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Modal Warping: Real-Time Simulation of

Large Rotational Deformation and Manipulation
Min Gyu Choi and Hyeong-Seok Ko

Abstract— This paper proposes a real-time simulation

technique for large deformations. Green’s nonlinear strain

tensor accurately models large deformations; however,

time stepping of the resulting nonlinear system can be

computationally expensive. Modal analysis based on a

linear strain tensor has been shown to be suitable for

real-time simulation, but is accurate only for moderately

small deformations. In the present work, we identify the

rotational component of an infinitesimal deformation, and

extend traditional linear modal analysis to track that

component. We then develop a procedure to integrate

the small rotations occurring at the nodal points. An

interesting feature of our formulation is that it can

implement both position and orientation constraints in a

straightforward manner. These constraints can be used to

interactively manipulate the shape of a deformable solid

by dragging/twisting a set of nodes. Experiments show

that the proposed technique runs in real-time even for a

complex model, and that it can simulate large bending

and/or twisting deformations with acceptable realism.

Index Terms— Physically Based Modeling, Physically

Based Animation, Deformation, Modal Analysis

I. INTRODUCTION

E
VERYTHING in this world deforms. In many

objects or creatures, deformation is such a con-

spicuous characteristic that their synthetic versions look

quite unnatural if the deformation process is not prop-

erly simulated. Therefore, modeling of deformation is

an important aspect of computer animation production.

This paper presents a physically-based technique for

dynamic simulation of deformable solids, attached to

rigid supports and excited by their rigid motions and/or

external forces such as gravity. The proposed technique

makes a significant improvement in simulation speed,

while maintaining the realism to a sufficient level, even

for large deformations.

It is a well-established approach to model elastic solids

as continuums and solve their governing equations nu-

merically using finite element methods. When adopting
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a continuum model, it is necessary to choose the mea-

sure of strain that quantifies deformation. Green’s strain

tensor, which consists of linear terms and a nonlinear

term, has been a common choice for large deformations.

Unfortunately, time stepping of the resulting nonlinear

system can be computationally expensive, hampering its

practical use in animation production.

The computational load can be reduced remarkably by

employing modal analysis [19] based on a linear strain

tensor. In this technique, a set of deformation modes

– a small number of principal shapes that can span free

vibration of the elastic model – is identified and precom-

puted. Then, the problem of simulating deformation is

transformed to that of finding the weights of the modes,

which results in a significant reduction in computational

complexity. This technique can also synthesize geomet-

rically complex deformations with negligible main CPU

costs on programmable graphics hardware [10].

However, modal analysis can produce quite unnatural

results when applied to bending or twisting deformations

of relatively large magnitudes. In particular, the volume

of the deformed shape can increase unrealistically, as

shown in Fig. 4. These unnatural results are due to the

omission of the nonlinear term, which is not negligible

for such deformations. In this paper, we propose a new

technique that overcomes the above limitations of linear

modal analysis. As a result, the proposed technique

generates visually plausible shapes of elastodynamic

solids undergoing large rotational deformations, while

retaining its computational stability and speed. Also, our

formulation provides a new capability for orientation

constraints, which has not been addressed in previous

studies. The use of position/orientation constraints can

create interesting animations (Section VI) which would

have been difficult if orientation constraints were not

provided.

The innovative aspect of our technique lies in the

way of handling rotational parts of deformation in the

modal analysis framework. To exploit the framework of

linear modal analysis, we omit the nonlinear term during

the initial setup, which corresponds to precomputing

the modal vibration modes at the rest state. When the

simulation is run, however, we keep track of the local
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rotations that occur during the deformation, based on the

infinitesimal rotation tensor. Then, at each time step we

warp the precomputed modal basis in accordance with

the local rotations of the mesh nodes. The rest of the

method is basically the same as in linear modal analysis.

The above book-keeping operations – tracking local

rotations and warping the modal basis – require only a

small amount of extra computation. Therefore, as in [10],

our method can simulate dynamic deformations in real-

time by employing programmable graphics hardware, but

with an extended coverage of deformations.

II. RELATED WORK

Since the pioneering work of Terzopoulos et al. [24],

much effort has been devoted to simulating the motion of

deformable objects. Past studies in this area have had two

central aims: to speed up the simulation and/or increase

the realism of the result. A comprehensive survey of this

subject can be found in computer graphics literature [6]

and mechanics literature [1], [26].

The speed and realism of simulations, which usually

trade off each other, are heavily dependent on how

the nonlinearities are handled. If realism is important,

Green’s quadratic strain tensor could be used, which

produces realistic results even for large deformations.

However, time stepping of the resulting nonlinear system

can be computationally expensive. Several methods have

been proposed to reduce the computational load of

this approach. Lumped mass approximation diagonalizes

the mass matrix so that its inverse can be computed

efficiently. Further reduction of the computation time can

be achieved by employing adaptive methods based on

a multi-grid solver [23], non-nested overlapping layers

of unstructured meshes [3], subdivision of the control

lattice [2], or refinement of basis functions [7]. However,

the speed-up achieved by those methods is limited,

because they must still deal with the inherent problems

resulting from the nonlinearities.

The computation time can be greatly reduced by

adopting the modal analysis of linear elastodynamics,

which omits the nonlinear term. Since Pentland and

Williams [19] first introduced this technique to the com-

puter graphics community, it has been used for modeling

the dynamic movements of trees in turbulent wind [22],

and for generating sounds corresponding to the behavior

of deformable objects [18]. In particular, James and

Pai [10] showed that the deformation of human skin

excited by rigid body motion can be generated in real-

time on programmable graphics hardware. They also

proposed an output-sensitive technique for collision de-

tections among reduced deformable models [11]. Hauser

et al. [8] addressed the manipulation constraints, and

combined modal analysis with rigid body simulation

to deal with free-floating deformable objects. Although

modal analysis significantly accelerates the simulation,

it generates noticeable artifacts when applied to large

deformations due to the linearization. Here we propose a

technique that eliminates the linearization artifacts while

retaining the efficiency of the modal analysis.

The linearization artifacts observed in simulations

based on linear modal analysis arise in large part because

linear modal analysis does not account for rotational

deformations. Terzopoulos and Witkin [25] introduced

a frame of reference and modeled the deformation rel-

ative to that reference frame. Since simulations using

the reference frame capture the rotational part of the

deformation, they can handle large rotational motions of

deformable solids. However, large deformations within

the solid are also susceptible to the linearization artifact.

To realistically animate articulated deformable charac-

ters, Capell et al. [2] developed a method in which the

character is first divided into overlapping regions, then

each region is simulated separately, and finally the results

are blended. For nonlinear quasi-static deformations of

articulated characters, Kry et al. [12] introduced a modal

displacement model equipped with a continuously artic-

ulated coordinate system.

To address large relative rotational deformations

within a single object, Müller et al. [14] proposed the

stiffness warping method that tracks the rotation of each

node and warps the stiffness matrix. Our method is

similar to their approach in that rotations are handled

separately to reduce the linearization artifacts. The in-

trinsic difference is that, whereas the stiffness warping

method is formulated in the original space, our method is

formulated in the modal space. This results in a signifi-

cant speed up in both simulation and visualization by (a)

solving decoupled, reduced system of linear equations,

and (b) utilizing programmable graphics hardware for

vertex updates of large models. However, unlike the

corotational methods [4], [5], [15] that employ element-

wise rotation, both Müller et al.’s work [14] and our work

are based on node-wise rotation of the stiffness matrix,

thus can produce a spurious ghost force when applied

to a free-floating deformable object. Currently, our work

is focused on a deformable object attached to a rigid

support, thus the ghost force effects are suppressed by

the constraint force.

Recently, James and Fatahalian [9] proposed data-

driven tabulation of the state space dynamics and di-

mensional model reduction of the deformed shapes to

simulate large deformations at an interactive speed with

visually realistic results. Because the tabulation could

not be performed for all possible system responses, they
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confined user interactions to certain types of movements.

They reported that the precomputation for the dinosaur

model shown in Fig. 10 took about 30 hours. In compar-

ison, our method is formulated by adding simple exten-

sions to linear modal analysis. As a consequence, it does

not entail long precomputation times, nor does it restrict

the types of user interactions. However, self-collisions

and global scene illumination cannot be precomputed in

our method, which was possible in [9].

III. ROTATIONAL PART IN A SMALL DEFORMATION

The nonlinear term in the strain tensor is responsible

for the appearance and disappearance of rotational de-

formations. However, because the strain tensor used in

the present work does not include the nonlinear term,

a straightforward modal analysis will not generate such

phenomena, and will therefore give rise to visual artifacts

for large deformations.

Even though a linear strain tensor does not properly

model the rotational deformation, fortunately, investigat-

ing the kinematics of deformation provides a clue to

lessen such an inability; In fact, it has been generally

known that every infinitesimal deformation can be de-

composed into a rotation followed by a strain [21]. This

finding forms the basis of the technique proposed here.

Specifically, at every time step of the deformation sim-

ulation, we first identify the (small) rotations occurring

over the material points, and then integrate the effects of

those rotations to obtain the deformed shape.

This section commences with an investigation of the

kinematics of infinitesimal deformation to show how

such deformations can be decomposed into a strain and a

rotation. This analysis is entirely based on the mechanics

literature [21]. We then show how this decomposition can

be used to extend modal analysis so that it keeps track

of rotations, while still retaining the basic framework of

modal analysis. The method for integrating the effects

of rotations will be presented in the next section.

A. Kinematics of Infinitesimal Deformation

Before introducing the decomposition of infinitesimal

deformations, we first define the necessary notations.

Suppose that x ∈ R
3 denotes the position of a material

point of an elastic solid in the undeformed state, which

moves to a new position a(x) due to a subsequent

deformation. To focus on the displacements caused by

the deformation, we make use of the displacement field,

u : R
3 → R

3, such that

a(x) = x+u(x), x ∈ Ω,

where Ω is the domain of the solid. Then, differentiating

both sides of the above equation with respect to x gives

)(xu

x

ŵxd
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Fig. 1. Kinematics of infinitesimal deformation.

a differential relation that gives the position to which

a material point neighboring x will be mapped by the

deformation:

da = (I+ ∇ u)dx, (1)

where ∇ u is the Jacobian of u. We are interested in

decomposing ∇ u.

The infinitesimal strain tensor ε , which measures the

change in the squared length of dx during an infinitesi-

mal deformation (i.e., ‖∇ u‖≪ 1), is defined by

ε , 1
2
(∇ u+ ∇ uT).

Noting that 1
2
(∇ u + ∇ uT) is a meaningful quantity, we

can decompose ∇ u as

∇ u = 1
2
(∇ u+ ∇ uT)+ 1

2
(∇ u− ∇ uT) , ε +ω. (2)

Interestingly, the skew-symmetric tensor ω is closely

related to the curl of the displacement field, ∇ ×u . In

fact, ω can be rewritten as

ω = 1
2
(∇ u− ∇ uT) = 1

2
(∇ ×u)× , w×, (3)

where z× denotes the standard skew symmetric matrix

of vector z. Therefore, w , 1
2
(∇ ×u) can be viewed as a

rotation vector that causes rotation of the material points

at and near x by angle θ = ‖w‖ about the unit axis

ŵ = w/‖w‖. ω is called the infinitesimal rotation tensor.

By substituting (2) and (3) into (1), we obtain

da = dx+ εdx
︸︷︷︸

strain

+θŵ×dx
︸ ︷︷ ︸

rotation

,

which shows that an infinitesimal deformation consists of

a strain and a rotation. This decomposition, illustrated in

Fig. 1, has the practical benefit that, for small deforma-

tions, it is possible to keep track of the rotation of each

material point by calculating the curl of the displacement

field, w = 1
2
∇ ×u.

B. Extended Modal Analysis

This section presents how we extend the conventional

modal analysis so that it keeps track of the rotation

experienced by each material point during deformation.

First, we present a brief introductory description of
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modal analysis and finite element methods; detailed

explanations of these techniques can be found in texts

such as [20], [26].

The governing equation for a finite element model is

Mü+Cu̇+Ku = F, (4)

where u(t) is a 3n-dimensional vector that represents

the displacements of the n nodes from their original

positions, and F(t) is a vector that represents the external

forces acting on the nodes. The mass, damping, and

stiffness matrices M, C, and K are independent of time

and are completely characterized at the rest state, under

the commonly adopted assumption (Rayleigh damping)

that C = ξ M+ζ K, where ξ and ζ are scalar weighting

factors.

Modal Displacement. In general, M and K are not

diagonal, and thus (4) is a coupled system of ordinary

differential equations (ODEs). Let Φ and a diagonal

matrix Λ be the solution matrices of the generalized

eigenvalue problem, KΦ = MΦΛ, such that ΦTMΦ = I

and ΦTKΦ = Λ. Since the columns of Φ form a basis of

the 3n-dimensional space, u can be expressed as a linear

combination of the columns:

u(t) = Φq(t). (5)

Here, Φ is the modal displacement matrix, of which the

i-th column represents the i-th mode shape, and q(t) is a

vector containing the corresponding modal amplitudes

as its components. By examining the eigenvalues we

can take only dominant m columns of Φ, significantly

reducing the amount of computation. In the following,

Φ denotes the 3n×m submatrix formed by the above

procedure.

Substitution of (5) into (4) followed by a premultipli-

cation of ΦT decouples (4) as

Mqq̈+Cqq̇+Kqq = ΦTF, (6)

where Mq = I, Cq = (ξ I+ζ Λ), and Kq = Λ are now all

diagonal. ΦTF is called the modal force. The above de-

coupling allows the motion components due to individual

modes to be computed independently and combined by

linear superposition.

Modal Rotation. We now develop a procedure to rep-

resent the rotational part, w(t), in terms of q(t). w(t)
is a 3n-dimensional vector formed by concatenating all

of the 3-dimensional rotation vectors, each of which is

formed by taking the curl of the displacement field u at

each node, as described in Section III-A.

For simplicity, we use linear tetrahedral elements

in (4). Let ue, j ( j ∈ [1,4]) be the vertex displacement

of a tetrahedron Ωe, and let ue = [uT
e,1|u

T
e,2|u

T
e,3|u

T
e,4]

T.

Then, the displacement of material point x ∈ Ωe is given

by u(x) = He(x)ue, where He(x) is the linear shape

function of the element. Substituting this into (3) yields

the rotation vector for x:

we(x) = 1
2
(∇ ×)He(x)ue , Weue. (7)

Note that, because He(x) is a linear function of x, We

is constant, and thus we(x) is uniform over Ωe. For the

rotation vector of a node, we use the average of the

rotation vectors of all the tetrahedra sharing the node.

Based on the above discussion, we can now assemble

We of all the elements to form the global matrix W such

that Wu(t) gives the composite vector w(t) that we are

looking for.1 Finally, expanding u(t) with (5) gives

w(t) = WΦq(t) , Ψq(t). (8)

Both W and Φ are characterized by the deformable

mesh at the rest state, and are thus constant over time.

Therefore we can precompute Ψ. Equation (8) shows

that, as in the displacement (Equation (5)), we can

represent the rotational component of deformation in

terms of q(t). We call Ψ the modal rotation matrix.

It should be noted that both of the modal matrices are

meaningful only for moderately small deformations.

IV. INTEGRATION OF ROTATIONAL PARTS

Equation (8) provides an efficient way to keep track of

the rotations occurring at each node over time. However,

such rotations are not yet reflected in the calculation

of the displacement field u(t). Therefore, simulations

based on (5), (6), and (8) in Section III-B will not

produce proper rotational deformations. In this section,

we develop a method to integrate the effect of the

rotational part into the calculation of u(t).
To accommodate large deformations, the stiffness ma-

trix K in (4) should be replaced by K(u). Therefore, we

must deal with a governing equation of the form,

Mü+Cu̇+K(u)u = F. (9)

Let u(t) = [ui(t)] = [uT
1 (t) · · ·uT

n (t)]T. Then the i-th 3-

dimensional vector ui(t) represents the displacement of

the i-th node from its original position, measured in the

global coordinate frame. In order to measure the local

rotations with respect to the global coordinate frame, we

embed a local coordinate frame {i} at each node i as

shown in Fig. 2, such that at the initial state it is aligned

1When assembling W, 3× 3 submatrices of We for the rotation

vectors of all the tetrahedra sharing a node are not summed up but

averaged.
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Fig. 2. Local coordinate frames attached to the nodes.

with the global coordinate frame. We use the notation

{i}(t) to refer to the local coordinate frame at time t.

Let Ri(t) be the rotation matrix representing the

orientation of {i}(t), and u̇L
i (t)dt be the differential

displacement of the i-th node at time t − dt measured

from {i}(t − dt). Then, the finite displacement ui(t)
measured from the global coordinate frame is given by

ui(t) =
∫ t

0
Ri(τ )u̇L

i (τ )dτ . (10)

The above procedure must be carried out for every

node. Therefore, we form the block-diagonal matrix

R = [δi jRi], where 1 ≤ i, j ≤ n and δi j is the Kronecker

delta. Then, n equations with the form of (10) can be

assembled into a single equation,

u(t) =
∫ t

0
R(τ )u̇L(τ )dτ . (11)

This equation shows how the effect of the rotations

occurring at the nodal points can be accumulated. The

remainder of this section describes the procedure used

to compute the above integration.

A. Modal Analysis in Local Coordinate Frames

Equation (11) tells us that, instead of solving (9) for

u, we need to convert the equation into a form that can

be solved for uL. By premultiplying both sides of (9)

with RT, we obtain

RT
[
Mü+Cu̇+K(u)u

]
= RTF. (12)

The following two assumptions must then be made to

convert (12) to the form shown in (16).

Assumption I: Commutativity in Fine Meshes. We assume

that the mesh being simulated is sufficiently fine that the

approximation,

RTM ≈ MRT, (13)

is valid. ¥

The error associated with the above approximation is

related to the orientational differences between neigh-

boring local coordinate frames. To prove that this error

decreases as the orientational differences decrease, we

need to examine the structure of M. For the simple

case where M is a lumped diagonal mass matrix, the

approximation error is zero regardless of R. The proof

for the general case is given in Appendix I. Experimental

results showed that the approximation error did not

significantly impact the visual realism of the simulation,

even for coarse meshes.

Differentiating both sides of (11) with respect to time,

we obtain ü = RüL + Ṙu̇L. Therefore,

RTMü ≈ MRTü = MüL +MRTṘu̇L, (14)

where MRTṘu̇L is the Coriolis force resulting from the

rotational movements of the local coordinate frames. If

the rotational movements occur at a moderate rate, the

Coriolis force is negligible compared to gravity. Thus, we

omit the Coriolis force in the subsequent formulation.2

Assumption II: Warped Stiffness. We assume that the

nonlinear elastic forces can be approximated by

K(u)u ≈ RKuL ⇔ RTK(u)u ≈ KuL, (15)

which measures linear elastic forces in the local coordi-

nate frames, but resolves them in the global coordinate

frame. ¥

The above assumption is similar to the stiffness warp-

ing proposed in [14], where K(u)u ≈ RK(RTa − x).
Unlike element-based rotation of elastic forces [4], [15],

node-based rotation can yield a non-zero total momen-

tum of elastic forces, and thus a spurious ghost force on

a free-floating deformable object. However, the effects

of such a ghost force are suppressed by the constraint

force acting on a rigid support.

Now, we are ready to approximate (12) by a linear

equation for modal analysis in the local coordinate

frames. Substituting (14) and (15) into (12), we obtain

MüL +Cu̇L +KuL = RTF, (16)

where we use the proportional damping C = ξ M+ ζ K.

This linear elastodynamic equation for uL is same as (4),

except that the external force acting on each node needs

to be pre-rotated in accordance with its local coordinate

frame. Therefore, it is straightforward to reduce (16)

into a set of decoupled ODEs. The modal displacement

matrix Φ obtained in Section III-B gives the relationship

uL(t) = Φq(t), (17)

2When the coordinate frame movements occur at an extreme rate,

the Coriolis force can be taken into account as an external force by

replacing RHS of (18) with ΦT(RTF)−ΦT(MRTṘΦq̇). However,

the above replacement did not produce noticeable differences for the

examples shown in Section VI.
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Fig. 3. Evolution of mode shapes in linear modal analysis (top row) and modal warping (bottom row); each box shows snapshots taken at

three different amplitudes.

where we use the notation q(t) instead of qL(t) for the

sake of readability. Based on this relationship, we can

replace uL in (16) with Φq(t), and, after premultiplying

both sides of the same equation with ΦT, we obtain

Mqq̈+Cqq̇+Kqq = ΦT
(
RTF

)
. (18)

The above decoupled ODEs can be solved numerically

using semi-implicit integration.3 By manipulating (18),

we obtain the following expressions for qk = q(tk) and

q̇k = q̇(tk):

qk = α qk−1 +β q̇k−1 +γ
(
Rk−1Φ

)T
Fk−1, (19)

q̇k = h−1
[(

α − I
)
qk−1 +β q̇k−1 +γ

(
Rk−1Φ

)T
Fk−1

]
,

where α ,β , and γ are diagonal matrices, the i-th com-

ponents of which are respectively

αi = 1− h2ki
di

, βi = h
(

1− hci+h2ki
di

)

, γi = h2

di
,

in which h is the time step size, di = mi +hci +h2ki with

mi, ci, and ki representing the diagonal entries of Mq,

Cq, and Kq, respectively.

B. Formulation of Modal Warping

We now need to evaluate (11) for the finite displace-

ment uk at the time step k. When a straightforward

numerical integration is employed, accumulation of the

numerical errors can give rise to an hysteresis effect such

that the deformable solid does not return to the initial

state even after all the external forces disappear.

To circumvent such an hysteresis effect, we analyti-

cally evaluate (11) by taking a quasi-static approach that

ramps q(t) from 0 to qk at each time step k. That is, we

use

q(t) =
t

tk
qk, 0 ≤ t ≤ tk. (20)

3We employed semi-implicit integration for m decoupled equations

because it was easy to implement and the derivation for manipulation

constraints became simple. We have not encountered numerical

instabilities with a time step size of h = 1/30 second in all our

experiments. The possible over-damping effects can be attenuated

using theta-integration or Newmark integration. Alternatively, one

can use either IIR digital filters suggested in [10] or the closed form

solution given in [8]. Finally, we note that all these approaches have

the same time complexity because m equations are already decoupled.

Then, the history of w(t), which determines that of R(t),
is also represented as a linear function.

w(t) =
t

tk
Ψqk, 0 ≤ t ≤ tk. (21)

Now, R(t) can be obtained by simply converting w(t)
into the 3n×3n block-diagonal rotation matrix. Finally,

we exploit u̇L(t) = Φq̇(t) from (17) and q̇(t) = 1
tk qk

from (20) to analytically evaluate (11) as follows:

uk =
∫ tk

0
R(t)Φq̇(t)dt = R̃kΦqk, (22)

where R̃k , 1
tk

∫ tk

0 R(t)dt. The procedure for computing

R̃k is given in Appendix II.

The above equation implies a new deformation

scheme; Φ̃k , R̃kΦ can be regarded as a warped version

of the original modal basis Φ. The columns of Φ̃k give

the mode shapes at the time step k, in which rotations

occurred at the nodal points have been accumulated.

Fig. 3 shows the evolution of three selected mode shapes

over time for the case of a bar. The new method works

basically in the same way as linear modal analysis,

except that it uses a warped modal basis instead of a

fixed linear modal basis.

V. MANIPULATION CONSTRAINTS

Thus far, we have discussed the dynamics of an uncon-

strained elastic body. Motivated by the work of Hauser et

al. [8] on positional constraints in a linear modal analysis

setting, we extend our deformation scheme to cope

with manipulation constraints that allow, for example,

dragging/twisting of some nodes to certain positions

and/or orientations (see Fig. 7). We formulate these ma-

nipulation constraints as hard constraints. Constraints for

velocity and acceleration can be developed in a similar

way. Note that orientation constraints for a deformable

body have not been addressed in previous studies. Such

constraints are possible in our formulation because it

explicitly takes into account the mean orientation of each

node, based on the infinitesimal strain tensor analysis.
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A. Position Constraints

Let λ be the number of constrained points, and let uk
c

be the 3λ -dimensional vector consisting of the desired

displacements of the constrained nodes at a time step k.

Then, the constraint equation can be written as

uk
c = Φ̃k

cqk
c = R̃k

cΦcqk
c, (23)

where qk
c is the unknown modal amplitude vector, Φc is

the 3λ ×m matrix obtained from Φ by taking only the

rows for the constrained nodes, and R̃k
c is the 3λ × 3λ

block-diagonal matrix obtained from R̃k by taking only

the part corresponding to the constrained nodes.4 Let

the 3n-dimensional vector F̄k−1 represent the unknown

constraint force measured in the global coordinate frame.

Then, qk
c should satisfy not only (23) but also (19) when

this additional force is applied. That is,

qk
c = α qk−1 +β q̇k−1 +γ

(
Rk−1Φ

)T(
Fk−1 + F̄k−1

)

, qk
u +γ

(
Rk−1Φ

)T
F̄k−1, (24)

where qk
u , α qk−1 + β q̇k−1 + γ(Rk−1Φ)TFk−1 is the

modal amplitude vector for the unconstrained case, i.e.,

qk in (19).

The forces do not need to be exerted only at the

constrained nodes, because exerting forces at some un-

constrained nodes can still cause the constrained nodes to

be positioned at the specified locations. We will refer to

the nodes at which forces are exerted as exercised nodes.

When we directly drag a set of nodes, for example, the

exercised nodes are identical to the constrained nodes.

In general, however, they can be different.

Let µ be the number of exercised nodes. In F̄k−1,

the portion corresponding to the unexercised nodes

should be zero. Let Fk−1
x be the 3µ-dimensional vector

consisting only of the constraint forces acting on the

exercised nodes, which can be obtained by removing the

3-dimensional vectors corresponding to the unexercised

nodes from F̄k−1. Then, we can rewrite (24) in terms of

Fk−1
x ,

qk
c = qk

u +γ
(
Rk−1

x Φx

)T
Fk−1

x , (25)

where Φx is the 3µ × m matrix obtained from Φ by

taking only the rows for the exercised nodes, and the

4We note that the content of R̃k (R̃k
c is its submatrix) used in this

section may differ from that of R̃k appearing in (22), since extra

movements may need to be incurred to realize the constraints. We

propose three ways of treating the problem: (a) employ the Newton-

Rhapson method; (b) approximate R̃k
c from R̃k of (22); or (c) use

a slightly less accurate version of (22), i.e., uk = R̃k−1Φqk. Each

of these methods has its drawbacks; method (a) can require longer

computation times, method (b) can potentially cause oscillations, and

method (c) can make the simulation off-phase by one time step.

We found method (b) to be a reasonable choice because, during

experiments, no noticeable oscillations has been observed.

3µ × 3µ block-diagonal matrix Rk−1
x is obtained from

Rk−1 by taking only the part corresponding to the

exercised nodes. Finally, substituting (25) into (23) and

manipulating the resulting expression, we obtain the

equation for the constraint force:

Fk−1
x = Rk−1

x A†
pbp, (26)

where Ap = R̃k
cΦcγΦT

x , bp = uk
c − R̃k

cΦcqk
u, and (·)†

denotes the pseudo-inverse of a matrix. This con-

straint force can now be applied to the exercised nodes

through (25) to yield the desired modal amplitude vector.

We now examine the computational complexity

of (26). Since Ap is time-dependent, the pseudo-inverse

of Ap must be computed at every time step. Fortunately,

we can decompose Ap into time-dependent and time-

independent parts, namely Ap = (R̃k
c)(ΦcγΦT

x ), mak-

ing it possible to compute its pseudo-inverse using

A†
p = (ΦcγΦT

x )†(R̃k
c)

−1. The first part of A†
p is time-

independent, and hence can be precomputed at the con-

straint initiation stage. The second part is time dependent

and therefore must be computed at runtime; however,

this entails only a small computational load because R̃k
c

is (3×3)-block-diagonal.

B. Orientation Constraints

Orientation constraints can be implemented in a simi-

lar way to the position constrains. Let η be the number of

constrained nodes, and let the 3η -dimensional vector wk
c

represent the desired rotations of the constrained nodes

at a time step k. Then, the constraint equation can be

written as

wk
c = Ψcqk

c, (27)

where qk
c is the unknown modal amplitude vector and Ψc

is the 3η ×m matrix obtained from the modal rotation

matrix Ψ by taking only the rows corresponding to the

constrained nodes. Then, as in the position constraint

case, qk
c should simultaneously satisfy (25) and (27). By

manipulating these two equations, we obtain the equation

for the constraint force:

Fk−1
x = Rk−1

x A†
obo, (28)

where Ao = ΨcγΦT
x and bo = wk

c −Ψcqk
u. Unlike the po-

sition constraint case, Ao is time-invariant so its pseudo-

inverse can be precomputed at the constraint initiation

stage. Finally, we can apply the above constraint force

to the exercised nodes through (25) to obtain the desired

modal amplitude vector.
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C. Mixed Constraints

When one set of nodes is position-constrained and

another (not necessarily disjoint) set is orientation-

constrained, the constraint force should simultaneously

satisfy both types of constraint. A simple approach

would be to use an augmented formulation that com-

bines (26) and (28):

Fk−1
x = Rk−1

x

[
Ap

Ao

]† [
bp

bo

]

.

However, this approach does not allow precomputa-

tion of the pseudo-inverse because [AT
p AT

o ]T is time-

dependent.

To isolate the precomputable part, we employ a task-

priority approach [16] in which the position constraints

are regarded as the primary task and the orientation con-

straints as the secondary task (or vice versa, depending

on the situation). Letting fp = A†
pbp, the constraint force

can be written as

Fk−1
x = Rk−1

x

{

fp +
[
Ao(I−A†

pAp)
]†[

bo−Aofp

]}

, (29)

which causes the solution satisfying the position con-

straints is found first, and then the solution optimally sat-

isfying the orientation constraints is searched for within

the null space of the position constraints. Note that

A†
pAp is time-independent because the time-dependent

parts cancel each other, and hence
[
Ao(I − A†

pAp)
]†

can be precomputed. Consequently, the only nontrivial

computation remaining in the calculation of (29) is to

compute the inverse of R̃k
c, which appears in fp = A†

pbp =

(ΦcγΦT
c )†(R̃k

c)
−1bp.

D. Static Position Constraints

In the above description of manipulation constraints,

every positional or rotational displacement is measured

relative to the frame of reference [25], which was intro-

duced in Section II. The static position constraints, that

makes a set of nodes be fixed at the initial locations with

respect to the frame of reference, is not implemented in

terms of the manipulation constraints. Constraints of this

type are realized by simply omitting the corresponding

DOFs in the governing equation and setting the displace-

ments to zero.

VI. EXPERIMENTAL RESULTS

Our deformation scheme is implemented as an Aliasr

MAYATM plugin for a Microsoftr WindowsXP environ-

ment, and also as a stand-alone application to exploit

programmable graphics hardware through nVIDIAr Cg

and Microsoftr DirectXr API. Tetrahedral meshes were

4.9 m/s20.98 m/s2 9.8 m/s2

Fig. 4. A bar deformed by modal analysis (red), by modal warping

(blue), and by nonlinear FEM (green) under gravity of different

magnitudes.
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Fig. 5. Error analysis of the bar shown in Fig. 4. (a) the relative

L2 displacement field error and (b) the relative volume change with

respect to the initial volume.

generated using the public domain software NETGEN.

To obtain the m dominant eigenvalues of large sparse

square matrices and the corresponding eigenvectors,

we used the MATLABr built-in C++ math function

eigs, which is based on the ARPACK [13] eigen-

value solver. All experiments were performed on a

PC with an Intelr Pentiumr4 3.2GHz processor, 1GB

memory, and an nVIDIAr GeForcer FX 5900 Ultra

256MB graphics card. We used the time step size of

h = 1/30 second in all experiments reported in this

section. Model statistics and performance data are sum-

marized in Table I. Animation clips are available at

http://graphics.snu.ac.kr/˜mgchoi/modal_warping.

Comparison to Other Methods. This experiment is to

compare the results generated by linear modal analysis,

modal warping, and nonlinear FEM. We ran the three

methods to deform a long bar under different gravities.

As for the nonlinear FEM [17], we employed explicit

integration and used the time step size h = 0.001 seconds

for numerical stabilities. Fig. 4 shows the snapshots

taken at the equilibrium states of the bar.

Fig. 5 (a) shows the plot of the relative L2 displace-

ment field error versus gravitational magnitude. We took

the result produced by nonlinear FEM as the ground

truth. The relative error in modal warping is smaller

than that in linear modal analysis although it increases as

the gravitational magnitude increases. Fig. 5 (b) is the

plot of the relative volume change with respect to the
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Fig. 6. Error analysis of free vibration: (a) the relative L2 displace-

ment field error summed over space and time, and (b) the average

magnitude of nodal displacements over time.

initial volume. It shows that the relative volume change

in modal warping is almost identical to that in nonlinear

FEM. Even though Fig. 5 (a) shows modal warping

produces non-negligible L2 displacement field errors, it

was not easy to visually discriminate between the results

produced by modal warping and nonlinear FEM, unless

the results were seen overlayed. However, the effects due

to the volume changes were clearly noticeable.

We also conducted a dynamic analysis while the bar

makes free vibration. We applied the gravity (of different

magnitudes as in the above experiments) during only the

first 0.1 seconds of the simulation. Fig. 6 (a) shows the

plot of the relative L2 displacement field error summed

over space and time. Fig. 6 (b) is the time-series plot

of the average magnitude of nodal displacements in

the case of gravitational magnitude 9.8m/s2, in which

we can observe a subtle difference in the frequency of

oscillation. It is interesting to note that, if measured

relative to the error of linear modal analysis, the error

of modal warping in the dynamic analysis (Fig. 6 (a)) is

larger than that in the static analysis (Fig. 5 (a)). It results

from the aforementioned difference in the frequency of

oscillation.

Manipulation Test. This experiment demonstrates the

manipulation capability of our technique. Fig. 7 shows,

from left to right, the resultant deformations in the cases

of only position constraints, only orientation constraints,

and both position and orientation constraints. For the

case of position constraints, the constrained node was

identical to the exercised node. For the case of orien-

tation constraints, however, the set of exercised nodes

had to be extended to include nodes neighboring the

constrained node.

Manipulation Constraints for Animating Deformable

Body Parts. To demonstrate how the manipulation con-

straints can be used to animate deformable parts of

a character, we simulated a character whose only de-

Position-constrained Orientation-constrained Position/Orientation

Fig. 7. A bar manipulated with a position constraint (left), an

orientation constraint (middle), and a position/orientation constraint

(right). The position constraints are represented by yellow spheres

and the orientation constraints are represented by RGB axes.

(a) (b)

Fig. 8. Constraint-driven animation of a character with one de-

formable part (the torso).

formable part was its potbellied torso (Fig. 8(a)). As

the character made a dance motion, the potbelly made

a dynamic passive deformation, excited by the gross

motion of the character as in [10]. All the mesh nodes

contained in the rigid pelvis at the initial setup were

static position constrained, and thus their movement

coincided with that of the pelvis. As shown in Fig. 8(b),

the deformable solid is attached to the skeleton by

two position constraints (the yellow spheres) and one

position/orientation constraint (the RGB axes).

Manipulation Constraints for Motion Retargeting. The

manipulation constraints can also be used to retarget a

motion of an articulated character to that of a deformable

character. To demonstrate this, we consider two exam-

ples. In the first example, a jumping motion of an artic-

ulated character is retargeted to a jelly box, as shown in

Fig. 9(a). As in the character considered above, the nodes

contained in the pelvis are static position constrained.

The motion of the jelly box is driven by the movements

of the feet and head of the articulated character; to imple-

ment this, a node corresponding to the middle of the two

feet is selected and position/orientation-constrained to

follow the average movement of the feet, and a node cor-

responding to the forehead is also position/orientation-

constrained to follow the movement of the head. Three

snapshots taken during this experiment are shown in

Fig. 9(a). For comparison, we also applied the traditional

modal analysis to this case (see Fig. 9(b)).
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TABLE I

MODEL STATISTICS AND PERFORMANCE DATA.

Model statistics Constr. Precomputation (sec) Computation (sec/fr) FPS
Example Fig. Vertices Faces Nodes Elements Modes λ η FEM MA ODE Constr. Maya Cg

Bar 4 & 7 354 352 99 240 8 1 1 0.046 0.063 0.001 0.001 60.0 ·
Potbelly 8 1026 1056 363 1110 16 3 1 0.062 0.484 0.001 0.001 60.0 ·
Jelly Box 9(a) 1642 1640 400 1440 32 2 2 0.062 1.156 0.001 0.001 60.0 ·
Flubber 9(c) 2802 2800 552 1513 64 6 1 0.078 2.062 0.001 0.001 60.0 ·
Dinosaur 10 28098 56192 1883 5484 8 1 1 0.312 1.422 0.002 0.001 11.9 103.8

(a) (b)

(c) (d)

Warped Linear

Fig. 9. Constraint-based motion retargeting.

In the second example, we applied a dance motion to

the flubber shown in Fig. 9(c). Because this character

has a more articulated shape than that in the previous

example, more constraints are required to properly map

between the articulated and deformable characters. We

placed one position/orientation constraint at the head,

and five position constraints at the torso, elbows, and feet

(see Fig. 9(d)). For the flubber, we used a larger number

of deformation modes (64 modes) than in experiments

described above; this was necessary to accommodate the

wider range of shape variations due to the increased

number of constraints.

Simulation of Large Models. When the modal warping

technique is applied to a large model such as the dinosaur

model shown in Fig. 10, simulating the deformation is

not the bottleneck; surprisingly, the dynamic update of

the vertex coordinates for display is the slowest proce-

dure. To achieve real-time simulation of the model, we

employed programmable graphics hardware as in [10].

The main CPU is devoted to simulating the deformable

model. The GPU updates each vertex using both the

modal amplitude vector supplied from the CPU and

the per-vertex data residing in the video memory of

the graphics hardware. In our implementation, the per-

Fig. 10. Dynamic deformation and manipulation of a dinosaur.

vertex data consists of the initial position of the vertex

along with an additional 2m three-dimensional vectors

for the modal displacements and rotations of the vertex.

Unlike [10], our method does not require any special

considerations on vertex normal corrections because the

per-vertex rotation vector is explicitly available to the

vertex program (see Appendix III). However, our vertex

program requires extra instructions for converting the

rotation vector into the rotation matrix. Given the ever-

increasing capabilities of graphics hardware technology,

we expect that hardware restrictions on the number of

instructions will soon be lifted.

To test our approach on a large model, we applied our

hardware implementation to the rubber dinosaur model

previously used by James and Fatahalian [9]. The mesh

for finite element modeling consists of 5,484 tetrahedral

elements and 1,883 nodal points, and the mesh for the

final display consists of 56,192 faces and 28,098 vertices.

The total precomputation time for the finite element

method and the modal analysis was less than 2 seconds,

and the simulation, including the display, ran at about

100 fps. The result was quite realistic, even for cases

involving large deformations. Using our method, the

types of interactions allowed during runtime did not need

to be restricted; for example, the tail of the dinosaur

could be manipulated interactively.

VII. CONCLUSION

The present work extends traditional linear modal

analysis to create a novel deformation technique that

combines the merits of this type of analysis, in particular

its ability to give real-time performance [19], [10], with
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the ability to accommodate large rotational deformations.

An interesting feature of our technique is that it supports

both position and orientation constraints, and hence

could be used for interactively manipulating the shape

of a deformable solid. The constraints can also be used

for some less obvious but very useful purposes, such as

to model articulated deformable characters or to drive

a keyframe animation such that the animator controls

the movement of only a few constrained points then the

technique generates the movement of all the nodal points.

We expect the deformation technique proposed here

will prove useful in many application areas, including

computer games and character animation.

Limitations and Future Work. A shortcoming of our

method is that, although it adequately accounts for the

rotational component, it does not preserve the volume.

Therefore, deformations involving a large degree of

stretching or compression may generate noticeable ar-

tifacts. Another shortcoming of our method is that, even

when animating a single undamped mode, the vibration

frequency is constant independent of the motion. These

behaviors are obvious consequences of using a strain

tensor consisting of only linear terms. More accurate

modeling of such deformations would require the use

of a nonlinear strain tensor.

Further research is needed to address another limita-

tion of our technique. Currently, our technique supports

only constrained deformable objects attached to rigid

supports. We plan to extend our work for free-floating

deformable objects in the future by combining the modal

warping framework with rigid body simulation as Hauser

et al. [8] did for free-floating objects that undergo

moderately small deformations. Collision detection and

response among deformable solids and their surrounding

environment could also be handled as in [8].
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APPENDIX I

ANALYSIS OF EQUATION (13)

The mass matrix, assembled from linear tetrahedral

elements, can be written as M =
[
mi jI

]
for 1 ≤ i, j ≤ n,

where I is the 3×3 identity matrix, and mi j is non-zero

if and only if the i-th and j-th nodes are connected in
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Fig. 11. ‖RTM−MRT‖ in three different mesh resolutions: 11×
3×3 (red), 19×4×4 (green), and 21×5×5 (blue)

the mesh. Remembering that R = [δi jRi], we can expand

the approximation error as

RTM−MRT =
[
δi jR

T
i

][
mi jI

]
−

[
mi jI

][
δi jR

T
i

]

=
[
mi jR

T
i

]
−

[
mi jR

T
j

]

=
[
mi j(Ri −R j)

T
]
,

Here, the error in each block is dependent on the orien-

tational difference, and thus it decreases with increasing

mesh resolution. As one refines the mesh, the number of

non-zero blocks also increases. However, this increase

is cancelled out by the decrease of mi j because the

total mass ∑mi j is independent of the mesh resolution.

Therefore, the matrix norm of the approximation error

decreases with increasing mesh resolution.

To assess the approximation error, we prepared three

meshes of different resolutions for the same long bar:

11×3×3, 19×4×4, and 21×5×5. Fig. 11 shows the

approximation error ‖RTM−MRT‖ with respect to the

total mass of the deformable body. Even with the coarsest

mesh, the error is within 0.37% of the total mass.

APPENDIX II

COMPUTATION OF EQUATION (22)

To compute R̃k in (22), we first convert the rota-

tion vector wi(t) of each node into the rotation matrix

R(wi(t)). For this conversion we employ Rodrigues’

formula [21] that expresses the rotation matrix in terms

of the angle and the unit axis of rotation. Let wk
i be the

i-th three-dimensional vector of Ψqk. Then, wi(t) = τwk
i ,

where τ = t/tk. Rodrigues’ formula gives

R(τwk
i )= I+(ŵk

i ×)sin‖τwk
i ‖+(ŵk

i ×)2(1−cos‖τwk
i ‖),

where ŵk
i = wk

i /‖wk
i ‖. Now, we integrate both sides of

this equation from τ = 0 to 1, Then, R̃k
i ,

∫ 1
0 R(τwk

i )dτ
is given by

R̃k
i =

[

I+(ŵk
i ×)

1−cos‖wk
i ‖

‖wk
i ‖

+(ŵk
i ×)2

(

1−
sin‖wk

i ‖

‖wk
i ‖

)]

.

Finally, the composite block-diagonal rotation matrix for

wk = [wk
i ] can be constructed by R̃k = [δi jR̃

k
i ].
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APPENDIX III

VERTEX PROGRAM IN CG

// float3 phi# is the #-th modal displacement.

// float3 psi# is the #-th modal rotation.

// uniform float4 q contains 4 modal amplitudes.

float3 u = phi1*q.x+phi2*q.y+phi3*q.z+phi4*q.w;

float3 w = psi1*q.x+psi2*q.y+psi3*q.z+psi4*q.w;

// Coefficients for Rodrigues’ formula

float w_len = length(w);

float3 w_hat = normalize(w);

float s, c; sincos(w_len, s, c);

float c1 = (1-c)/w_len;

float c2 = 1 - s/w_len;

// Position correction: \tidle{R}(w) * u

float3 P = position + u;

P = P + cross(w_hat,u)*c1

+ cross(w_hat,cross(w_hat,u))*c2;

// Normal correction: R(w) * N

float3 N = normal;

N = N + cross(w_hat,N)*s

+ cross(w_hat,cross(w_hat,N))*(1-c);
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