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Summary

We explore the modal possibility operator and its dual necessity operator in qualitative data anal-
ysis, and show that it (quite literally) complements the derivation operator of formal concept
analysis; we also propose a new generalisation of the rough set approximation operators. As an
example for the applicability of the concepts we investigate the Morse data set which has been
frequently studied in multidimensional scaling procedures.

1 Introduction

A frequently used operationalisation of data is an

Object 7→ Attribute

relationship. Such operationalisation comes in various flavours: Examples include deterministic in-
formation systems a la Pawlak [19], the many–valued tables of Lipski [14] and Orłowska & Pawlak
[18], in which each object is assigned a set of attribute values, the property systems of Vakarelov [24],
or the relational attribute systems of Düntsch et al. [5] which incorporate semantical constraints. In its
most general form, each object of the universe of discourse is related to one or more attribute values.
Mathematically, one considers structures〈U,V,R〉, whereU andV are sets, andR⊆U×V is a binary
relation between elements ofU and elements ofV. Based on the existential and universal quantifiers,
one can define mappings2U → 2V in a natural way, namely,

〈R〉(X) = {y∈V : (∃x∈ X)xRy}=
[
x∈X

R(x),

[[R]](X) = {y∈V : (∀x∈ X)xRy}=
\
x∈X

R(x),

whereR(x) = {y ∈ V : xRy}. In a general mathematical setting, the mapping[[R]] has been called
a polarity [1]; it is also thederivation operatorof formal concept analysis (FCA) [25]. While[[R]]
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has received some prominence via FCA, the operator〈R〉 seems to have been largely neglected in
the study of object–attribute relations. Interestingly, it is the reverse in logical systems, where〈R〉
became the widely studied possibility operator of modal logics associated with Kripke frames〈U,R〉,
the roots of which go back to the seminal paper by Jónsson & Tarski [12]. The operator[[R]] was
introduced to modal logics by Humberstone [11] and Gargov et al. [7], who called it a “sufficiency
operator”. Their aim was to be able to express “negative” properties of relations such as irreflexivity,
which could not be expressed by the common modal operators “possibility” and its dual, “necessity”.
Recently, Düntsch & Orłowska [6] have investigated the algebraic interplay of〈R〉 and[[R]] as well as
their (mixed) correspondence theory.

Apart from the sufficiency operator in FCA, modal–style operators have been used in data analysis
in connection with rough set approximation [20], whereR is an equivalence relation onU ; there,〈R〉
can be interpreted as an upper approximation, and its dual as a lower approximation, based on the
knowledge of the world given by the classification induced byR [e.g. 16, 23, 26–28]. There is a rich
literature on binary relations among objects, induced by information systems, and we invite the reader
to consult [17] for many examples and details.

Our aim in this note is to explore the possibilities of the〈R〉 operator and its dual necessity operator[R]
in relational attribute systems, and we shall show that it (quite literally) complements the derivation
operator of FCA. Along the way, we will propose a new generalisation for the rough set approximation
operators. The paper closes with an application of the concepts to the Morse data set [21].

2 Definitions and notation

Throughout this paper,U andV are nonempty sets, andR⊆U ×V. For unexplained notation and
concepts in lattices and order theory we refer the reader to [4].

A closure operatoronU is a mappingcl : 2U → 2U such that for allX,Y ⊆U ,

X ⊆Y ⊆U ⇒ cl(X)⊆ cl(Y), i.e. cl is monotone,

X ⊆ cl(X), i.e. cl is expanding,

cl(X) = cl(cl(X)) i.e. cl is idempotent.

A closure system onU is a family of subsets ofU which is closed under intersection. It is well
known that there are one-one correspondences between closure operators, closure systems, and∩ -
congruences, the latter, ifU is finite.

Dually, aninterior operatoris a mappingint : 2U → 2U such that for allX,Y ⊆U ,

X ⊆Y ⊆U ⇒ int(X)⊆ int(Y), i.e. int is monotone,

int(X)⊆ X, i.e. int is contracting,

int(X) = int(int(X)), i.e. int is idempotent.

An interior systemis a family of subsets ofU which is closed under union.

If L is a lattice andM ⊆ L, thenM is calledjoin–dense(meet–dense), if everyx∈ L is a join (meet) of
elements ofM.
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For eachx∈U we let

R(x) = {y∈V : xRy}

be theR-range ofx, and

domR= {x∈U : xRyfor somey∈V}
is thedomain ofR. Furthermore,

R̆ = {〈y,x〉 ⊆V×U : xRy}

is theconverse ofR. If f : 2U → 2V , then thedual of f is the mappingf ∂ : 2U → 2V defined by

f ∂(X) = V \ f (U \X).(2.1)

The operators2U → 2V which we want to consider are the following:

〈R〉(X) = {y∈V : X∩ R̆ (y) 6= /0}, possibility(2.2)

[R](X) = {y∈V : R̆ (y)⊆ X}, necessity(2.3)

[[R]](X) = {y∈V : X ⊆ R̆ (y)}, sufficiency(2.4)

〈〈R〉〉(X) = {y∈V : (−R)˘(y)∩ (U \X) 6= /0}, dual sufficiency.(2.5)

Here,(−R) = {〈x,y〉 ∈U×V : 〈x,y〉 6∈ R} is the complement of the relationR in U×V.

It is well known that these mappings have the following structural properties: LetX⊆ 2U ,x∈U .

〈R〉({x}) = R(x) = [[R]]({x}),(2.6)

[R](U \{x}) = V \R(x) = 〈〈R〉〉(U \{x}),(2.7)

〈R〉
([

X∈X
X

)
=
[

X∈X
〈R〉(X),(2.8)

[R]

(\
X∈X

X

)
=
\

X∈X
[R](X),(2.9)

[[R]]

([
X∈X

X

)
=
\

X∈X
[[R]](X),(2.10)

〈〈R〉〉
(\

X∈X
X

)
=
[

X∈X
〈〈R〉〉(X).(2.11)

Hence, the mappings〈R〉 and[[R]] are determined by their action on the singleton sets, and[R] as well
as〈〈R〉〉 are determined by their action on the complements of singletons.

As an example, suppose thatU is a set of students,V is a set of problems, andaRbis interpreted as
“Studenta solves problemb” [8]. If X ⊆U is a set of students, then for a problemb we have

b∈ 〈R〉(X)⇐⇒ Some student inX solvesb,

b∈ [R](X)⇐⇒ Each student who solvesb is in X,

b∈ [[R]](X)⇐⇒ b is solved by each student inX,

b∈ 〈〈R〉〉(X)⇐⇒ Not all students inU \X solveb.
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If we think of qRsas “s is a property whichq has”, then, for eachY⊆V, the set[R̆ ](Y) collects those
objects all of whose properties are inY, and[[R̆ ]](Y) is the set of objects which possess all properties
of Y (and possibly more).

It is not hard to see (and well known) that〈R〉 and[R], as well as[[R]] and〈〈R〉〉 are dual to each other.
Furthermore,

[[R]](X) = [(−R)](U \X), 〈〈R〉〉(X) = 〈(−R)〉(U \X).(2.12)

We see from (2.12) that each of the four operators, along with the complements onU andU ×V
and the converses defines all others. It may be argued that, in principle, everything is already said,
when we consider, for example, the sufficiency operator[[R]]. As far as the formal Mathematics and
the computational aspects go, this may be true; however, the semantic interpretations of the various
operators differ widely, and it is useful to start with the other operators if the situation so requires.
Indeed, considering complementation on the relational level adds another level to the underlying logic;
in order to avoid this, the sufficiency operator was introduced on the language level.

3 Modal operators in data analysis

In the realm of data analysis the sufficiency operator has received the widest attention of all the four
modal–style operators via the context of formal concept analysis [25]. There, acontextis a triple
〈U,V,R〉, whereU,V are sets, andR⊆U ×V. If X ⊆U, Y ⊆ V, the set[[R]](X) is calledintent of
X and[[R̆ ]](Y) is called theextent ofY. Here, we think ofY as a set of properties, andX as the set
of objects (of our setU of discourse) which possess these properties. Aconceptis defined as a pair
〈X,Y〉 ∈ 2U×2V such that[[R]](X) =Y and[[R̆ ]](Y) = X. The main theorem of FCA is the following:

Proposition 1. [25] Let M = 〈U,V,R〉 be a context, and set

CM = {〈X,Y〉 ∈ 2U ×2V : [[R]](X) = Y, [[R̆ ]](Y) = X}.
Then,CM can be made into a complete lattice by setting

∑
i∈I

〈Xi ,Yi〉= 〈[[R̆ ]][[R]](
[
i∈I

Xi),
\
I∈I

Yi〉,

∏
i∈I
〈Xi ,Yi〉= 〈

\
i∈I

Xi , [[R]][[R̆ ]](
[
i∈I

Yi)〉.

Conversely, a complete latticeL is isomorphic to someCM, if and only if there are mappingsγ : U →
L, µ : V → L such that

{γ(x) : x∈U} is join–dense inL,

{µ(y) : y∈V} is meet–dense inL,

xRy⇐⇒ γ(x)≤ µ(y) for all x∈U,y∈V.

CM is called theconcept lattice ofM.

Concept lattices have proved to be quite useful in qualitative data analysis, but they are not a panacea,
as the following example shows [8]: LetU be a set of problems,V be a set of skills, andR⊆U ×V
such thatqRsis interpreted as

Skill s is necessary to solveq, and the skill setR(q) is minimally sufficient to solveq.
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Suppose thatX⊆U is the set of all problems which some studentt has solved in a test. If one assumes
thatX is a true representation of the student’s state of knowledge, then

1. For eachq∈ X, the student has all the skills to solveq (no lucky guesses). By our operational-
isation, these are given byR(q); thus, the student possesses all skills in

S
q∈X R(q) = 〈R〉(X).

This is a somewhat conservative interpretation, since the student may possess other skills that
are necessary, but not sufficient, to solve an additional problem not inX.

2. The student actually has solved all problems which can be solved with the skills in〈R〉(X)
(no careless errors). Thus, for eachq ∈ U , R(q) ⊆ 〈R〉(X) implies q ∈ X; in other words,
[R̆ ]〈R〉(X)⊆ X.

We shall see in Lemma 2 that[R̆ ]〈R〉(X) is actually a closure operator; thus, we have[R̆ ]〈R〉(X) = X
in this case, and the true knowledge states are the closed sets with respect to this operator. More
generally, we can regard[R̆ ]〈R〉(X) as an upper bound of the collection of problems whicht is capable
of solving.

Similarly, if qRsis interpreted as

It is possible to solve problemq with skill s,

then〈R̆ 〉[R](X) is a lower bound of the collection of problems whicht is capable of solving.

The usefulness of[[R̆ ]] or [[R]] is somewhat limited in this context, since[[R]](X) will be small or
empty, in case the student has managed to solve problems which test different skills.

These considerations lead to the following: IfX ⊆U andY ⊆V we call 〈R〉(X) thespan ofX, and
[R̆ ](Y) thecontent ofY. The span ofX is the set of all properties which are related to some element of
X, and the content ofY is the set of those objects which can be completely described by the properties
in Y. These operators have the following properties:

Lemma 2. 1. [R̆ ]〈R〉 is a closure operator on2U .

2. 〈R〉[R̆ ] is an interior operator on2V .

3. x∈ [R̆ ]〈R〉( /0)⇐⇒ x 6∈ domR.

Proof. 1. Using (2.12) and the fact that〈S〉 and[S] as well as[[S]] and〈〈S〉〉 are dual to each other,
we obtain

[R̆ ]〈R〉(X) = [[(−R)˘]](V \ 〈R〉(X)) = [[(−R)˘]]([R](V \X)) = [[(−R)˘]][[−R]](X).(3.1)

It is well known that[[S̆ ]][[S]] is a closure operator for anyS⊆U×V [25], and thus, so is[R̆ ]〈R〉.
2. follows from the fact that〈R〉[R̆ ] is the dual of[R]〈R̆ 〉.
3. x∈ [R̆ ]〈R〉( /0)⇐⇒ R(x)⊆ 〈R〉( /0)⇐⇒ R(x)⊆ /0⇐⇒ x 6∈ domR.

We call[R̆ ]〈R〉(X) theupper bound of Xand〈R̆ 〉[R](X) the lower bound of X, both with respect to R.

In related development, Wong et al. [26] define an interval structure as a pair〈 f ,g〉 of mappings
between two Boolean algebras which have approximately the properties of the pair of operators
〈[R],〈R〉〉.
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If U = V andR is a transitive relation onU , then[R̆ ]〈R〉 = 〈R〉 and〈R〉[R̆ ] = [R̆ ]; therefore,[R̆ ]〈R〉
coincides with the upper approximation operator and〈R〉[R̆ ] with the lower approximation operator
of rough set theory.

For reflexive relations, Slowinski & Vanderpooten [23] propose〈R〉 as an upper approximation oper-
ator. This definition has the drawback that, unlessR is also transitive,〈R〉 is not idempotent, so that
we may have the situation that〈R〉(X) ( 〈R〉〈R〉(X). On the contrary,[R̆ ]〈R〉 is a closure operator
regardless of the properties ofR.

Let us denote the set of all pairs〈X,Y〉 with X = [R̆ ](Y), Y = 〈R〉(X) by SCM. We now have a
fundamental theorem forSCM, analogous to Proposition 1:

Proposition 3. SCM becomes a complete lattice by setting

∑
i∈I

〈Xi ,Yi〉= 〈[R̆ ]〈R〉(
[
i∈I

Xi),
[
i∈I

Yi〉,(3.2)

∏
i∈I
〈Xi ,Yi〉= 〈

\
i∈I

Xi ,〈R〉[R̆ ](
\
i∈I

Yi〉(3.3)

Conversely, a complete latticeL is isomorphic to someSCM if and only if there are mappingsγ : U →
L, µ : V → L such that

{γ(x) : x∈U}∪{0} is join–dense inL,

{µ(y) : y∈V}∪{1} is meet–dense inL,

xRy⇐⇒ γ(x) 6≤ µ(y) for all x∈U,y∈V.

Proof. This can be inferred from Proposition 1 and the fact that[R̆ ]〈R〉(X) = [[(−R)˘]][[−R]](X).

The result shows thatSC〈U,V,R〉 is isomorphic to the concept latticeC〈U,V,−R〉. The internal structure, as
well as the semantic interpretation of the two lattices are, however, different. Unlike the extent–intent
operators of FCA, our construction is asymmetric, since we use one operator into one direction, and
its dual in the opposite direction. Furthermore, for〈X0,Y0〉, 〈X1,Y1〉 ∈ SCM, we have

〈X0,Y0〉 ≤ 〈X1,Y1〉 ⇐⇒ X0 ⊆ X1 ⇐⇒Y0 ⊆Y1,

so that≤ is isotone in both components.

4 The Morse data

In this Section we will give an example how the modal-style operators can be applied to relations of
similarity. For related work in a similar context we invite the reader to consult [2]. The data under
investigation, a flagship of multidimensional scaling, were originally collected by Rothkopf [21] in
the following context:

“The S[ubject]s of this experiment were exposed to pairs of aural Morse signals sent at
a high tone speed. The signals of each pair were separated by a short temporal interval.
The S[ubject]s were asked to indicate whether they thought the signals were the same (or
different) by making the appropriate remark on an IBM True–False Answer sheet. Each
S[ubject] was asked to respond in this fashion to 351 different pairs of Morse signals.”
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Table 1: Morse code

a a k k u u 0 0
b b l l v v 1 1
c c m m w w 2 2
d d n n x x 3 3
e e o o y y 4 4
f f p p z z 5 5
g g q q 6 6
h h r r 7 7
i i s s 8 8
j j t t 9 9

The data is given as a matrix, with rows and columns labeled by the alphanumeric characters (Ta-
ble 5 on page 12). An entrys in cell 〈p,q〉means thats% of subjects regarded the code forp andq as
the same signal. In the sequel, we will refer top as thefirst stimulusor as beingin the first position,
and toq as thesecond stimulus, or as beingin the second position. We use upper case letters for first
stimuli and lower case letters for second stimuli; the numeric characters are prefixed by a∗, if they
occur as second stimuli. We emphasise that these are only notational conveniences, so that e.g.a and
A or 1 and∗1 correspond to the same code sequence. The matrix diagonal corresponds to pairs which
are truly the same, the off-diagonal entries correspond to pairs which are truly different. It should be
noted that the matrix is not symmetric, and that the entries in the diagonal are always less than100.
Thus, we have an example of a possibly non-reflexive asymmetric relation which expresses some form
of similarity.

Shepard [22] describes the data using the dimensions

1. Length of the signal,

2. Distribution of dots and dashes in the signal, going from only dots to only dashes.

The distances between the points in a plane spanned by these dimensions reflect (partially) the ordinal
relation among the given proximities, see Figure 1.

For various “cut points ”swe consider the relation

Rs = {〈p,q〉 : At leasts% of the subjects responded “same”, when〈p,q〉 was presented}.

Observe thatRs⊆ Rt in caset ≤ s.

As the length of the signal is one of the dimension identified in [22] (and also in [3]), we are interested
in the behaviour of the modal–style operators on the sets

Xn = {p : The length of the Morse code for first stimulusp is n},
Yn = {q : The length of the Morse code for second stimulusq is n}.

which are given in Table 2.
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Figure 1: Multi dimensional scaling of the Morse data [from 13, p. 13]

Table 2: Distinguished sets

Stimulus (first position) Stimulus (second position)
X1 = {E,T} Y1 = {e, t}
X2 = {A, I ,M,N} Y2 = {a, i,m,n}
X3 = {D,G,K,O,R,S,U,W} Y3 = {d,g,k,o, r,s,u,w}
X4 = {B,C,F,H,J,L,P,Q,V,X,Y,Z} Y4 = {b,c, f ,h, j, l , p,q,v,x,y,z}
X5 = {0,1,2,3,4,5,6,7,8,9} Y5 = {∗0,∗1,∗2,∗3,∗4,∗5,∗6,∗7,∗8,∗9}

Disregarding for the moment the cut off parameter, the equality interpretation of the operators is as
follows: If we start with the first stimuli, in particular the setsXn, then

q∈ 〈R〉(Xn) ⇐⇒ q was gauged to be the same as some first stimulus of length
n.

q∈ [R](Xn) ⇐⇒ q was gauged to be the same only as first stimuli of lengthn.
q∈ [[R]](Xn)⇐⇒ q was gauged to be the same to all first stimuli of lengthn,

and possibly others.

If we start with a setY of stimuli at the second position, we replaceR by R̆ , which means that “first”
is replace by “second” in the definition of the sets. Putting these together, we obtain
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p∈ [R̆ ]〈R〉(Xn) ⇐⇒ Every signal, which cannot be distinguished fromp cannot
be distinguished from some stimulus of lengthn.

p∈ 〈R̆ 〉[R](Xn) ⇐⇒ Some signals, which cannot be distinguished fromp were
gauged to be the same only to stimuli of lengthn.

p∈ [[R̆ ]][[R]](Xn)⇐⇒ Wheneverq cannot be distinguished from all stimuli of
lengthn, thenq cannot be distinguished fromp.

If we consider cut off pointssandt, we interpret, for example, for a first stimulusp,

p∈ [Rs̆ ]〈Rt〉(Xn)⇐⇒ Every second stimulus which could not be distinguished from
p by at leasts% of all subjects could not be distinguished
from some first stimulus of lengthn by at leastt% of all sub-
jects.

p∈ 〈Rs̆ 〉[Rt ](Xn)⇐⇒ There is a second stimulusq such that at leasts% of subjects
gaugedq to be the same asp, and at leastt% of subjects
gaugedq to be the same only as stimuli of lengthn.

A first impression of the difficulties encountered by the subjects when discriminating the first and sec-
ond stimuli is offered by the binary relationsR50 andR50̆ , which are generated, when the probability
cut point p = 0.5 is used. Table 3 presents the results of the operators applied to the setsXn of first
andYn of second stimuli. One can see that applying the sufficiency operators is not suitable for this
situation, since the results are too coarse (see the last column of Table 3). The combination of content
and span operators seem to be more promising in either direction.

Each signal can be interpreted in two ways – as confusing the first stimulus with the second one and
vice versa–, and we can apply the operators starting with either case.

Stimuli of length 1 or 2 are easily distinguished from those of different length. Starting with second
stimuli of length 3, we see that none ofd,k,s,u is contained in the lower bound〈R〉[R̆ ](Y3). When we
consider these signals as first stimuli, then this is not the case, since〈R̆ 〉[R](X3) = X3. This result is
hard to present in geometrical terms, as the scaling proposed by Shepard [22] uses a non-metric MDS
approach (Fig. 1).

Signals of length 4 and 5 are harder to distinguish. We observe that the signalsH andh of length 4, and
6, *6, 7, *7 of length 5 cause considerable confusion. This cannot be determined from the geometrical
representation given in Fig. 1. Indeed, the first stimulusH seems to have the largest distance of any
element of setX4 to the setX5 in Fig. 1, and thus, according to the model, not much confusion should
arise.

Another interesting stimulus seems to be the Morse codev of characterV, because this code of
length 4 is confused with stimuli of length 3 and 5. Therefore,V should be presented in a “bridging
position” in a geometrical presentation.

Variation of the cut point offers further insights. In Tab. 4 we present the set differences of lower and
upper bound of the signal sets fors= 80,70,60,40. The first entry in a cell〈Z,s〉 is the set of elements
which are in the setZ, but not in the lower bound, and the second entry is the set of those elements
which are not inZ, but belong to the upper bound ofZ. Inspecting the result in Tab. 4, we observe
that the signals6 and*6 seem to be very hard to distinguish from the signals of length 4, – an effect
which is worse for*6. Furthermore,5 and*5 frequently appear in one of the differences.
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Table 3: Modal-style operators applied to Morse data (Cut point p=0.5)

Xn [R̆ ]〈R〉 〈R̆ 〉[R] [[R̆ ]][[R]]
E T e t e t t

E T E T E T
A I M N a i m n a i m n /0

A I M N A I M N 1
D G K O R S U W b d g h k l o p r s u v w x d g o r s u w /0

D G K O R S UV W D G K O R S U W 1
B C F H JL P QV X Y Z b c f h j k l p q v x y z *1 *2 *5 *6 *7 *8 c f j q y /0

B C F H J L P Q V X Y Z6 7 C F J P Q X Y Z 1
1 2 3 4 56 78 9 0 b h v x z *1 *2 *3 *4 *5 *6 *7 *8 *9 *0 *3 *4 *9 *0 /0

B H V 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 8 9 0 1
Yn [R]〈R̆ 〉 〈R〉[R̆ ] [[R]][[R̆ ]]
e t E T E T E

e t e t e t
a i m n A I M N A I M N /0

a i m n a i m n 1
d g k o r s u w D G K O R S U W X O R W /0

d g k o r s u w g o r w 1
b c f h j l p q v x y z B C D F G H J K L P Q S U V X Y Z 4 5 6 7 8 C F L P V Y /0

b c d f h j k l p q s u v x y z *4 *5 *6 *7 b c f j l p q v x y z 1
*1 *2 *3 *4 *5 *6 *7 *8 *9 *0 B H J Q X Z 1 2 3 4 5 6 7 8 9 0 1 2 3 9 0 /0

*1 *2 *3 *4 *5 *6 *7 *8 *9 *0 *1 *2 *3 *8 *9 *0 1

Bold letter in “codes”: Letter does not apear in the lower bound.
Bold letter in “[R̆ ]〈R〉”, resp. “[R]〈R̆ 〉”: Letter is added in the upper bound.
The first line in a second column cell is the result when applying the inner operator to the original set, the second line
is the result when applying the outer operator to the first line.

Summarising, we recognise the troublesome first stimuli5,6,7of length 5,B,H,Vof length 4 and their
second position counterparts, and, in addition, the second stimuli{d,k,s,u}.
With respect to the second dimension of the MDS model, namely, the distribution of dots and dashes,
we see from Table 1 that, except fork, the problematic signals contain more short than long impulses.
A geometric representation has to present the data in a “long–short” dimension, but – since the result
pattern is asymmetric – the representation cannot deal with the data in an adequate manner. It was
shown in [15] that in fact an asymmetric “drift” from short to long can be extracted, when MDS is
applied to “residual proximities”; these can be computed by the difference of the original data and the
estimated symmetric proximity matrix, which is the base of the classical MDS approach.1

Therefore, our operator–based qualitative analysis supports the findings of the MDS model, and offers
some additional explanations. These are, in short,

• The signal length is the first determining factor for the discrimination of the stimuli, because:

– Signals of length 1 or 2 are easy to discriminate from other stimuli.

– Signals of length 3 are easy to discriminate from other stimuli, if they are located at the
first position.

1It is interesting to note that the first MDS approach of Shepard [22] was published in 1963 and the “asymmetric
extensions” of Möbus [15] appeared 16 years later.
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Table 4: Difference of lower and upper bound given varied cut points in Morse Data
Codes Cut = 0.8 Cut = 0.7 Cut = 0.6 Cut = 0.5 Cut = 0.4

ET /0, /0 /0, /0 /0, /0 /0, /0 /0, /0
et /0, /0 /0, /0 /0, /0 /0, /0 /0, /0

AIMN /0, /0 /0, /0 /0, /0 /0, /0 /0, /0
aimn /0, /0 /0, /0 /0, /0 /0, /0 /0, /0

DGKORSUW /0, /0 /0, /0 /0, /0 –,V K,–
dgkorsuw /0, /0 /0, /0 {d,k}, /0 {d,k,s,u}, /0 {d,k,s,u}, /0

BCFHJLPQVXYZ /0, /0 /0,{5,6} {B,H},{1,2,6} {B,H,L,V},{6,7} {B,F,H,L,V},{K,2,3,4,5,6,7}
bcfhjlpqvxyz /0,{∗6} {b,h},{∗6} {h},{d,k,∗4,∗5} {h},{d,k,s,u,∗4,∗5,∗6,∗7} {b, f ,h, j, l ,q,v,x,z},{d,k,s,u,∗4,∗5}
1234567890 /0, /0 {5,6},/0 {1,2,6},{H} {6,7},{B,H,V} {2,3,4,5,6,7},{B,H,V}

*1*2*3*4*5*6*7*8*9*0 {∗6},/0 {∗6},{b,h} {∗4,∗5},{h} {∗4,∗5,∗6,∗7},/0 {∗4,∗5},{ f , j,q}

– Signals of length 3 in the second position overlap with signals of length 4. Signals of
length 4 overlap mainly with signals of length 5.

• The character of the impulses is of less effect because a signal must contain mainly short Morse
impulses, and should contain at least 4 (first stimuli) or 3 (second stimuli) Morse impulses to
be hard to discriminate.

• Asymmetric features of the data are reflected by the construction. There is no need for an extra
analysis of method–dependent “residual matrices”.

5 Discussion

The presented modal operator approach offers a complementary view of data with respect to derivation
operator of formal concept analysis. In principle, the proposed operators can be derived from concept
analysis by applying the intent–extent operators to−R, and building complements of the resulting
concept sets. This is nice, because the computation of convolutions of possibility and necessity oper-
ators can be perfomed by programs for concept analysis, and using the de Morgan rules. Of course,
this does not mean that the proposed analysis based on possibility and necessity operators is the same
as applying concept analysis, because

• Both proposed operators act asymmetrically, while intent and extent of FCA are symmetric.

• The combination of〈R〉 and[R] can be interpreted as a generalisation of rough sets approxima-
tions, which are based on equivalence relations.

Comparing the proposed theory with MDS, we observe that it offers comparable results, and that these
results are presented in a direct manner: There is no need for a 2-dimensional representation (which
is not even adequate for Morse data as Shepard [22] remarks), and the risk of so calleddivergence
artifacts[9] is reduced. It should be noted, however, that the proposed theory offers a literally “rough
approximation” to the data: Once a cut pointp is chosen, all differences below this cut point are
neglected: It has to be assumed that these differences are not relevant for further interpretation. This
is different to the MDS approach; there, the rank order of the proximities is used, which contains more
information than taking a simple cut.

Although the proposed theory is nice, handy and applicable from scratch, there is an observation
which opens a box of further questions: Unlike for equivalence relations, the⊆ ordering on relations
is not reflected by the new definition of lower and upper bounds, i.e.R⊆ Sdoes not necessarily imply
[R̆ ]〈R〉(X) ⊆ [S̆ ]〈S〉(X). The question arises, which kind of compatibility assumptions must hold in
order for the structural properties of the relations to generate comparable properties in the results of
the operators.
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