y � ϕ)trw is
the result of binding ϕ’s first-order quantifiers to x , replacing its second-order quantifiers
with first-order quantifiers over subsets of x , replacing occurrences of w ∈ z with 〈w, z〉 ∈
y, and replacing free second-order variables with first-order variables. I will use the same
notation for these notions in L∈.97

The next lemma shows that in S+
T , truth throughout the T structures is equivalent to truth

in the universe of sets.98

LEMMA 5.29 (S+
T ). Let j be a collapsing function for M with �x ∈ M and �y ⊆ M.99

Then:

(ϕ
pt
M )

∗ ↔ ϕ∗( �j (x), �j[y]),

where ϕ ∈ L∈ with free variables among �x, �Y , and j[y] = {j (z) : z ∈ y}.
Proof. By induction on the complexity of ϕ. The only difficult cases are those for the

quantifiers. So, suppose M, �x, �y, j , and ∃zϕ are as in the lemma. Suppose also (∃zϕ pt
M )

∗;

97 I will also sometimes use x � ϕ to mean ϕx , which is just x, y � ϕ without the re-interpretation
of ∈ according to y. Context will make clear which notion is intended.

98 See §2.3 and §2.7.4.
99 A collapsing function for M = x, y is a function f with dom( f ) = x , rng( f ) is transitive, and

∀z, z′ ∈ x(〈z, z′〉 ∈ y ↔ f (z) ∈ f (z′))).
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that is:

∃M ′ � M∃z ∈ M ′(ϕ pt
M ′)∗.

The Mostowksi collapse lemma implies that there is a collapsing function i from M ′, since
T contains Extensionality and second-order Foundation. It follows from the induction
hypothesis that ∃zϕ∗( �i(x), �i[y]). But, since M � M ′, a simple induction on M shows
that i agrees with j on M . So, (∃zϕ)∗( �j (x), �j[y]). Now, suppose (∃zϕ)∗( �j (x), �j[y]). By
TransT, there is a transitive set y satisfying T and containing M , z, and rng( j). We can use
y to construct an isomorphic end-extension M ′ of M as follows. First, let t be any set not in
y. Then, let dom(M ′) = dom(M)∪{〈t, x〉 : x ∈ y \ rng( j)},100 and let i : dom(M ′) → y
be such that i(x) = j (x) when x ∈ dom(M) and i(〈w, x〉) = x otherwise. Moreover, let
M ′ = {〈x, y〉 ∈ dom(M ′)× dom(M ′) : i(x) ∈ i(y)}. It is easy to see that i is a collapsing
function for M ′ which agrees with j on M . It follows from the induction hypothesis that
(ϕ

pt
M ′)∗(i−1(z), �x, �y). It is also easy to see that M ′ is a T structure end-extending M . So,

((∃zϕ)pt
M )

∗. The case for ∃Z is handled similarly. �

THEOREM 5.30. S+
T proves the tr -translations of all theorems of MSSTT.

Proof. By induction on the length of proof, I will show that S+
T proves:

w is a world → ϕtr
w (*)

when ϕ is a theorem of MSSTT.

Case 1: Logic.
Axioms. It is straightforward but tedious to show that (*) holds for all the axioms of
MSSTT’s underlying logic. The assumption that w is nonempty is used for right-to-left
direction of the logical axiom for vacuous quantification, L3.
Rules of inference. It is also easy to see using GEN that applications of NEC, GEN, and
MP are preserved.
Case 2: Axioms for pluralities and pairing.
It is again straightforward but tedious to show that (*) holds for all of the pairing and
plurality axioms. We use the fact that w is transitive and satisfies Pairing for the pairing
axioms, Separation for comp, Extensionality for PL2.
Case 3: E, EP, and S.
By Lemma 5.28, it suffices to show that (*) holds for E∗, EP∗, and ϕ∗ for instances ϕ
of S (because E, EP, and ϕ are quasi-modalised).

E∗. By TransT, there is a set x satisfying T. Thus, x,∈ ∩x × x witnesses E∗.
EP∗. Let x ⊆ dom(M). By the Mostowski collapse lemma, there is a collapsing func-

tion j for M . By TransT, there is a transitive set y satisfying T and containing
dom(M), rng( j), and j[x]. As in the proof of Lemma 5.29, we can use y to
construct an isomorphic end-extension M ′ of M . Clearly, x will form a set in M ′
since j[x] forms a set in y.

S∗. Let ϕ pt be an instance of S. Since ϕ is a logical truth, it follows from Lemma
5.29 that (ϕ pt )∗. �

100 The product x × y of any two sets exists by TransPairing .
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MODAL STRUCTURALISM AND REFLECTION 853

THEOREM 5.31 (The upper bound theorem). Let ϕ ∈ L∈ be a sentence, and suppose
T proves Extensionality and second-order Foundation. If MSSTT proves ϕ pt , then S+

T
proves ϕ.

Proof. Immediate from Theorem 5.30 and Lemmas 5.28 and 5.29. �

5.4. The ms-translations provable with reflection principles.

THEOREM 5.32. MSST + MSR-syn is syntactically inconsistent.

Proof. Let R be a Rosser sentence for ZFC2 formulated so as to be 
1, and let R∗
be a 
1 formulation of its negation in Z. (Since the Rosser sentence concerns the natural
numbers, it can have the form ∃x(x = ω ∧ ϕx ), and similarly for its negation (where
“x = ω” is �0).) Since Z∗ + In proves that ZFC2 is syntactically consistent, it will prove
that ZFC2 + ¬R and thus ZFC2 + (R → collapse) are syntactically consistent (since
¬R entails R → collapse).101 From the main theorem it follows that MSST proves:

(ZFC2 + (R → collapse) is syntactically consistent)pt .

Now, working in MSST + MSR-syn, we have

(R → collapse)pt → �∃M(M � R → collapse). (4)

Since collapsept is equivalent to EP102 and pt commutes with →, it follows that the
antecedent of (4) is true. So, �∃M(M � R∗) (because collapse is false in all possible M).
Since R∗ is
1, Lemma 5.21 implies that (R∗)pt and thus (¬R)pt by the main theorem. We
can then run the preceding argument with ¬R replacing R to get R pt . So, R pt ∧ ¬R pt . �
The next lemma shows that when S is extended to L2∈, the ms-translations second-order
formulas are equivalent to the ms-translations of their first-orderisations. Let S2 denote this
extension, and let MSST2

T = MSSTT + S2.

THEOREM 5.33 (MSST2
T). Suppose �x, �y ∈ M, �Y ⊆ M, and M � �y ≡ �Y . Then

ϕ
pt
M ↔ (ϕ∗)pt

M ,

where ϕ ∈ L2∈ with free variables among �x, �Y .

Proof. The proof is exactly the same as for Lemma 5.23, except that where we use
Lemma 5.22 for bounded formulas we now use S2 for arbitrary formulas in L2∈.103 �

COROLLARY 5.34. Let ϕ ∈ L2∈ be a sentence, and suppose T proves Extensionality,
second-order Foundation, Pairing, and the Mostowski collapse lemma. MSST2

T proves
ϕ pt if and only if ST proves ϕ∗.

Proof. Assume T Extensionality and second-order Foundation. By the lower bound
theorem, when ST proves ϕ∗, MSSTT proves ϕ∗ and thus MSST2

T proves ϕ by Theorem
5.33, for any sentence ϕ ∈ L2∈. Now, let ϕ pt be an instance of S2. In S+

T , (ϕ pt )trw is
equivalent to ϕ∗ by Lemmas 5.28 and 5.29. But ϕ∗ is just an instance of L3. So, the proof of
the upper bound theorem extends to show that S+

T proves the tr -translations of the theorems

101 Indeed, it will prove that ZFC2 + (R → ϕ) is syntactically consistent for any ϕ.
102 See footnote 45.
103 It is easy to see that Lemma 5.22 for arbitrary formulas in L2∈ is a trivial consequence of S2.
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854 SAM ROBERTS

of MSST2
T. It follows from Lemmas 5.28 and 5.29 again that MSST2

T proves ϕ pt only if
ST proves ϕ∗, for any sentence ϕ ∈ L2∈. �
Let S2

T be ST with its logical axioms and rules of inference extended to L2
i n. Since

collapse and min-comp imply the schema ϕ ↔ ϕ∗, for sentences ϕ ∈ L2∈,104 S2
T proves

ϕ whenever ST proves ϕ∗. Moreover, a simple induction on the length of proofs shows that
ST proves ϕ∗ whenever S2

T proves ϕ, because collapse∗ and min-comp∗ are the same
trivial logical truth.

LEMMA 5.35 (MSST2). R� is equivalent to R1
pt .

Proof. R� ⇒ R1
pt . Suppose E M and �x ∈ M , where ϕ ∈ L∈ with free variables among

�x . Suppose also that ϕ pt
M . By R�:

�∃M ′ � M∃y, w, z ∈ M ′(M ′ � y = Vw∧ :

z ≡ dom(M) ∧ z ∈ y ∧ (TransZFC2)
y ∧ (((ϕ)pt

Z )
∗)y).

By Lemma 5.20, it will be the case that M � ZFC2. So, M ′ � z is transitive ∧ ZFC2z .
Now, working in M ′, “z is transitive ∧ ZFC2z” will be absolute for y because it is �∗

0 and
y is supertransitive. So, in y, z will be a transitive set satisfying ZFC2 and the identity
function will be a collapsing function for it. Since y satisfies SZFC2, and since E �x and
�x ∈ M whenever M exists, Lemma 5.29 implies that ϕ y . So, M ′ � y = Vw ∧ ϕ y . But,
since “y = Vw ∧ ϕ y” is �∗

0, we know that (y = Vw ∧ ϕ y)
pt
M ′ by the extension of Lemma

5.21 �∗
0 formulas and theories T containing Extensionality and second-order Separation.

So:

�∃M ′ � M∃y, w ∈ M ′(y = Vw ∧ ϕ y)
pt
M ′ ,

which is to say (∃αϕVα )
pt
M .

R1
pt ⇒ R�. Suppose E M , �x ∈ M , �Y ⊆ M , and ϕ pt

M , where ϕ ∈ L2∈ with free variables
among �x, �Y . By EP:

�∃M ′ � M∃z, �y ∈ M ′(M ′ � z, �y ≡ dom(M), �Y )
because M ′ satisfies second-order Separation, and the �Y s will exist and be subpluralities of
M whenever it exists, by PL3. Similarly, the �xs will exist and be elements of M whenever
it exists. So, it will be the case that ϕ pt

M by Lemma 5.20, and thus that ϕ pt
M ′ by S2. Theorem

5.33 then implies that (ϕ∗)pt
M ′ . Using Rpt

1 and the fact that (TransZFC2)pt
M ′ (by the main

theorem and S2), we would get (∃α(TransZFC2 ∧ Ez ∧ ϕ∗)Vα )pt
M ′ . In other words:

�∃M ′′ � M ′∃t, w ∈ M ′′(t = Vw ∧ (TransZFC2 ∧ Ez ∧ ϕ∗)t )pt
M ′′ .

Again, all of our parameters will continue to exist and be elements and subpluralities of M
and M ′. So, because “t = Vw ∧ (TransZFC2 ∧ Ez ∧ ϕ∗)t ” is �∗

0, we can use the extension
of Lemma 5.21 to �∗

0 formulas to get:

�∃M ′′ � M ′∃t, w ∈ M ′′(M ′′ � t = Vw ∧ z ∈ t ∧ (TransZFC2 ∧ ϕ∗)t ).

As above, it will be the case that, in t , z is a transitive set satisfying ZFC2 and that the
identity function is a collapsing function for it. So, since t satisfies SZFC2, Lemma 5.29
implies that ((ϕ pt

Z )
∗)t . Finally, it will remain the case that M ′ � z, �y ≡ dom(M), �Y and

104 See §2.7.3.
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MODAL STRUCTURALISM AND REFLECTION 855

M � M ′ by Lemma 5.20. Thus, M ′′ � z, �y ≡ dom(M), �Y , because “x ≡ X” is bounded,
and so:

�∃M ′′ � M∃t, w, �y, z ∈ M ′′(M ′′ � t = Vw∧ :

�y, z ≡ �Y , dom(M) ∧ z ∈ t ∧ (TransZFC2 ∧ (ϕ pt
Z )

∗)t ). �

THEOREM 5.36. MSST2 + R� exactly interprets Z∗ + In + R1 via ms-translation.

Proof. Let ϕ ∈ L∈ be a sentence. It is immediate from the main theorem and Lemma
5.35 that MSST2 + R� proves ϕ pt whenever Z∗ + In + R1 proves ϕ. Now, suppose
MSST2 + R� proves ϕ pt . So, for some instances ψ pt and χ pt of S2 and Rpt

1 , MSST
proves (ψ pt ∧ χ pt ) → ϕ pt . It follows that Z∗ + In proves [(ψ pt ∧ χ pt ) → ϕ pt ]tr

w by
Theorem 5.30 and thus (ψ∗ ∧χ) → ϕ by Lemmas 5.28 and 5.29. So, Z∗ + In + R1 proves
ϕ, since ψ∗ is an instance of the logical axiom for vacuous quantification L3 and χ is an
instance of R1. �
Finally, the next two results show that Z∗ + In + R1 goes beyond Z∗ + In in proving
�1-Col, but that it goes no further: it does not prove all instances of �2-Col.

LEMMA 5.37. Z∗ + In + R1 ��1-Col.

Proof. Working in Z∗, recall from Lemma 5.11 that 
1 formulas are absolute for Hκ ,
when κ is an uncountable cardinal. It is easy to check that Hκ = Vκ , when κ is inaccessible,
and thus that Hκ = Vκ , when κ is a limit of inaccessibles. So, 
1 formulas are absolute
for Vκ , when κ is a limit of inaccessibles. Now suppose ∀x∃yϕ(x, y, �z), where ϕ is �1
with free variables among x, y, �z. Applying R1 to ∀x∃yϕ(x, y, �z)∧ E�z ∧ Eu ∧TransZFC2,
we get a Vα which contains �z and u, satisfies ∀x∃yϕ(x, y, �z), and for which α is a limit
of inaccessibles (because “x is transitive ∧ ZFC2x ” is �∗

0 and thus absolute for Vα , and
because the transitive sets satisfying ZFC2 are exactly the Vβs, for β inaccessible). Thus,
∀x ∈ u∃y ∈ Vαϕ(x, y, �z). �

LEMMA 5.38. Z∗ + In + R1 ���2-Col.

Proof. Working in Z∗ + In + �2-Col, I will build a model of Z∗ + In + R1. Let
“x � y” be a �Z∗

1 satisfaction relation (where x is a model and y a formula/finite variable
assignment pair).105 Suppose we could find a limit of inaccessibles κ such that:

∀x ∈ Vκ(∃α(Vα � x) → ∃α < κ(Vα � x)). (5)

Then, it would follow that Vκ � Z∗ + In + R1.106 To see this, first note that the�∗
0 formula

“x is transitive ∧ ZFC2x ” will be absolute for Vκ , and so Vκ � SZFC2 = Z∗ + In. Second,
note that if ϕ(�x)Vκ , then ∃α(Vα � 〈“ϕ”, �x〉) and 〈“ϕ”, �x〉 ∈ Vκ , and so ∃α < κ(Vα �
〈“ϕ”, �x〉). Thus, ϕ(�x)Vα and because “y = Vz ∧ ϕ y” is �∗

0 and thus absolute for Vκ , it
follows that (ϕ(�x)Vα )Vκ .

I will now prove that such a κ exists in Z∗ + In + �2-Col. Let �(x, α) abbreviate
“∃β(Vβ � x) → (Vα � x)”. Since “x = Vy” is �∗

0, it is 
Z∗
2 by Lemma 5.12. So, since

“Vα � x” is just “∃y(y = Vα ∧ y � x)”, and since “x � y” is 
Z∗
1 , “Vα � x” is also 
Z∗

2 .
So, �(x, α) is 
Z∗

3 . Since �2-Col is equivalent to 
3-Col in Z∗,107 and since trivially

105 See, for instance, Kunen (2011) Definition I.15.5.
106 The idea of using such an κ to get a model of Z∗ + In + R1 is due to Lévy & Vaught (1961).
107 See the remarks after Claim 1 in §5.3.1.
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∀x∃α�(x, α), it follows in Z∗ + In + �2-Col that:

∀α∃β[β is inaccessible ∧ ∀x ∈ Vα∃γ < β�(x, γ )]. (6)

Let �(α, β) abbreviate “[β is inaccessible ∧ ∀x ∈ Vα∃γ < β�(x, γ )]”. Given (6), we
can construct finite sequences of such α, β. Formally, ∀n∃ f ( f is a function ∧ dom( f ) =
n + 1 ∧ f (0) = 0 ∧ ∀m < n�( f (m), f (m + 1)). Let ∀n∃ f X(n, f ) abbreviate this.

In the presence of �2-Col, the bounded quantifiers “∀x ∈ Vα” and “∃γ < β” can
be absorbed into �(x, α).108 So, �(α, β) is 
Z∗

3 (because “β is inaccessible” has the

Z∗

2 formulation “∃y(y = Vβ ∧ ZFC2y)” by Lemma 5.12). Similarly, “∀m < n” can be
absorbed into �(α, β). So, X(n, f ) is 
Z∗

3 . It follows by �2-Col that there is some x such
that ∀n∃ f ∈ xX(n, f ). We can then use these functions in x to build an ω-sequence f
such that X( f (n), f (n + 1)). Finally, it is straightforward to check that ∪rng( f ) is a limit
of inaccessibles for which (5) holds. �

5.4.1. Stability is unprovable in MSST - S. The next result shows that S is unprovable
in MSST- S, even when it is supplemented with Hellman’s accumulation principle.

DEFINITION 5.39. Let AP denote:

�∃M(M � ϕ) ∧ �∃M ′(M ′ � ψ) → �∃M,M ′(M � ϕ ∧ M ′ � ψ),
where ϕ,ψ ∈ L2∈ are sentences.

THEOREM 5.40 (ZFC + In). MSST - S + AP does not prove S.

Proof. Let κ0 = 0, κα+1 be the least inaccessible greater than κα , and κλ = ⋃
α<λ κα .

Consider a Kripke model K with set of worlds W = {〈α, n〉 : (α < ω ∧ n = 0) ∨ (α <
ω2̇ ∧ n = 1)}, where the first-order domain at 〈α, n〉 is {〈x, n〉 : x ∈ Vκα } and the second-
order domain is P({〈x, n〉 : x ∈ Vκα }). Any worlds w,w′ access each other. So we have
two kinds of worlds. The 0-worlds are just 0-tagged copies of the first ω inaccessible ranks
and the 1-worlds are just 1-tagged copies of the first ω2̇ inaccessible ranks. Thus, the
0-worlds and 1-worlds are completely disjoint. We interpret the pairing operator so that
“〈〈x,m〉, 〈y, n〉〉” denotes 〈〈x, y〉,m〉 if m = n and otherwise 0 (since 0 is not in any of
the domains). In other words, the pair of x, y behaves as expected when x, y can co-exist
and is otherwise a dummy object. It is straightforward but tedious to verify that MSST - S
is valid in K . I will now show that the following instance of S is false at some world in K .

(∃α(TransZFC2)
Vα )pt → �∀M(∃α(TransZFC2)

Vα )
pt
M . (7)

It is easy to check that Vα satisfies “∃β(TransZFC2)
Vβ ” just in case α > κω (because “x is

transitive ∧ZFC2x ” and “x = Vy” are�∗
0, and thus absolute for any Vβ , and the Vγ s, for γ

inaccessible, are precisely the transitive sets satisfying ZFC2). Let M be a ZFC2 structure
in some 1-world w, where M is isomorphic to Vκω+1 . So, Vκω+1 � ∃β(TransZFC2)

Vβ ,
and thus w � M � ∃β(TransZFC2)

Vβ . Since MSST-S is valid in the model, and since
the proof of Lemma 5.21 and its extension to �∗

0 formulas does not use S, it follows
that w � (∃β(TransZFC2)

Vβ )pt (because “x = Vy ∧ (TransZFC2)
x ” is �∗

0). Now, for
contradiction, suppose that the consequent of (7) is true atw. Let M be any ZFC2 structure
contained in any 0-world. It will follow that for some world w′, w′ � ∃M ′ � M∃β ∈

108 See Devlin (1984), Lemma 11.6, which is easily generalised to show that in Z∗ + �n-Col, ∃x ∈
yϕ has a �n+1 formulation when ϕ is �n+1, and thus that ∀x ∈ yϕ has a 
n+1 formulation
when ϕ is 
n+1.
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M ′((TransZFC2)
Vβ )

pt
M ′ . Again, by the extension of Lemma 5.21 to �∗

0 formulas, it follows
that w′ � M ′ � ∃β(TransZFC2)

Vβ . But that is impossible. Since the 0-worlds and 1-worlds
are disjoint, w′ will have to be a 0-world (because it contains M). So, |M ′| ≤ |w′| = |Vκn |,
for some n. However, if w′ � M ′ � ∃β(TransZFC2)

Vβ , then M ′ is isomorphic to some Vα ,
for α > κω. �

REMARK 5.41. In §2.7.1, footnote 36, I claimed that there is a more general principle
underlying AP, which says that isomorphic copies of any two structures can co-exist.
Formally:

�∀M�∀M ′�∃M ′′(∃i : M ≈ M ′′ ∧ �∃M ′′′(∃i : M ′ ≈ M ′′′ ∧ �(E M ′′,M ′′′))), (*)

where ∃i : M ≈ M ′ formalises the claim that there is a plurality of ordered pairs coding
an isomorphism between M and M ′. It is straightforward to modify the construction above
to make MSST - S + (*) valid, but S fail. The idea is to take half of the things in the
0-worlds and add them to the 1-worlds. Then, any 0-world structure will be isomorphic
to a 0-world structure which is also a 1-world structure. That will verify (*). We can then
run the argument above, picking the 0-world structure M so that it is disjoint from all the
1-worlds.

5.5. MSST is satisfiable in a single world. The final result of this article shows that
MSST is satisfiable in a Kripke model with a single world.

THEOREM 5.42 (ZFC + In). MSST2 is valid in an S5 Kripke model with one world.

Proof. As in the proof of Theorem 5.40, let κω be the least upper bound of the first
ω inaccessibles. Let K be a Kripke model with set of worlds W = {0}. The first-order
domain at 0 is just Vκω and the second-order domain is P(Vκω ). We interpret 〈x, y〉 as the
set-theoretic pair of x and y. It is straightforward but tedious to verify that MSST - E - EP
- S is valid in K .

Now, suppose that M ⊆ Vκω and 0 � M � ZFC2. Then, by absoluteness, M really is
a ZFC2 structure. So, for some inaccessible κ , |Vκ | = |M | ≤ |Vκω |. Thus, κ = κn . Using
this fact, we can show by induction that:

(0 � ϕ pt
M ) ↔ Vκω � (ϕ pt

Vκn
)∗( �j (x), �j[Y ]),

where j is an isomorphism between M and Vκn , and where ϕ ∈ L2∈ with free variables
among �x, �Y .109 Now, it is easy to see that Vκω satisfies SZFC2 = S+

ZFC2. Thus, by Lemma
5.29:

(0 � ϕ pt ) ↔ Vκω � ϕ∗

for sentences ϕ ∈ L2∈. Now, EP is equivalent to collapsept in MSST - E - EP - S,110

and that E is equivalent to (∃x(x = x))pt . We also know that collapse∗ and ϕ∗ are trivial

109 The only difficult cases are those for the quantifiers. So, suppose 0 � ∃M ′ � M∃z ∈ M ′ϕ pt
M ′ .

By the fact mentioned above, there is an isomorphism i from M ′ to some Vκm , for m ≥ n. The

induction hypothesis then implies that (ϕ pt
Vκm

)∗(i(z), �i(x), �i[Y ]), and a simple induction shows

that i � M ′ = j . Moreover, Vκm is an end-extension of Vκn . So, ((∃zϕ)pt
Vκn
)∗( �j (x), �j[Y ]). In the

other direction, we use any end-extension M ′ of Vκn to build an end-extension M ′′ of M , just as
we did in the proof of Lemma 5.29. The second-order quantifier is handled similarly.

110 To see this, note that Lemma 5.21 is provable without E, EP, or S.
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logical truths, where ϕ pt is an instance of S2. So, it follows that 0 � E ∧ EP ∧ ϕ pt , where
ϕ pt is an instance of S2. �

§6. Acknowledgments. Thanks to Neil Barton, Geoffrey Hellman, Simon Hewitt,
Leon Horsten, Salvatore Florio, Øystein Linnebo, Gabriel Uzquiano, Philip Welch, two
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