General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

o Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



g%, .

Ly

?u.z

"
]

"ﬁEQE{ -iﬁii

.
-

Bureau of Engineering Research
The University of Texas at Austin
Austin, Texas

(NASA-CK=1062u0U1) HMOLAL VECTOK

rog CLUSELY

ESTIMATICN

SFACED FRHEQUENCY PFPCUDES (Texas
Univ. at Arlingtou.) 41 f HC AO3I/MF AU
CSCL 20K

Gi/3Y9

Report CAR 82-1

MODAL VECTOR ESTIMATION FOR
CLOSELY-SPACED-FREQUENCY MODES

by
Roy R. Craig, Jr.
Yung-Ts2ng Chung
Mark Blair

NASA Contract No. NASB-339&0
February 1, 1982

'lt3¢_¢£}1}

Unclas
VYo 1t

-




MODAL VECTOR ESTIMATION FOR
CLOSELY-SPACED-FREQUENCY MODES
A Report to
NASA Marshall Space Flight Center
Contract No. NAS8-33980 |
by

Roy R. Craig, Jr.* & -

Yung-Tseng Chungt
Mark Blairt+

ASE-EM Department

The University of Texas at Austin

Austin, Texas 78712

* Professoy, ASE-EM é
+ Graduate Student, EM
++ Undergraduate Student, ASE

February 1, 1982 1




MODAL VECTOR ESTIMATION FOR CLOSELY~SPACED-FREQUENCY MODES

1, Introduction

In describing the dynamical beliavior of a complex structure modal
parameters are often employed: undamped natural freauency, mode shape,
modal mass, modal stiffness, and modal damping. From both an analytical
standpoint and an ex,erimental standpoint, identification of modal para-
meters is ma“e more difficult if the system has repeated frequencies or
rven closely-spaced frequencies. The more complex the stiructure, the
more Tikely it is to nave closely-spaced frequencies. In many cases this
fact makes it diffitult to determine valid mode shapes using single-shaker
test methods. By employing band selectable analysis (zoom) techniques
and by employing Kennedy-Pancu circle fitting or some multiple degree of
freedom (MDOF) curve-fit procedure, the usefulness of the single-shaker
approach can be extended. However, for many structures such procedures
may still not be sufficient to give accurate modal representations.

It is the purpose of this paper to discuss techniques for obtaining
improved modal vector estimates for systems with closely-spaced-frequency

modes.

2. Closely-Spaced~Frequency-Modes

It is well-known that systems with unique frequencies possess unique
mode shapes, while systems with repeated frequencies do not possess unique

modes corresponding to the repeated frequencies, but rather, they possess
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subspaces of modes. This is 11lustrated by the simple 2 degree-of-freedom
(DOF) systems of Figure 1. Figure 2(a) shows the frequency response func-
tions (FRF's) of a 2DOF system with widely-separated-frequency modes
(5.0Hz and 5,5Hz), while Figure 2(b) shows a simi(ar system with closely~-
spaced-frequency modes (5.00Hz and 5.05Hz).

The frequency spacing of the 2DOF system in Figure 2 is controlled

1) made a thorough

by the strength of the coupling spring. K]osterman(
investigation of the dynamics of weakly coupled systems, such as the
types illustrated in Figure 3, and concluded that, for such systems,
"close agreement between computed and experimentally measured mode shapes
cunot be expected," This results from the fact that "coupled system
mode shapes are very sensitive to small variations in the subsystems."
Table 1 11lustrates the effect of small variations in the mass of one
subsystem on the coupled system modes of a 2DOF spring-muss osciltlator
when the coupling is "weak." It can be seen that, as noted by Klosterman,
small changes in the subsystem properties have an enormous effect on the
system modes when the system consists of weakly coupled subsystems.
Figures 4 and 5 show FRF's of a moderately complex piece of space
hardware. Figure 4 shows the Bode plot of a drive-point FRF over the full
data acquisition bandwiath, while Figures 5{a) and 5(b) show two Argand

plots over a 10-30Hz bandwidth. Clearly, this structure has closeiy-

spaced-frequency modes. In actual fact, the structure is comprised of

a tubular framework supporting several virtually identical honeycomb panels.

Thus, this structure is a classic example of a system which consists of

weakly - coupled subsystems.
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Although Klostzrman has noted that getting experimentally determined
modes to agree with analytically determined modes may be a hopeless under-
taking, we will address the sTightly different proposition of determining
"good" (in some sense) experimental modes for systems having closely-

spaced frequencies.

3, Modal Vector Estimation Using a Single Column/Row of the Freaquency

Response Function Matrix

Techniques for estimating experimential mode shapes by using a single
column or a single row of the FRF matrix are well known and are jncorporated
in various modal analysis software packages such as MODAL-PLUS. Appendix A
gives the mathematical basis for using a single row/column of the FRF matrix
in identifying modal parameters. The most frequently employed techniques
for estimating medal vectors from FRF's are the quadrature response method
and the Kennedy-Pancu circle-fit method.(z >3] Figure 6(a) shows the
correct modes of the 2DOF systems of Figures 2(a) and 2(b) along with the
quadrature response "experimental" modes which would be inferred from fre-
quency response functions. When the frequencies are not closely spaced,
acceptable results are obtained by the quadrature response technique, as
seen in Figure 6(b). However, when the frequencies are closely spaced,
there is difficulty, first, in identifying the natural frequencies at which
to identify the modes; and modes based on one shaker Jocation do not agree

with modes based on another shaker location, as can be seen by comparing

Figures 6(c) and 6(d).
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The use of quadrature response techniques in situations where fre-
quencies are closely spaced clearly leads to erroneous modal vector esti-
. mates. It could be shown that even circle-fitting and MDOF curve fitting
would fail to produce good modal vector estimates in cases such as this.
Because of the difficulties in obtaining accurate modal vectors

for syctems with closely-spaced -frequency modes by using only a single

column or row of the FRF matrix, it becomes necessary to examine the possi-
bility of using several rows/columns of the FRF matrix to obtain improved

modal vector estimates.

4. Modal Vector Estimation Using Several Columns/Rows of the Freguency

Response Function Matrix

Figure 6 illustrates the difficulty in cobtaining valid mode shapes
from single-shaker data when the system has closely-spaced-frequency modes.
If only one shaker Tocation is employed, some modes may not be excited at
all, and there may be superposition of contributions of several closely-
spaced-frequency modes leading to inaccurate modal estimates. If additional
shaker locations are employed, there may be ambiguity as to which shaker
Tocation gives the best estimate of a certain mode. Several techniques
have been employed to combine the information from several rows/columns

of the FRF matrix. These include:

Modal Vector Weighting
* Symmetry/Antisymmetry Weighting
Analytical Mode Neighting(4)

1 s e s v
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Ad Hoc Sort Logic Averag-{ng(s)

Modal Tuning; Force Appropriation
Asher Method(s'g)
Extended Asher Method(jo)

Minimum Coincident Response Method(11)

Multishaker Sine Dwell Testing(12)

Figures 7(a) and 7(b) i1lustrate the problems caused by the super-
position of the effects of closeiyv-spaced-frequency modes. In Figure 7(a)
it is seen that the presence of two modes is masked, and it appears that
a single mode with greater amplitude and greater damping, or possibly even
nonlinear effects, is present. Figure 7(b) shows the effect of mode
superposition on a non-driving-point FRF. Here two modes are clearly
evident, but the apparent amplitude of each mode is reduced from its true
value. The methods listed above may be employed in an attempt to separate
out the contributions of individual modes in such situations.

Figure 8 illustrates the basis of symmetry/antisymmetry averaging.
Ground vibration testing of aircraft frequently employs symmetric/anti-
symmetric shaker configurations because of the inherent symmetry of the
structure. Even so, the. ' iy be many closely-spaced-frequency modes
in either the symmetric or the antisymmetric set of modes of an aircraft.

From Equatijons (A-7) and (A-10) it can be seen that, when the system
has distinct roots, P, » every row and column of the residue matrix

ay contains the modal vector Uy multiplied by a component of itself.




Richardson and Kniskern(5> extended the sort logic employed in producing
mode shapes from a single row or column of the residue matrix and proposed
a sort logic which would make use of data from multiple rows/columns of
the residue matrix. Although they demonstrated some improvement in
modal vector estimation, they recognized that their sort algorithm was
based on "rather arbitrary rules," and that other "more 'optimum'"
approaches might be possible.

Modal tuning, or force appropriation, is a third approach to employ~
ing multiple columns or rows of the FRF matrix to obtain system modes.
The name "Asher method" is frequently applied to one such version of
modal tuning. Extensive research has been done on this method in France,
where the technique is referred to as "force appropriation." Reference 9
ic Just one of a number of the French papers dealing with the use of
force appropriation for modal vector estimation.

The Asher method of modal tuning is based on the fact that when
a system is excited at an undamped natural frequency ®, by the appropriate
force vector F. , the response will be in quadrature with the excita-
tion, and the quadrature response will correspond to the undamped natural
mode 9 .(6) That 1s, for monophase harmonic excitation of an nDOF
system,

X = H F = (Hp+ iH,)F (1)
nx1 nxn nxl

For the response to be in quadrature with the excitation

HeF = 0 . (2)




Thus, the natural frequencies are determined from the condition that

det(HR(wr)) = 0 , r = 1,2, ... ,n (3)

The force vector Fr required to tune the mode is given by Equation (2).

Finally, the mode corresponding to the frequency w, 1is given by

r

Xo.) = iH(w,)F (4a)

r

or

b, = Hplw)F, (4b)

T T

Figure 9 shows the mechanics of how Asher tuning employs two columns of
a FRF matrix to tune a moua.

In Equations (1) through (4) and in the example presented in
Figure 9, it was assumed that all columns of the FRF matrix were available,
i.e., that there could be forces imposed at all points where displacement
(velocity, acceleration) measurements were made. In actual fact, the

number of possible excitation points, p , is usually one or two orders ;

of magnitude smaller than the number of response points, n .+ In this | j
case, Equations (1) through (4) are modified as follows:
X = H F p<n (5)
px1 pxp px1
HR F = 0 (6)

tHere it will be assumed that n , the number of response points, is
sufficiently large to constitute the "order of the system" as far as
the behavior of the system in the frequency tange of interest is concerned.



:
det(fiple)) = 0 + o (7)
X(0) = i (IR, > B, (8)

In Reference 7 1t is shown that the frequencies and mode shapes obtained
by applying Equations (5) through (8) to a pxp subset of the FRF matrix
are frequently good approximations to the true frequencies and modes,
but that “spurious modes" may also be produced w'en p<n . Modal tuning
according to Equations (5) through (8) will be referred to as "standard
Asher” (SA) tuning. Examples of standard Asher tuning will be nresented
in Section 5,

As noted, when the numbey of excitation points is small, i.e,
p<¢n , the use of standard Asher tuning may lead to "spurious modes.”
These will have a response in quadrature with the excitation at the p
excitation points, but at other measurement points the response may
have a significant coincident component, thus giving the appearance
of a "complex mode." Several approaches have been suggested for employ-

ing a non-square submatrix of the FRF matrix.(10’]1)

The technique
proposed by Ensminger and Turner(1]> may be referred to as the "minimum

coincident response (MCR) method." Thus, for harmonic excitation,

~ ~ ~ ~ ~ p<<n
A = H F o= (HR + iHI)F (9)
mx1 mxp px1 m<n

Xp = HgF (10)




9
Let the coincident response norm be defined by
fvnTm
e = Xp Xp (1)

Then, the force vector F 1is appropriated such that e is minimized
subject to an amplitude constraint. That is, F(w) and e(w) are
determined as functions of w only by determining an expression for

the F(w) which minimizes e subject to an amplitude constraint,

Kin e (Flo))
+  Flw) , elw) (12)

where X, 1s the quadrature response at the ith response point., This

results in a force vector given by

~ 1 v T
F 2 e v v e (H H ) H (13)
T (Hp i)l By
Hyp(Hg Hp) ™ Hyy

where §1I is the ith row of the imaginary part of the FRF matrix.

Finally, the frequencies w_,k are selected to minimize e(w) , Equatjon

r
(13) is used to compute the corresponding Fr , and the mode shape 1is

determined from the quadrature response

-~ ~ ~ ]

XI = iHI(wr)Fr (]4)

g SaS S F R R e § st LI T vonts Satmonie e T S oo e SO
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Ensminger and Turner reported good results from the application
of the minimum coincident vesponse method to synthesized frequency
response functions based on ground vibration test data obtainad for the
mated 747-Space Shuttle Orbiter, They also applied the standard Asher
method, Equations (5) through (8), to the same synthesized FRF's. They
concluded that "this approach (i.e. the minimum coincident response
method) was found to provide more consistent results than that based
on direct determination of roots of the real part of the transfer function
matrix (i.e, the standard Asher method)." Gold and Ha11auer(8) discussed
the application of the standard Asher method %o synthesized SRF's, but

were unable to successfully apply the method to actual experimentai data.

5,  Modal Tuning Applications

A research program is being conducted to evaluate the use of the
standard Asher method and the minimum coincident response method in
estimating modal vectors o/ systems having closely-spaced-frequency
modus.(la) The specific questions being addressed are:

(1) 1Is modal tuning using either the standard Asher(SA) method
or the minimum coincident response(MCR) method effective in producing
modal vector estimates in situations where the results of single shaker
method¢ are not adequate?

(2) How do the modal vector results obtained by the (SA) method
and the (MCR) method compare?

(3) What is the effect of the frequency resolution used in the
synthesis of FRF's on the modes produced by the SA method and the MCR
method?

3
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(4) How can residuals be employed in the synthesized FRF's
used as input to the modal tuning methods?

Although work 1s sti11 in progress on this research project, some
tentative results in response to questions (1) through (3) will be pre~
sented. Figure 10 shows a flow chart af the major steps employed in the
modal tuning studies.

Figure 11 shows a coupled-beam model which permitted experimental
data to be acquired for a system with closely-spaced-frequency modes,
Figure 12 shows a typical FRF and the results of using the MDOF curve-

it procedure in MODAL-PLUS (the GE and GA commands). The original

~=iy
w

experimental bandwidth was 10 Hz, which concentrated the spectrum around
the lowest pair of closely-spaced-frequency modes, Table 2 gives the

MDOF curve-fit results for the eight FRF's (2 reference points, 4 response
points). From Table 2 the following may be noted:

(a) Each FRF has two dominant roots in the 118-121 Hz range.

(b) Some of these dominant roots have phase angles significantly
different than +90°,

(¢) The "modes" based on having a single shaker at 1 appear to be
at approximately 119.0 Hz and 119.5 Hz; while the "modes" based on having
a single shaker at 6 appear to be at 118,8 Hz and 120.0 Hz. However, the
119.0 Hz "mode" is radically different than the 118.8 Hz "mode."

The MDOF results presented in Table 2 were used as input to a

program which first synthesizes analytical FRF's and then employs the
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synthesized FRF's as input to the SA and MCR modal tuning algorithms,

The modal tuning results for bandwidths of 10 Hz and 0.256 Hz are shown
in Figures 13 and 14 respectively, and the results for several bandwidths
are given in Table 3, From Table 3 the following may be noted:

(a) Two modes at approximately 118.8 Hz and 119.0 Hz are consis~
tently identified by both methods.

(b) Reducing the analysis bandwidth reduces the phase error of
the identified modes.

(c) The mode at 118,8 Hz appears to be much better tran the mode
at 119,0 Hz, i.e. there appears to be less phase error. However, it
should be noted that the large phase errors in mode 2 are associated
with relatively small amplitudes. In Figures 13(b) an¢ *4(b) it may be
noted that the minimum of e(w) 1is much less sharp for the 119.0 Hz
mode than for the 118.8 Hz mode. This sharpness may be related to the
phase coherence of the mode, but this relationship has not been thoroughly
evaluated.

(d) For the 118.8 Hz mode there is good agreement between the SA
mode and the MCR mode. For the second mode the agreement is not so good.

(e) The tuned modes do not exhibit the symmetrical antisymmetric
behavior which was expected because of the apparent symmetry of the
structure. The explanation for this discrepancy may 1ie in the mode
sensitivity of weakly coupled systems as previously discussed.

Attempts to employ the SA modal tuning techr’-wue on some of the data

from the structure whose FRF's are shown in Figures 4 and 5 indi.ated that

SRR S s R - : L R
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it would be necessary to include residuals in the synthesized FRF's. Work

on residuals is in progress and no raesults are yet available,

6. Conclusions

On the basis of the research described above, the following con-
clusions may be stated:

(a) Standard Asher tuning and minimum coincident response tuning
both provide rational means for employing multiple rows or columns of
the FRF matrix to improve modal vector estimates.

(b) The use of synthesized frequency response functions rather
than original experimental FRF's has two advantages: (1) far less memory
is required to store the synthesis parameters than is required to store
a complete FRF, and (2) the analysis bandwidth can be reduced to obtain
better estimates of the modal vectors.

(c) Much additional research is needed, particularly in three areas:
(1) application of modal tuning to testing of more complex structures,
(2) use of synthesized FRF's for reference points where no actual shakers

were Tocated, and (3) wuse of residuals where modal density is very large.

7. Appendix A - Single Column/Row Methods of Modal Parameter Identification

References 2 through 4, and many other papers, describe the basis
for using a single column or row of the FRF matrix to estimate modal
parameters, It is assumed that the motion of the physical system can be
adequately described by a set of simultaneous second-order Tlinear differen-

tial equations of the form




where

x(t)

R O X o~
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un

system displacement vector (nx1)
= force vector

mass matrix

]

damping matrix

= stiffness matrix

It is convenient to take the Laplace transform of Equation (A-1) giving

where

X(s)
F(s)
B(s)

B(s) X(s) = F(s) (A-2)

Laplace transform of displacement vector

Laplace transform of force vector

Ms2 + Cs + K

= (complex) Laplace variable

Equation (A-2) can also be written in the form

where

X(s) H(s)F(s) (A-3)

(B(s))"! (A-4)

H(s)
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H(s) is referred to as the transfer matrix, H(s=iw) is referred to as
the frequency response function (FRF) matrix.

The element hij(s) of H(s) can be written

2n=2 2n-1
e (s) = bys | + bys *aee by 45 + by o (A-5)
ij det(B(s))

For an n-dimensional system there will be 2n roots of the equation
det(B(s)) = 0 (A-6)

and 1f these roots are distinct, then H(s) can always be written in

the partial fraction form

is) = p ok (A-7)
k=1 (57Py)

where
Py = kth root of Equation (A-6)

L residue matrix for the kth root

When the system is subcritically damped, as are practically all structures,
the roots py occur in complex conjugate pairs, which can thus be

written in the form

. * *
pk = -Ok + '”Dk ’ pk = “Gk - 'lmk (A_B)

oz

et G AR LA Ml T )
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Modal vectors, u > are defined as solutions to the homogeneous

equation
B(pyJuy, =0 (A-9)

and, in terms of these modal vectors, the transfer matrix can be written

in the form
H(s) = kg: :fgtT (A-10)
or
Hs) = kg] I:l;'s‘u';T) + u:u:I:l (A-11)
= k (s-p)

From Equation (A-10) or Equation (A-11) it may be seen that each row and
each column of the transfer matrix (and, hence, the FRF matrix) contains
each modal vector multiplied by a component of itself. Thus, if the effect
of a single root could be isolated from the effect of all the other roots,
the mode Uy should be identifiable from any row or column of the result-

ing Hk(s) , where
U U
He(s) = F5& (A-12)

except those rows and columns corresponding to null elements of wu, .
References 2 through 4 describe varijous methods for attempting to isolate
the contribution, H, , of a single mode in order to identify the elements

of the modal vector Uy -
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I
m f 2 f 2
1.000 1.0000
1.000 1.0000 1.0002
1.000 -1.0000
1.0000 -1.,6192
1.0017 0.9994 1.0016 :
1.6176 1.0000
1.0000) ~10.1099
1.010 0.9910 1.0011
10.0098 1.0000
1.0000 -100.1109
1.100 0.9100 1.0010
91.0100 1.0000
Table 1. Effect of Subsystem Properties on System Modes of & Weakly

Coupled 2DOF System.
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Table 2.

Hyq

Frequency

115.2
115.0
119.0
119.5
124.8
124 .8

Hay

Frequency

115.1
115.0
119.0
119.4
124.8
124.8

Hg

Frequency

115.0
119.0
119.6
121.8
124.8

He1

Frequency

115.0
119.1
119.1
119.6
124.8

Damping

0.4707E-01
0,9298E-02
0.2640E-02
0.5844€-02
0.2241E-01
0.5535E-02

vamping

0.3076E-01
0.6774E-02
0.2638E-02
0.6918E-02
0.71989E-07
0.4153E-02

Damping

0.8869E-02
0.2248E-02
0.2688E-02
0.2591E-01
0.2374E-01

Damping

0.1177€-01
0.2258E-02
0.2723E-01
0.2839E-02
0.1433E-01

Amplitude

32.19
2,799
104.4
11.33
10.46

0.2597E-02

Amp1i tude

20.96
1.287
105.5
12.86
8.361
0.4751E-02

Amp1itude

0.9159E-01
21.34
21.75

0.8192

0.9778

Amp1litude

0.1757
22.18

1.053
22.71

0.1876

20

Phase

0.1799E-05
~0.1945E~05
1.684
0.2844
"3 -]42
0.7300E~-04

Phase

~-0.2731E-05
0.2747E-05
1.692
0.7228E-01
3.142

-0.2091£-03

Phase

0.1025E-05
1.479

~1.693

-1.075
~-0.2076E-06

Phase

0.1314E-04
1.438
0.2236
1.742
0.2673E-05

MDOF Curve Fit Parameters for FRF's of Dual Beam Model




Estimated Roots H]G

Root Frequency
1 115.2
2 115.1
3 115.0
4 118.9
5 120,0
6 124.8

Estimated Roots H26

Root Frequency

-—
—
o
v s ®
(FV]

-
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[P I S
D DO DD et
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Estimated Roots H56

Root Frequency

115.0
118.8
119.7
120.5
124.8

1P W N -

Estimated Roots H66

Root Frequency

115.0
118.8
119.4
119.8
124 .8

U1 5 0 NN 2

Damping

0.4602E-0)
0.3774€-01
0.3210E-02
0,2873E-02
0.2840E-02
0,1538E-01

Damping

0.6888E-01
0.3831E-02
0.2962E~02

0 aneTIr AN
WLIIL~VUL

0.1951E-01
0.1038E-01

Damping

0.1351E-01
0.3026E~02
0.9574E-02
0.2598E-01
0.7826E-02

Damping

0.9683E-02
0.3012e-02
0.2926E-01
0.3661E~02
0.9513E-02

Amplitude

2,207
0,1315E-06
0.4392E-02
12.55
13.00
0.2645

Anp1itude

1.838

0.3873E-01
12.19
12.75

0.5839E-07
0.1001

-,

Amplitude
5,757

105,2

0.3043E-02
17.09
1.399

Amplitude
2.987

104.0

22.91
0.7704E-01
2.130

2]

Phase

-0,3383E-05
~2,032
1.589
~1.568
-0,3002E-06

Phase

0.4750E-06
-0.1847E-05
1.589

L I~y ¥, }
~jsdik

-0,8005€E-01
-0.3857E-06

Phase

0.1010E-05
1.591
-1.827
-0.9058
"3 0142

Phase

0.3488E-05

1.592
-0.7715
-2.299

3.142

Table 2.(Cont.) MDOF Curve Fit Parameters for FRF's of Dual Beam Model




| 22
SA MCR
By | T fode 1 f1 Mode 1 -
(Hz) | (Hz) Pt. | Ampl. Phase Pt. | Ampl, Phase
1 {1.000 0.0° 1 {1.000 -6,1°
0 |neee| |0 0.8° ne.7es | & |00 5.8°
' 5 f0,041 | -1.9° ’ 5 | 8.697 -1.9°
6 |9.926 -1,9° 6 | 8.589 -1.9°
7 11,0000 0.0° 1 1.0000 -1.0°
20 | 116,000 2 {0,934 -0.6° - 2 |0.935 -0,5°
L] . . v O
5 |9,277 0,4 5 | 9.063 -0,4°
6 | 9.167 -0.5° 6 | 8.954 -0.5°
1| 1.000 0.0° 1 | 1.000 -0.4° |
R 2 |0.934 -0,6° 118802 2 | 0,924 -0.1° j
. . .80 4
5 | 9,377 -0.1° 5 | 9.283 -0,1°
6 | 9.267 -0.2° 6 |9.174 -0,2°
] 1.000 0.0° 1 | 1.000 -0,3°
2 | 0.933 -0.6° 2 | 0.934 -0.3°
0.256 | 118,801 118.801
5 | 9.427 0.0° 5 | 9.363 0.0°
6 | 9.316 0.0° 6 | 9.253 0.0°

Table 3. Effect of Analysis Bandwidth on Standard Asher and Minimum
Coincident Response Modes.




SA MCR

B f1 Mode 2 f1 Mode 2 |
(Hz) | (Hz) Pt.| Ampl. | Phase Pt,| Ampl, | Phase
1| 1.000 0.0° 1| 1.000 -1,0°
1o | 119023 2 | 1,001 0.0° 119,023 2 | 1,003 -0,9°
' 5 | 0.200 | -34.6° ' 5 | 0.048 | ~41.9°
6 | 0.193 | ~17.3° 6 | 0,043 | -40.0°
1 | 1.000 0.0° 1 | 1.000 ~1.0°
v o 115,028 2 | 1.000 0.0° 19020 2 | 1.003 -0,9°
' ' 5 | 0,197 | -34.7° ' 5 | 0.048 | -42.0°
6 | 0,191 | -17.1° 6 | 0,043 | -40.2°
11 1.000 0.0° 71 1.000 0.0°
2 | 1.002 0.0° 1902 2 | 1.003 0.0°

1.0 |119,025 9.029
5 | 0.143 | -36.2° 5 | 0.036 | -48.1°
6 | 0.138 | -10.6° 6 | 0,035 | -48,5°
1 | 1.000 0.0° 1 | 1.000 -0.1°
Y 2 | 1.002 0.0° 115,025 2 | 1.003 0.0°

0.256 | 119,027 9.

5 | 0.101 | -38.2° 5 | 0.037 | -~47.6°
6 | 0.098 -0.3° 6 | 0.036 | -47,9°

Table 3(cont.).

Effect of Analysis Bandwidth on Standard Asher and
Minimum Coincident Response Modes.
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