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Most industrial rotors supported in active magnetic bearings (AMBs) are operated well below the first bending critical speed. Also,
they are usually controlled using proportional, integral and derivative controllers, which are set up as modally uncoupled parallel
and tilt rotor axes. Gyroscopic effects create mode splitting and a speed-dependent plant. Two AMBs with four axes of control
must simultaneously control and stabilize the rotor/AMB system. Various analyses have been published considering this problem
for different rotor/AMB configurations. There has not been a fully dimensionless analysis of these rigid rotor AMB systems. This
paper will perform this analysis with a modal PD controller in terms of translation mode and tilt mode dimensionless eigenvalues
and eigenvectors. The number of independent system parameters is significantly reduced. Dimensionless PD controller gains,
the ratio of rotor polar to transverse moments of inertia and a dimensionless speed ratio are used to evaluate a fully general
system stability rigid rotor analysis. An objective of this work is to quantify the effects of gyroscopics on rigid rotor AMB systems.
These gyroscopic forces reduce the system stability margin. The paper is also intended to help provide a common framework for
communication between rotating machinery designers and controls engineers

1. Introduction

Active magnetic bearings (AMBs) have been in use since the
1930s and are an alternative to fluid film bearings in the sup-
port and stabilization of rotating machinery [1]. Active ma-
gnetic bearings are a noncontact method of supporting a ro-
tor and offer distinct advantages due to elimination of lubri-
cation systems, reduced parasitic losses, and reduced wear.
However, implementation of active control in AMB systems
adds complexity to the overall rotordynamics, including the
stability of the rotor. The AMBs are open-loop unstable, and
the presence of gyroscopics further complicates the control
problem.

Many AMB rotor applications operate well below the first
bending natural frequency of the rotor, allowing for treat-
ment of the rotor as a rigid body. This greatly simplifies the
problem as the rotor can be represented with five degrees of
freedom. Gosiewski and Falkowski [2] developed a control

law based upon a rigid rotor model for an AMB-suspended
gyroscope for space applications. A linearized AMB model
was employed and equations of motion were obtained for the
gyroscope undergoing aircraft motions.

Matsumura et al. [3] further developed the rigid rotor
second-order equations of motion, including gyroscopic
effects, based upon rotations about the inertia axes. They
converted the system to state space form and used an output
regulator to stabilize the rotor/AMB system. Then, they em-
ployed a feed-forward controller to minimize unbalance re-
sponse. A similar study was presented by Mizuno and Higu-
chi [4]. Kim and Han [5] presented the second-order equa-
tions of motion for a rigid rotor/AMB system and converted
them to a dimensionless state space form. They considered a
general servocontroller and a centralized PID controller, eva-
luating disturbance rejection, reference tracking, and robust-
ness. However, the authors did not consider the industry
most common modal tilt/translate control or the associated
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PD control and closed loop system properties including di-
mensionless gyroscopic effects relative to dimensionless tilt/
translate natural frequencies.

Lottin et al. [6] presented the nonlinear control of a rela-
tively long, thin rigid rotor on two AMBs with digital imple-
mentation. No bias current was employed to reduce the AMB
power consumption. The control algorithm did not take into
account the gyroscopic coupling. It was found not to be sig-
nificant for this long thin rotor, which was operating at a low
speed in the reported experimental tests. One of the major
issues examined in this paper was the importance of the gy-
oscopic effects on the rotor and some estimate of whether the
controller needs to go to significant lengths to take them into
account.

Cao et al. [7] analyzed a flywheel battery with a rigid rot-
or on AMBs. With the flywheel disk attached, it is similar to
a disk rotor. The stated purpose of the paper is “a decoupl-
ing approach for the nonlinear model of the flywheel en-
ergy storage device supported by active magnetic bearings
such that the instability brought on by gyroscopic effects
can be overcome.” The decoupling approach involved a non-
linear model of the control system based upon dynamic feed-
back linearization. The strongly coupled rotor motion was
reduced to five normalization subsystems including four ra-
dial displacements and the rotor speed. These linear subsys-
tems are completely decoupled from one another and linear-
ized controllers were developed. The rotor was successfully
levitated. However, the authors note that the decoupling con-
trol was found to be very sensitive to variations between the
rotor model and the actual rotor. Based upon the reports of
large efforts made by various researchers, the study in the
present paper to quantify the gyroscopic effects on dimen-
sionless properties of rigid rotors in AMBs is quite worth-
while.

Ho et al. [8] investigated the effect of an active thrust
bearing on the stability of a rigid rotor supported on AMBs.
Decentralized PID controllers were implemented. Due to
tilting imposed by the thrust bearing, it was demonstrated
that the thrust bearing reduced the stability of the tilt modes.

Zhao et al. [9] developed PD control of a rigid rotor sup-
ported by AMBs for a momentum wheel application. The
momentum wheel is used in spacecraft to actuate the at-
titude control system. A Linear Quadratic Regulator (LQR)
controller was used to account for the large gyroscopic
coupling imposed by a flywheel. The LQR algorithm was also
implemented by Pilat [10] in a simulation study. Pilat consid-
ered a nonlinear inductance in modeling the actuator forces
and then linearized the system about the operating point. A
SISO controller was then implemented on each AMB axis.

Rigid rotor applications have also been considered in
studies of unbalance compensation. Löwis and Rudolph [11]
developed an adaptive algorithm for unbalance compensa-
tion. The control law included PD control for position and
proportional control of the unbalance level, resulting in
rotation about the inertial center. Since the unbalance level
was unknown, an estimator of the unbalance level was used
in the control law. The stability algorithm was demonstrated
using a rigid rotor model with gyroscopic effects included.

Li et al. [12] developed an unbalance compensation rout-
ine for rigid rotors that included a compensation term for the
unbalance and an estimate of the ratio of open-loop stiffness
to current gain in the control law. The combination of the
two parameters resulted in rotation about the inertial center
with proper pole placement. The control laws were based on
SISO controllers. Gyroscopics were not considered.

The asymptotic stability of rigid rotors supported in
AMBs has also been an area of study. Recent work in this area
includes the study by Jeon et al. [13]. They investigated the ef-
fect of sensor noncollocation on the overall stability of a rig-
id rotor supported in AMBs. Using a rigid rotor model with
gyroscopic effects included and a PD controller, the system
eigenvalues were derived in terms of the bearing coordinates
and a factor representing the distance between the sensors
and the actuators. Based on Lyapunov and Kelvin-Tait-Chet-
aev stability criteria, it was shown that sensor noncollocation
can result in instability of the rigid rotor. The stability region
was improved by treating sensor noncollocation as a time de-
lay in the system model.

Gosiewski [14] examined stability of an AMB supported
rigid rotor with PD control and noncollocated sensors. The
overall state-space system model with eight degrees of free-
dom was reduced to four degrees of freedom. The stability of
the system was assessed using the Hurwitz stability criterion
and with root locus plots. The effect of sensor noncollocation
was mitigated by a coordinate transformation between the
sensor location and the actuator location. Investigation of a
simulated rotor indicated that the overall system stability was
linked to location of a noncollocated sensor relative to the
node point in the tilt mode.

The current work considers a rigid rotor supported in
active magnetic bearings with gyroscopic effects included.
The model has been previously presented by Larsonneur in
[15]. The PD control in this paper’s model is based on the
mass center coordinates of the shaft, with rotation about the
principal axis most closely parallel to the axial direction.
From this model, an equivalent four degree of freedom sys-
tem representing translate and tilt modes including damping
and gyroscopic effects is determined. The equations of mo-
tion are then nondimensionalized. A new analytical solution
for the damped nondimensional eigenvalues for both trans-
late and tilt modes is obtained due to modal decoupling in
terms of the zero-rotational speed damping ratio and natural
frequencies, the nondimensional rotational frequency, and
the ratio of polar to transverse mass moment of inertia.

The effect of gyroscopics and damping on the tilt mode
natural frequencies and stability margin is calculated. Many
AMB supported rotors are relatively short, but others are
relatively long and thin. Both types are considered in this
paper. One objective of the study is to determine what con-
ditions are relatively strongly affected by gyroscopics and
which are not.

The stability margin is expressed in terms of the logarith-
mic decrement, which allows direct comparisons to typical
stability assessments of rotors supported in fluid bearings
and is, therefore, beneficial for the turbomachinery com-
munity. A previous study by the authors [16] demonstrated
the similarities in unbalance response between fluid film
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Figure 1: Rigid rotor free body diagram.

bearing and active magnetic bearing systems. The present
study is also intended to help provide a common framework
to facilitate communication between machine designers,
typically mechanical engineers, and controls designers, often
electrical engineers.

2. Analysis

First, the open-loop characteristics of a rigid rotor model
with gyroscopics on AMBs is considered. Then, an active ma-
gnetic bearing with PD control and compensation for the
open-loop stiffness is considered, and the resulting free-vib-
ration rotor model is presented. The translate and tilt mode
solutions are obtained, and the effect of the gyroscopics on
the logarithmic decrement and the undamped natural freq-
uency of the tilt modes is examined in detail.

2.1. Rotor Model. For the purposes of this paper, the rotor is
modeled as rigid with gyroscopic effects included. In effect,
the rotor is considered to be running well below its first bend-
ing critical speed. These assumptions apply to a wide class
of machines including motors, flywheels, and gyroscopes
supported on active magnetic bearings. A free body diagram
of the rigid rotor is shown in Figure 1.

The equation of motion for the rotor supported in mag-
netic bearings is then

Müg + ΩGu̇g = fg,AMB, (1)

where Ω is the rotational speed of the shaft, fg,AMB =

[

Fxg Fyg Mxg Myg

]T
are the magnetic forces and mo-

ments about the rotor gravity center produced by the ma-

gnetic bearings, and the vector u =
[

xg yg θxg θyg
]T

in-

dicates rotor translations and transverse rotations about the
center of gravity (c. g.). The inertia matrix M and the gyro-
scopic matrix G are defined as

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

M 0 0 0

0 M 0 0

0 0 Jt 0

0 0 0 Jt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 0 0 0

0 0 0 Jp

0 0 −Jp 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2)

where M is the mass of the rotor, Jt is the transverse mass
moment of inertia about the c. g., and Jp is the polar mass

moment of inertia about the c. g. Equation (1) indicates that
the only external forces acting on the rotor are due to the
active magnetic bearings. The rotor model also appears in
[15], although some differences in signs of displacements
occur due to the selection of the coordinate system in this
paper.

2.2. Coordinate Transformations. The bearings are acting at
positions 1b and 2b in Figure 1. It is desired in this paper to
keep the analysis using the c. g. coordinate system as the mass
and gyroscopic matrices are simpler. Thus, it is necessary to
transform from the bearing coordinates to the gravity-center
coordinates since the equations of motion are formulated
in the gravity-center coordinate system. The transform from
bearing coordinates to gravity-center coordinates is given by

⎧
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=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 −a

0 1 a 0

1 0 0 b

0 1 −b 0

⎤

⎥
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⎥
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⎥
⎥
⎦

︸ ︷︷ ︸

Qb
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⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸

ug

, (3)

where x1b, y1b, x2b, and y2b refer to the rotor translations at
the bearings, and a and b are the axial distances from each
bearing to the rotor gravity center.

The sensors are in general not collocated with the bearing
center of action. To account for this, an additional transform
is required to move from the sensors to the gravity center
coordinate system. The measurement locations are used for
design of the feedback controller described in Section 2.3.2.
Analogous to the bearing coordinate transformation, the
sensor coordinate transformation is given by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 −c

0 1 c 0

1 0 0 d
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⎥
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⎥
⎦
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, (4)

where x1s, y1s, x2s, and y2s are the sensor axial locations, and
c and d are the axial distances from the sensors to the rotor
gravity center.

2.3. AMB Model. As is standard in active magnetic bearing
analyses, the magnetic forces are linearized about the oper-
ating point, giving the force for each AMB axis in terms of
rotor displacement and perturbation current as

Fxb ≈ kiip + khx ,

Fyb ≈ kiip + khy,
(5)

where ip is the perturbation current, ki represents the current
gain, and kh represents the open-loop stiffness.
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When the x and y directions are considered for each mag-
netic bearing in Figure 1, matrix equations can be formed for
the open loop bearing characteristics in terms of the bearing
coordinates. The resulting force model is

fb,AMB=Khub + Kiip, (6)

where ub=[x1b y1b x2b y2b]
T and ip=[ip,x1b ip,y1b ip,x2b ip,x2b]T .

The resulting matrix of cur-rent gains Ki for the perturbation
currents is given by kiI, and the open-loop stiffness matrix Kh

is given by khI, where I is the identity matrix.

2.3.1. Open-Loop Characteristics. The active magnetic bear-
ings considered only apply forces at the locations indicated
in Figure 1. The net forces and moments acting at the gravity
center of the rotor are then obtained by a force and moment
balance. The forces in moments at the gravity center due to
the AMBs are expressed in matrix form as

⎧
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. (7)

The coordinate transformation represented by (7) indicates
that the tilt and translate modes are coupled by the magnetic
bearing open loop characteristics for rigid rotor applications.
It should be noted that the force transformation matrix is the
transpose of the coordinate transformation matrix described
in (3). Using the transformation defined by (7), the rotor
model described by (1) becomes

Müg + ΩGu̇g = QT
b fb,AMB. (8)

Then, by substitution of (3) and (6) into (8), the resulting
AMB open-loop equation of motion is then

Müg + ΩGu̇g −QT
b KhQbug = QT

b Kiip. (9)

Equation (9) represents an unstable system [15]. The nega-
tive feedback controller described in Section 2.3.2 is used to
stabilize the system and eliminate the coupling of the tilting
and translating modes imposed on the system by (7).

2.3.2. PD Control Design. For this study, it is desired to ex-
press the equations of motion in terms of the gravity cen-
tered coordinates and the control gains. In terms of the sen-
sor coordinates referred to the gravity center coordinates, the
negative feedback control law for the active magnetic bear-
ings is [15]

ip = −Ki
−1Q−T

b KPQ−1
s us

︸ ︷︷ ︸

ug

︸ ︷︷ ︸

Proportional Term

−Ki
−1Q−T

b KDQ−1
s u̇s

︸ ︷︷ ︸

u̇g

︸ ︷︷ ︸

Derivative Term

−Ki
−1KhQbQ−1

s us
︸ ︷︷ ︸

ug

︸ ︷︷ ︸

Compensator Term

,
(10)

where KP is the proportional control gain matrix and KD

is the derivative control gain matrix. The control law is a
modal PD controller with a compensation term for the open-
loop stiffness characteristics of the AMBs. It may be noted
that there is no x-y coordinate coupling in the controller to
account for gyroscopic forces.

Substituting (10) into (9), the closed-loop AMB-rotor
system of equations becomes

Müg + ΩGu̇g −QT
b KhQbug

= −QT
b Ki

[

Ki
−1Q−T

b KPQ−1
s us + Ki

−1Q−T
b KDQ−1

s u̇s

+Ki
−1KhQbQ−1

s us

]

.

(11)

Then, the equations of motion including the controller in
terms of the center of gravity coordinates reduce to [15]

Müg + (ΩG + KD)u̇g + KPug = 0. (12)

Implicit in (12) are the perturbation currents and the current
gain that are typical in linearized AMB control. The diagonal
derivative control matrix KD and the diagonal proportional
matrix KP are defined as

KD =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

kd,t 0 0 0

0 kd,t 0 0

0 0 kd,r 0

0 0 0 kd,r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; KP =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

kp,t 0 0 0

0 kp,t 0 0

0 0 kp,r 0

0 0 0 kp,r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(13)

where kd,t and kd,r represent derivative gains for translational
and rotational degrees of freedom, respectively. The variables
kp,t and kp,r represent proportional gains for translational
and rotational degrees of freedom. In this formulation, the
derivative gain control matrix acts as damping, and the prop-
ortional gain control matrix acts as stiffness. The advantage
to expressing the control law as (12) is that the benefits of
multiple-input multiple-output (MIMO) control are obtain-
ed in a form that is similar to single-input single-output
(SISO) control. This allows for a more intuitive “feel” for
the control action on the rotor [15] and makes the model
more accessible for mechanical engineers that do not work
with control theory on a regular basis.

Since only rigid-body modes are considered, the damp-
ing level represented by kd,t can be chosen to be any positive
number without affecting the system stability [15]. This
paper considers kd,t values that result in a damping ratio of
less than 1, which is typical for PD controls when rise time
and settling time are design considerations. The proportional
gain kp,t is generally chosen such that the ratio of closed loop
stiffness to open loop stiffness kp,t/kh is between 1 to 3 [15].

Sensor noncollocation is not much on an issue for rigid
rotors. A well-behaved coordinate transformation can always
be found for relating the sensor signals to the bearing loca-
tions. Thus, this topic is not discussed further.
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2.4. Translating Mode Damped Eigenvalues. Another advan-
tage to (12) is that the translating modes are now decoupled
from the tilt modes. The translating modes are described by
the uncoupled translational degrees of freedom or

⎡

⎣
M 0

0 M

⎤

⎦

⎧

⎨

⎩

ẍg

ÿg

⎫

⎬

⎭
+

⎡

⎣
kd,t 0

0 kd,t

⎤

⎦

⎧

⎨

⎩

ẋg

ẏg

⎫

⎬

⎭
+

⎡

⎣
kp,t 0

0 kp,t

⎤

⎦

⎧

⎨

⎩

xg

yg

⎫

⎬

⎭
=

⎧

⎨

⎩

0

0

⎫

⎬

⎭
.

(14)

The damped eigenvalues of the translating modes are not a
function of the running speed due to the decoupling. Taking
the horizontal translation as an example, the equation of
motion is

Mẍg + kd,t ẋg + kp,txg = 0. (15)

Equation (15) can be placed in standard form as

ẍg + 2ζtωn,t ẋg + ω2
n,txg = 0, (16)

where ζt represents the translate modal damping ratio. The
undamped translational natural frequency ωn,t is used to
nondimensionalize the damped natural frequency. Assuming
that the transverse damping ratio ζt is less than one, the com-
plex solution for the dimensionless damped natural fre-
quency st is

st = −ζt ± j
√

1− ζ2
t . (17)

The vertical translation solution is identical. This is the di-
mensionless translating eigenvalue solution.

2.5. Tilting-Mode-Damped Eigenvalues. The tilt modes are
represented by the rotational degrees of freedom about the
transverse axes, and the equations of motion are

⎡

⎣
Jt 0

0 Jt

⎤

⎦

⎧

⎨

⎩

θ̈xg

θ̈yg

⎫

⎬

⎭
+

⎛

⎝Ω

⎡

⎣
0 Jp

−Jp 0

⎤

⎦ +

⎡

⎣
kd,r 0

0 kd,r

⎤

⎦

⎞

⎠

⎧

⎨

⎩

θ̇xg

θ̇yg

⎫

⎬

⎭

+

⎡

⎣
kp,r 0

0 kp,r

⎤

⎦

⎧

⎨

⎩

θxg

θyg

⎫

⎬

⎭
=

⎧

⎨

⎩

0

0

⎫

⎬

⎭
.

(18)

It should be noted that this system represents an exten-
sion of the undamped rigid rotor analysis found in many
textbooks [17–19]. The effect of gyroscopics and the PD
control action are now considered for the natural frequencies
corresponding to the tilt modes. A solution of the form θx =
Θxest, θy = Θyest, is assumed for the analysis. Equation (18)
then becomes:
⎡

⎣
s2Jt + skd,r + kp,r sΩJp

−sΩJp s2Jt + skd,r + kp,r

⎤

⎦

⎧

⎨

⎩

Θxg

Θyg

⎫

⎬

⎭
=

⎧

⎨

⎩

0

0

⎫

⎬

⎭
. (19)

The system-damped eigenvalues are then found by setting
the determinant of the impedance matrix equal to zero or

∣
∣
∣
∣
∣
∣

s2Jt + skd,r + kp,r sΩJp

−sΩJp s2Jt + skd,r + kp,r

∣
∣
∣
∣
∣
∣

= 0. (20)

The resulting characteristic equation for the tilt modes is
then

(

s2Jt + skd,r + kp,r

)2
+ s2

(

ΩJp
)2
= 0. (21)

Equation (21) can then be factored into two character-
istic equations that have four total roots. These four roots
correspond to four tilt modes, two forward and two back-
ward. The two characteristic equations are then

s2Jt + s
(

kd,r + jΩJp
)

+ kp,r = 0,

s2Jt + s
(

kd,r − jΩJp
)

+ kp,r = 0.
(22)

Placing (22) in standard form yields

s2 + s
(

2ζr,0ωrn,0 + jΩP
)

+ ω2
rn,0 = 0,

s2 + s
(

2ζr,0ωrn,0 − jΩP
)

+ ω2
rn,0 = 0.

(23)

Here, we have defined the tilt mode damping ratio ζr,0 and
the tilt mode natural frequency ωrn,0 to be the values obtain-
ed at zero rotational speed. The ratio of polar inertia to tran-
sverse inertia is also defined as P = Jp/Jt . For cylindrical
sections, P can assume values from 0 to 2. A ratio of P = 0
corresponds to an infinitely long cylindrical rotor, and a ratio
of P = 2 corresponds to a thin disk rotor.

Using the zero-rotational speed-undamped natural fre-
quency ωrn,0 to nondimensionalize the damped natural freq-
uencies, the characteristic equations take the form:

s2 + s
(

2ζr,0 + jΩP
)

+ 1 = 0, (24)

s2 + s
(

2ζr,0 − jΩP
)

+ 1 = 0. (25)

Considering (24) first, the solutions for sr1,r2 using the
quadratic formula is

sr1,r2 =

−2ζr,0 − jΩP ±

√
(

2ζr,0 + jΩP
)2
− 4

2
. (26)

For this solution, we assume that the controller derivative
gain is such that the tilt modes are underdamped. After some
rearrangement, equation (26) becomes

sr1,r2 = −

(

ζr,0 + j
ΩP

2

)

± j

√
√
√
√1− ζ2

r,0 +

(

ΩP

2

)2

− jζr,0ΩP.

(27)

Using a solution for the square root of a complex number
[20, 21], the first two roots of the characteristic equation,
represented by (27), become
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sr1,r2 = −ζr,0 ±

√

1

2

√
√
√
√
√
√

√
√
√
√
√

⎡

⎣1− ζ2
r,0 +

(

ΩP

2

)2
⎤

⎦

2

+
(

ζr,0ΩP
)2
− 1 + ζ2

r,0 −

(

ΩP

2

)2

+ j

⎡

⎢
⎢
⎢
⎣
−
ΩP

2
±

√

1

2

√
√
√
√
√
√

√
√
√
√
√

⎡

⎣1− ζ2
r,0 +

(

ΩP

2

)2
⎤

⎦

2

+
(

ζr,0ΩP
)2

+ 1− ζ2
r,0 +

(

ΩP

2

)2

⎤

⎥
⎥
⎥
⎦
.

(28)

Using a similar procedure for (25), the remaining solutions
sr3,r4 are

sr3,r4 = −ζr,0 ∓

√

1

2

√
√
√
√
√
√

√
√
√
√
√

⎡

⎣1− ζ2
r,0 +

(

ΩP

2

)2
⎤

⎦

2

+
(

ζr,0ΩP
)2
− 1 + ζ2

r,0 −

(

ΩP

2

)2

+ j

⎡

⎢
⎢
⎢
⎣

ΩP

2
±

√

1

2

√
√
√
√
√
√

√
√
√
√
√

⎡

⎣1− ζ2
r,0 +

(

ΩP

2

)2
⎤

⎦

2

+
(

ζr,0ΩP
)2

+ 1− ζ2
r,0 +

(

ΩP

2

)2

⎤

⎥
⎥
⎥
⎦
.

(29)

When the damping ratio is zero, (28) and (29) reduce to

sr1,r2 = − j

⎡

⎢
⎣
ΩP

2
∓

√
√
√
√

(

ΩP

2

)2

+ 1

⎤

⎥
⎦, (30)

sr3,r4 = j

⎡

⎢
⎣
ΩP

2
±

√
√
√
√

(

ΩP

2

)2

+ 1

⎤

⎥
⎦, (31)

which is the purely complex undamped solution presented in
several texts on rotordynamics, for example, [17–19].

2.6. Natural Frequencies, Damping Ratios, and Log Decre-
ments. The four damped tilting mode solutions to s are now
in the form p+ jq. From these relations, the effective tilt mode
damping ratio ζr at a nondimensional rotational speed Ω is
given by

ζr = −
p/q

√

1 +
(

p/q
)2
. (32)

The undamped tilt mode dimensionless natural frequency
ωn is then

ωrn = −
p

ζr
. (33)

Rotordynamic analyses often use the logarithmic decre-
ment δ instead of the damping ratio to assess the stability
margin and the amount of damping in the modes. The
logarithmic decrement is directly related to the damping
ratio and is given by:

δ = −
2πζr
√

1− ζ2
r

. (34)

3. Numerical Examples

To demonstrate the analyses above, several examples are pro-
vided. A Campbell diagram is presented for the undamped
eigenvalues for various values of P. A Campbell diagram
is also presented for various zero-speed damping ratios
assuming P = 0.5 to show the sensitivity of the undamped
natural frequencies to applied damping and gyroscopics.
Several plots of logarithmic decrement for different zero-
speed damping ratios to show the sensitivity of the stability
margin to the gyroscopics.

3.1. Campbell Diagrams. First, the Campbell diagram arising
from (30) and (31) is considered. This results in four tilt
modes, two forward and two backward. Only some of the
forward tilt modes can be excited by unbalance depending
on the value of P, as demonstrated in Figure 2 and depending
on the unbalance distribution. However, unmodeled system
dynamics, including both forward and backward modes, can
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Figure 2: Rigid rotor Campbell diagram, tilt modes, ζr,0 = 0.

be excited by the AMBs if the modal frequency is within the
controller bandwidth [22]. This is a significant difference
from rotor systems supported on fluid film bearings. It is,
therefore, important to consider all the modes within the
controller bandwidth in the AMB controller design.

The next Campbell diagram is based on the undamped
natural frequency, (33), for typical zero-speed damping ra-
tios and a P value of 0.5. In Figure 3, it is seen that the un-
damped tilt natural frequencies are not very sensitive to the
zero-speed damping ratio. The change in natural frequency
from ζr,0 = 0 to ζr,0 = 0.7 is less than ten percent for all four
modes.

3.2. Effects of Rotational Speed on Stability Margin. The
rotor/AMB system does not explicitly have a component de-
signed to control gyroscopics. However, the rotor/AMB sys-
tem is stable. This section discusses the reduction in stability
due to gyroscopic effects. The following discussion of system
stability, based upon (28) and (29), has not been published
previously.

The first stability margin plot of logarithmic decrement
versus dimensionless rotational speed is shown in Figure 4.
For this plot, the damping ratio ζr,0 was set to 0.7. It is ap-
parent that the effective damping is a strong function of the
gyroscopics and the rotational speed. For a thin disk (P = 2)

0 0.5 1 1.5 2

Ω̄

0

0.5

1

1.5

2

−1.5

−1

−0.5

−2

ω̄rn,1, ζr,1 = 0

ω̄rn,1, ζr,1 = 0.5

ω̄rn,1, ζr,1 = 0.7

ω̄rn,2, ζr,2 = 0

ω̄rn,2, ζr,2 = 0.5

ω̄rn,2, ζr,2 = 0.7

ω̄rn,3, ζr,3 = 0

ω̄rn,3, ζr,3 = 0.5

ω̄rn,3, ζr,3 = 0.7

ω̄rn,4, ζr,4 = 0

ω̄rn,4, ζr,4 = 0.5

ω̄rn,4, ζr,4 = 0.7

Synchronous

ω̄
rn

,i

Figure 3: Undamped natural frequencies, various damping ratios,
P = 0.5.

rotating at twice the tilt natural frequency, the logarithmic
decrement is 1.99, which compares to a logarithmic decre-
ment of 6.16 for zero rotational speed, or a reduction by a
factor of 3. As P approaches zero, the effect on logarithmic
decrement is less pronounced. For a typical value of P = 0.5
for rigid rotor applications, and rotation at twice the tilt
natural frequency, the logarithmic decrement is 4.64. This is
a 25 percent reduction compared to the zero-speed logarith-
mic decrement.

The second stability margin plot, Figure 5, shows similar
results for a damping ratio of ζr,0 = 0.5. Again, considering
the case of a thin disk where P = 2, the logarithmic decre-
ment is 1.41 when the disk is rotating at twice the tilt natural
frequency, compared to a logarithmic decrement of 3.62
at zero rotational speed. The relative drop in logarithmic
decrement is less than the ζr,0 = 0.7 case, since it only was
reduced by a factor of 2.57. With reduced P, the effect on log-
arithmic decrement is again reduced. For P = 0.5, the log-
arithmic decrement for rotation at twice the tilt mode na-
tural frequency is 3.05, which is a reduction of 16 percent
compared to the zero-speed logarithmic decrement.

The third stability margin plot, Figure 6, shows the
results for a damping ratio of ζr,0 = 0.1. A similar trend is ob-
served when compared to the two previous damping ra-
tios considered. For the thin disk rotating at twice the tilt na-
tural frequency, the logarithmic decrement is 0.28, which
compares to the zero-speed logarithmic decrement of 0.63.
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Figure 4: Log decrement as a function of dimensionless running
speed, ζr,0 = 0.7.
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Figure 5: Log decrement as a function of dimensionless running
speed, ζr,0 = 0.5.

The stability margin is reduced by a factor of 2.25 in this case.
As with the previous cases, the effect is less pronounced as the
inertia ratio P approaches zero. For P = 0.5, the logarithmic
decrement for rotation at twice the tilt critical speed is 0.56,
which is a 12 percent reduction compared to the zero-speed
logarithmic decrement.

The fourth stability margin plot, Figure 7, shows the re-
sults for a damping ratio of ζr,0 = 0.05. The logarithmic
decrement at zero rotation is 0.31 for the thin disc. When the
thin disc is rotating at twice the tilt mode critical speed, the
logarithmic decrement is reduced by a factor of 2.21 to 0.14.
The effect is most pronounced when the rotor approaches a
thin disc and becomes less prevalent as the rotor approaches
a long cylinder, implying that P is approaching zero. For
P = 0.5, the logarithmic decrement for rotation at twice
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Figure 6: Log Decrement as a Function of Dimensionless Running
Speed, ζr,0 = 0.1.
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Figure 7: Log decrement as a function of dimensionless running
speed, ζr,0 = 0.05.

the tilt mode natural frequency is 0.28, or a reduction of 10
percent compared to the zero-speed logarithmic decrement.

4. Conclusions

In the present work, an analytical dimensionless damped ei-
genvalue solution was developed for a rigid rotor supported
in AMBs using modal PD control. The tilt mode analytical
solution is completely nondimensional and is expressed sole-
ly in terms of three dimensionless parameters: dimensionless
rotational speed, zero-speed damping ratio, and the ratio of
polar mass moment of inertia to transverse mass moment of
inertia. The translating modes are not affected by the system
gyroscopics and yield a typical underdamped eigenvalue sol-
ution. The tilt modes are affected by the gyroscopics and the
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expressions for the damped eigenvalues become relatively
complex functions.

To understand the tilt mode functions in greater detail,
Campbell diagrams are presented. The Campbell diagram
of the undamped tilt mode eigenvalues shows the effect of
gyroscopics on the undamped natural frequencies, and the
effects of mode splitting. Based on the mode split, only some
of the modes can ever be excited by synchronous excitations.
The number of modes that can be excited by synchronous
excitations is a function of the moment of inertia ratio P
and the unbalance distribution. However, all the forward
and backward modes within the controller bandwidth can be
excited by the AMBs [22], making it important to consider
them in controller design. Another Campbell diagram, con-
sidering the undamped natural frequency for different dam-
ping ratios and P = 0.5, shows that the undamped natural
frequency is relatively insensitive to damping ratio, with a
maximum change of about 5 percent from the undamped
case to ζr,0 = 0.7.

The effect of the gyroscopics on the real part of the
eigenvalue, which directly affects the rotor stability, was also
explored. The modal PD controller does not explicitly have
an x-y coupling designed to control the gyroscopic forces.
Plots of rotor stability as a function of nondimensional run-
ning speed show the effect of the gyroscopics on the stability
margin. For nondimensional running speeds of 2 and P = 2,
the effect is a reduction in logarithmic decrement by a fac-
tor of 2.25–3 compared to the zero-speed logarithmic de-
crement, depending on damping ratio. This effect is a strong
function of the moment of inertia ratio P and disappears
when P = 0 or is near P = 0 for long thin rotors. It
is interesting to note that while the gyroscopic effect is not
destabilizing [18], the gyroscopics can reduce the effective
damping of the system. If additional destabilizing mecha-
nisms are present in the system, such as radial seals, then
there is the potential for an unstable rotor that would not
be apparent from zero-speed damping ratios.

Many industrial AMB rotors have a P ratio of 0.5 or less.
The change in logarithmic decrement was about 25 percent
for a damping ration of ζr,0 = 0.7 and became less pro-
nounced for lower zero-speed damping ratios. This change in
logarithmic decrement coupled with the relative insensitivity
of the rotor natural frequencies to damping indicate that
the gyroscopics can then be treated as an uncertainty when
modern control theories such as H∞ or µ-synthesis are ap-
plied to the control problem for rigid rotors supported by
AMBs.

The development of a general solution to the rigid rotor
supported in active magnetic bearings also has the benefit of
familiarizing mechanical engineers with the basics of control
algorithms for rotating systems and gives additional physical
insight. The solution also allows for additional study of the
effect of other destabilizing mechanisms that may be present
in AMB rigid-rotor systems.

The effects studied here are generally quite different when
the rotor is flexible. It is strongly recommended that model
based controllers such as H∞ or µ synthesis be used for flexi-
ble rotors.
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