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Paraconsistent logic was born in the vicinity of modal logic. Moreover, as ev-
ery other non-classical logicians, paraconsistentists have very often flirted with
modalities. The first known system of paraconsistent logic was in fact defined
as a fragment of S5, in the late 40s. But a fragment of a modal system is not
necessarily a modal system. I will show here, indeed, that Jaśkowski’s D2 is not
a modal logic, in the contemporary usual meaning of the term. By contrast, I
will also show, subsequently, that any non-degenerate normal modal system is
inherently paraconsistent.

1 What is a paraconsistent logic?

Classical logic is maculated by many irrelevancies. The enterprise of paracon-
sistency was designed so as to help cleansing a particular stain, by eschewing
the so-called Principle of Explosion:

(PE) ∀α∀β(α,¬α  β).

According to (PE), contradictions are malicious creatures: Whenever they are
present in a theory, anything goes, any statement is equally derivable.

In contemporary times, one of the most notorious insurgents against the
Aristotelean doctrine that contradictions should be avoided for ontological, log-
ical or psychological reasons was the Polish logician Jan  Lukasiewicz (1910).
But it was only a few so many years later that one of his disciples, Stanis law
Jaśkowski (1948), would really inaugurate the study of non-trivial inconsistent
formal systems.

Jaśkowski’s proposal was that of a discussive system, ‘a system which cannot
be said to include theses that express opinions in agreement with one another’.
To obtain such a system every statement was to be preceded by the reservation
‘in accordance with the opinion of one of the participants in the discussion’, or
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‘for a certain admissible meaning of the terms used’. These ideas were initially
implemented with the help of the modal logic S5 into a sort of ‘pre-discussive’
system J , which was such that

Γ J α iff 3Γ �S5 3α.

Obviously, J defines a paraconsistent logic. A very weak one, however. As it
is easy to see, the consequence relation of J is essentially single-premised, as
Γ J α iff γ J α, for some γ ∈ Γ. There are in J no typically multiple-
premised rules, thus, such as modus ponens. To fix that weakness, Jaśkowski
was to propose a sort of preprocessing of the usual classical connectives, by
recursively translating:

1. p∗ = p, for every atomic variable p;

2. (¬α)∗ = ¬α∗;

3. (α ∨ β)∗ = α∗ ∨ β∗;

4. (α ∧ β)∗ = α∗ ∧3β∗;

5. (α ⊃ β)∗ = 3α∗ ⊃ β∗.

While clause 5, defining a ‘discussive implication’, belongs to Jaśkowski (1948),
clause 4, defining a ‘discussive conjunction’, belongs to Jaśkowski (1949). The
main ‘discussive’ logic D2 was then put forward by setting

Γ D2 α iff Γ∗ J α∗.

It is straightforward to check that D2 is a paraconsistent extension of the pos-
itive fragment of classical logic (that is, the logical constants ∨, ∧ and ⊃ in
D2 behave just like their classical homonyms). Notice that without clause 4
this observation about the positive fragment of classical logic would not be fully
true, for the resulting logic would fail negation introduction, that is, it would
fail α, β  (α∧β), as it happens with J . There are indeed a few systems of para-
consistent logic that have this ‘non-adjunctive’ character. Any defense about
this having been a feature desired and cherished by Jaśkowski seems to depend
however on not having read his 1949 two-pages paper (and that disgracefully
applies to most discussivists from the literature).

The ‘asymmetric’ looks of clauses 4 and 5 have been criticized here and
there. Based on the facts that the formulas 3(3α ⊃ β) and 3(3α ⊃ 3β) are
equivalent inside the modal logic S4 (a fragment of S5) and that the formulas
3(α∧3β), 3(3α∧β) and 3(3α∧3β) are all equivalent inside S5, the following
alternatives to the above clauses have been proposed:

4.1 (α ∧ β)∗ = 3α∗ ∧ β∗;

4.2 (α ∧ β)∗ = 3α∗ ∧3β∗;

5.1 (α ⊃ β)∗ = 3α∗ ⊃ 3β∗.
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Now, while it is true that any choice of preprocessing translation would have
the same effect for the positive fragment of D2 (it would still coincide with
the positive fragment of classical logic), the same is not true for the full logic,
when the interaction of negation with the other connectives is considered. It
is not true thus that different translation clauses ‘would have just the same
consequences’, as claimed in Priest (2002, section 5.2). Different choices of
discussive conjunction and discussive implication would in fact define logics
distinct from D2. This phenomenon will be carefully illustrated in Section 3 of
the present note.

Other usual classical connectives can be easily defined in D2, such as bi-im-
plication: (α ≡ β) def== (α ⊃ β) ∧ (β ⊃ α). Moreover, a classical negation ∼ can
be defined in D2 by setting ∼α

def== α ⊃ ¬(α∨¬α) (hint: check that 3p and 3∼p
cannot be both true and cannot be both false in a given world of a model of
S5). The logic D2 can also define a consistency connective ◦α def== (∼α)∨(∼¬α),
in the sense of Carnielli and Marcos (2002), that is, a logical constant that
says when explosion can be recovered, through the following Gentle Principle of
Explosion:

(GPE) ∃α∃β(◦α, α 6 β and ◦α,¬α 6 β), while ∀α∀β(◦α, α,¬α  β).

The fact that D2 enjoys (GPE) makes it qualify as an LFI, a Logic of Formal
Inconsistency (more specifically, in this case, a dC-system based on classical
logic). Consistent reasoning can often be recaptured from inside inconsistent
logics, and the ability of doing just that is in fact a fundamental feature of LFIs.
More precisely, if �CPL is the consequence relation of Classical Propositional
Logic, the following Derivability Adjustment Theorem can then be proven:

(DAT) (Γ �CPL β) iff ∃Σ(◦Σ, Γ D2 β).

The above result says that, even though D2 fails the ‘consistency presuppo-
sition’ that is typical of classical logic, any classical inference can be recov-
ered if a sufficient number of ‘consistency assumptions’ are added to the set
of premises. We will see several examples of derivability adjustments in the
next sections. Clearly, yet another way of recovering CPL from inside D2 is
by taking the new classical negation of D2 into account. If (α)¬,∼ denotes a
translation that changes any occurrence of the paraconsistent ¬ by its classical
counterpart ∼, leaving the rest of the formula as it is, it is easy to check that
(Γ �CPL β) iff (Γ¬,∼ D2 β¬,∼). This direct translation is an alternative to the
addition of further premises promoted by the derivability adjustments of the set
◦Σ, in the above (DAT).

It should be remarked that semantical features of a given logic are usually
not inherited by its proper fragments. Thus, while classical logic is two-valued,
other many-valued logics can only be given a two-valued semantics at the cost
of their truth-functionality, and intuitionistic logic is not even a finitely-valued
logic. Typically, in fact, non-classical fragments of CPL will have connectives
that are not classically expressible —such as an intuitionistic or a paraconsistent
negation. The realization that many-valued logics can all be embedded into
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certain modal logics, as in Demri (2000), do not make them any more ‘modal’
than they were before, and, as we will see in Section 3, the fact that D2 is
introduced through an embedment into the modal logic S5 does not make this
system a ‘modal logic’, in the contemporary usual meaning of the term.

2 What is a modal logic?

Unfortunately, there is no generally agreed definition of the term ‘modal logic’.
Fortunately, however, this situation has not hindered the enormous advance of
the studies in that area. Among the most solid achievements of those studies
one should certainly count the modern development of Kripke-like semantics.
There is nowadays a plethora of modal systems available. What do they have in
common, if anything? I will assume here that the most fundamental feature of
modal logics, common to both the usual models of normal modal logics and the
minimal models of non-normal modal logics (see Chellas, 1980, chap. 7) consists
in the validity of the so-called ‘replacement property’. The validity of such a
logical property coincides in fact with the abstract property that Wójcicki (1988,
chap. 5) calls ‘self-extensionality’ and shows to be the characterizing feature of
the logics that have ‘an adequate frame semantics’. I will briefly recall in this
section what this property means.

Let α a β abbreviate the combination of α  β with β  α —this is
to say that α and β are equivalent formulas. In any logic with a classic-like
bi-implication ≡, as all the logics we will be mentioning in the present study,
asserting α a β is the same as asserting  α ≡ β. Let ϕ(p) denote a formula
in which the variable p occurs, and ϕ(p/δ) denote the formula obtained from ϕ
by uniformly substituting all occurrences of p by the formula δ. Given a pair of
formulas α and β, say that they are indiscernible if, for every formula ϕ(p), one
has that ϕ(p/α) a ϕ(p/β). In particular, indiscernible formulas are equivalent
(to see that, take ϕ(p) as p itself). An explicit definition, such as those we have
been writing since the last section with the help of the extra-logical symbol ‘def==’
simply postulates that the formula at the left-hand side of that symbol should
be treated as indiscernible from the formula at the right-hand side of that same
symbol. Now, a logic enjoying the replacement property is a logic for which
every pair of equivalent formulas is indiscernible, that is, a logic in which α a β
implies ϕ(p/α) a ϕ(p/β), for any formula ϕ. It should be clear that this
property allows us to replace any occurrence of a subformula by an equivalent
expression, while derivability is preserved.

Modal logics, just as classical logic, enjoy the replacement property, and so
they are such that α1 a α2 and β1 a β2 provide sufficient conditions for
(α1 ∧ β1) a (α2 ∧ β2) or 3α1 a 3α2. As it can be seen in Theorems 44, 78
and 124 of Carnielli, Coniglio, and Marcos (2005), there are many paraconsistent
logics that fail the replacement property.
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3 D2 is not a modal logic

The discussive logic D2 has a very long and dramatic story (see Ciuciura, 1999).
And it is not over yet. Besides non-adjunctiveness, another common obsession
of discussivists concerns the alleged ‘modal character’ of D2. This section will
exhibit a few properties of the logic D2 and of some of its close relatives, and
then show that none of these logics, nor their deductive fragments, nor their
paraconsistent extensions (if they exist), can enjoy the replacement property.

Inside a proper fragment of classical logic, the classical connectives can cer-
tainly not all be interdefined as usual. So, in D2 the paraconsistent negation
cannot interact with the other connectives such as classical negation does. Con-
sider the following inferences:

(ID1) (¬α ⊃ β)  (α ∨ β)
(ID2) (α ∨ β)  (¬α ⊃ β)
(ID3) ¬(¬α ⊃ β)  ¬(α ∨ β)
(ID4) ¬(α ∨ β)  ¬(¬α ⊃ β)
(ID5) (α ⊃ β)  ¬(α ∧ ¬β)
(ID6) ¬(α ∧ ¬β)  (α ⊃ β)
(ID7) ¬(α ⊃ β)  (α ∧ ¬β)
(ID8) (α ∧ ¬β)  ¬(α ⊃ β)
(ID9) ¬(¬α ∧ ¬β)  (α ∨ β)

(ID10) (α ∨ β)  ¬(¬α ∧ ¬β)
(ID11) ¬(¬α ∨ ¬β)  (α ∧ β)
(ID12) (α ∧ β)  ¬(¬α ∨ ¬β)

It is easy to use the semantics of S5, based on reflexive, symmetric and transitive
frames, to check that (ID1), (ID4), (ID9) and (ID11) are a consequence of re-
flexivity, while (ID7) and (ID8) are a consequence of symmetry and transitivity.
Now, to prove the remaining inferences in D2, some derivability adjustments
are in order (recall Section 1): To recover (ID2) and (ID6) one needs to add ◦α
to the set of premises; to recover (ID5) and (ID10) one needs to add ◦β; in the
case of (ID3) and (ID12), adding either ◦α or ◦β will do.

One can now also readily show the difference between the various possible
clauses for a preprocessing translation, as proposed in Section 1. Combining the
three versions of the translation clause 4 and the two versions of the translation
clause 5 there will be at most 5 distinct alternatives to the logic D2. And, in
fact, there are. While all these logics agree in validating (ID1), (ID7), (ID9) and
(ID11), none of them validates (ID2), (ID10) and (ID12). The logics based on
the original clause 5 validate (ID4) but not (ID3), the other logics do exactly the
contrary; the logics based on clause 5 also validate (ID8), while the others do not.
The logics based on the original clause 4 fail (ID5) and (ID6), all the remaining
logics validate (ID6). Finally, (ID5) is validated exactly by those logics that
substitute clause 4.1 for clause 4. These 6 possible ‘discussive logics’ are thus
all different, and each of them allows for its own derivability adjustments, in
each case (exercise).
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We will now check that all the 6 logics above fail the replacement prop-
erty. Notice first that the definitions of the bi-implication, the classical nega-
tion and the consistency connective used in Section 1 work the same for any of
the above logics. In particular, for the classical negation ∼, defined by setting
∼α

def== α ⊃ ¬(α ∨ ¬α), the theory {α,∼α} is explosive, and the formulas α and
∼∼α are logically indiscernible. Now, by (ID7), an inference validated by all
the above logics, we have that ¬∼γ  γ ∧ ¬¬(γ ∨ ¬γ). By conjunction elimi-
nation, a rule valid in the positive fragment of classical logic, ¬∼γ  γ. But a
classical negation is explosive, thus ∀γ∀β(γ,∼γ  β). In that case we also have,
by transitivity of deduction (the cut rule), that ¬∼γ,∼γ  β, for arbitrary
formulas γ and β. In particular, we have ¬∼∼α,∼∼α  β, taking γ as ∼α.
Again, considering the properties of classical negation we have that α a ∼∼α.
To proceed by absurdity, if the replacement property did hold good for any of
the above logics one could then conclude that ¬α a ¬∼∼α. From this and
the cut rule one would finally derive ¬α, α  β, and the logic would not be
paraconsistent, as we know it is.

4 Modal logics are paraconsistent

Can paraconsistent logics enjoy the replacement property at all? And can they
have appropriate ‘natural’ modal semantics? How natural? The answer to those
disquietudes is doubly positive, as we will see in this section. First: Yes, there
are paraconsistent logics enjoying full replacement. Second: Yes, one does not
need to adventure into strange new territories to find them. We had a modal
paraconsistent negation around all the time, when we were dealing with usual
normal modal logics —and there is an infinite number of the latter.

Béziau (2002, 2005) has been calling attention to that, recently: Just as
much as intuitionistic negation has its standard modal interpretation in terms
of a certain translation into S4 that interprets this negation by ∼3, a dual
paraconsistent negation is obtained if one interprets it by using 3∼. The idea
in reality is anything but new, and it has been deeply explored in between the
mid-70s and the 80s (check specially Došen 1986 and Vakarelov 1989). This
section will sketch the big picture —for many more details, an emphasis on
duality, and proofs of all claims, check Marcos (2004).

Normal modal logics are extensions of the logic K: In their usual language,
they admit the necessitation rule and propagate necessity through conjunctions.
They also enjoy the replacement property, by their very design. The most ob-
vious degenerate examples of normal modal logics are characterized by frames
that are such that every world can access only itself or no other world. Now,
it is not difficult to verify that, for any non-degenerate normal modal logic,
a connective defined by setting ¬α

def== 3∼α is a (sub-classical) paraconsistent
negation, that is: (a) It only has positive properties that are also enjoyed by
classical negation; (b) it has enough negative properties so that it qualifies as a
‘minimally decent negation’, in the sense of Marcos (2005b); (c) it is not explo-
sive. Moreover, any such logic is in fact a Logic of Formal Inconsistency, and a
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dC-system (recall Section 1) where a consistency connective can be defined, for
instance, by setting ◦α def== α ⊃ ∼¬α.

Furthermore, not only is it possible to start from a (non-degenerate) normal
modal logic and define operators that represent a paraconsistent negation and a
consistency connective, it is also possible to do it the other way around. Indeed,
consider as before the language of positive classical logic to be written over
the connectives ∧, ∨ and ⊃, whose interpretation is the standard one over a
Kripke-like modal structure, and add to that a negation ¬ to be interpreted by
assuming, for worlds x and y of a model M with an accessibility relation R:

|=Mx ¬α iff (∃y)(xRy and 6|=My α).

In that case, a classical negation could be recovered simply by defining ∼α
def==

α ⊃ ¬(α ⊃ α). The other usual modal connectives would then be obtained by
setting 3α

def== ¬∼α and 2α
def== ∼¬α. Alternatively, the consistency connective

could also be taken as primitive, by assuming:

|=Mx ◦α iff |=Mx α implies (∀y)(if xRy then |=My α).

In that case, a classical negation could alternatively be defined by setting ∼α
def==

α → (α∧(¬α∧◦α)). The significance of this ‘consistency connective’ in a modal
language deprived of a paraconsistent negation was put into proof in Marcos
(2005a), where an interpretation was proposed for it as a connective expressing
the notion of an ‘essential truth’ —as opposed to a merely ‘accidental’ one.

On what concerns some of the usual inferences (recall (ID1)–(ID12), from
Section 3) that interrelate the distinct connectives of the positive classical logic
by way of the new modal paraconsistent negation presented heretofore, it should
be noted that none of them is validated if one considers the semantics of the
minimal normal modal logic K. However, both (ID1) and (ID4) are validated
if one considers the reflexivity condition that characterizes the logic KT , while
both (ID9) and (ID11) are validated given the symmetry condition that charac-
terizes KB. None of the other inferences is valid inside a non-degenerate modal
logic.1 To validate any of the latter, some derivability adjustments (recall Sec-
tion 1) are needed, with the help of the above defined consistency connective.
Indeed, it might be noticed that the logic K can recover (ID2) and (ID8) by
the addition of ◦α as a new ‘consistency assumption’, and it can recover (ID7)
by the addition of ◦∼α as such an assumption. Moreover, the logic KT can
recover (ID5) by the addition of ◦β, and it can recover both (ID10) and (ID12)
by the addition of both ◦α and ◦β. Finally, (ID6) can be recovered in KB by
the addition of KB, and (ID3) can be recovered in S4 by the addition of both
◦α and ◦β.

There are of course other studies in which paraconsistent negations are en-
dowed with modal interpretations, such as those involving the so-called ‘Routley
star’, in the context of relevance logics, where a ternary accessibility relation is

1A mistake has thus remained in Béziau (2005), where (ID10) is said to be validated in S5.
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used in giving truth conditions to some connectives (see Dunn, 1993). In com-
parison with those, the above straightforward interpretation of paraconsistent
negation inside normal modal logics gains in simplicity what it loses in gener-
ality. In the present approach, at any rate, it has been shown that one could
either start from the usual language of normal modal logics and define the para-
consistent-related connectives, or else start from the latter and then reintroduce
the usual modal connectives. From that perspective, it should be clear to the
reader that modal logics could alternatively be regarded as the study of certain
modal-like inconsistency-tolerant systems. Instead of qualifying the truth of
judgements in terms of belief or tense or duty or whatever other received ad-
verbial expression, modal logic would have its role thus in the study of a more
general ‘theory of opposition’, for the sake of those who believe that Aristotle
is possibly not dead.
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