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Fig. 1. A selection of results using our method for quadruped animation. We show some di�erent modes for si�ing, turning trot, pace, canter, jumping and

standing from le� to right. The locomotion gaits are not labeled individually, but naturally produced by the movement velocity control.

Quadruped motion includes a wide variation of gaits such as walk, pace,

trot and canter, and actions such as jumping, sitting, turning and idling.

Applying existing data-driven character control frameworks to such data

requires a signi�cant amount of data preprocessing such as motion labeling

and alignment. In this paper, we propose a novel neural network architecture

called Mode-Adaptive Neural Networks for controlling quadruped charac-

ters. The system is composed of the motion prediction network and the

gating network. At each frame, the motion prediction network computes the

character state in the current frame given the state in the previous frame and

the user-provided control signals. The gating network dynamically updates

the weights of the motion prediction network by selecting and blending

what we call the expert weights, each of which specializes in a particular

movement. Due to the increased �exibility, the system can learn consistent

expert weights across a wide range of non-periodic/periodic actions, from

unstructured motion capture data, in an end-to-end fashion. In addition, the

users are released from performing complex labeling of phases in di�erent

gaits. We show that this architecture is suitable for encoding the multi-

modality of quadruped locomotion and synthesizing responsive motion in

real-time.
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1 INTRODUCTION

Quadruped animation is one of the unsolved key problems in com-

puter animation. It has particular relevance for applications in com-

puter games and �lms, and also presents a challenging topic in

robotics. When animating quadrupeds, animators must go through

special training to design a wide range of complex movements. This

complexity is inherently from the multi-modality of quadruped

motions. For example, there are a number of locomotion modes 1

including walk, pace, trot, canter, and gallop, where the movements

and the phases of the torso and limbs vary in a complex manner

(see Fig. 2).

To the best of our knowledge, there is no prior work on system-

atically constructing quadruped motion controllers in a data-driven

fashion. This di�culty stems from the complexity mentioned above,

along with the issue that quadruped animals cannot be directed like

humans for a controlled data acquisition. As a result, the captured

data is often less structured with a wide range of random actions

performed one after another. When designing character controllers

using such data, engineers need to manually/semi-automatically ex-

tract gait cycles and transitions from the data, stitch them together,

and tune parameters of motion trees and �nite state machines.

Motion control using neural networks has recently demonstrated

success in producing high-quality animation for biped locomotion

with clear cycles [Holden et al. 2017]. However, merely applying

the same framework to quadrupeds fails because de�ning single

phase for all four legs is not possible in the transition between gaits

with very distinct footfall patterns. This also makes manual phase

1Locomotion modes is the term to represent the variation in movements the animals
use to propel, here which is de�ned based on the binary footfall patterns along the
timeline that the end e�ectors contact the ground. “Locomotion modes” and “gait types”
are interchangably used in this article.

ACM Trans. Graph., Vol. 37, No. 4, Article 145. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/3197517.3201366


145:2 • Zhang, Starke et al.

labeling of unstructured quadruped motion data with complex gait

transitions impractical.

In this paper, we propose a novel network architecture called

Mode-Adaptive Neural Networks (MANN) that can learn a locomotion

controller from a large amount of unstructured quadruped motion

capture data. The system is composed of the motion prediction net-

work and the gating network. At each frame, the motion prediction

network computes the character state in the current frame given the

state in the previous frame and the user-provided control signals.

The gating network dynamically updates the weights of the motion

prediction network by selecting and blending what we call the ex-

pert weights, each of which specializes in a particular movement.

This architecture provides �exibility such that the system can learn

consistent features across a wide range of non-periodic actions and

periodic unlabeled gait types. This framework can release the de-

velopers from the tedious and di�cult process of phase labeling,

where the unstructured quadruped motion capture data of di�erent

gait types must be aligned along the timeline. In particular, our

model does not require individual labels for di�erent gaits which

Fig. 2. Footfall pa�erns for di�erent quadruped locomotion modes gener-

ated by referring to [Huang et al. 2013]. The horizontal bars indicate the

stance phase in each leg. The image in the right indicates the sequence of

the foot contact during the gait cycle.

are often di�cult to distinguish even for humans, and thus avoids

gait mislabeling during data preprocessing.

The contributions of the paper can be summarized as follows:

• The �rst systematic approach for constructing data-driven

quadruped character controllers that can synthesize anima-

tions in production-quality with a wide variety of locomotion

modes and transitions between them.

• Anovel end-to-end neural network architecture that can learn

from unstructured quadruped motion capture data without

providing labels of the phase and locomotion gaits.

• A comprehensive evaluation of the proposed architecture

through comparison with existing approaches.

2 RELATED WORK

Quadruped motion synthesis has mostly been done through proce-

dural modeling and physics-based control. Procedural animation is

useful for animating virtual creatures with many legs [Hecker et al.

2008] or hexapoda [Karim et al. 2013]. Kry et al. [2009] animate

quadrupeds using modal analysis. Although these methods can pro-

duce interesting stable gait cycles, they have di�culty in producing

subtle, realistic movements when responding to quick user inputs,

where physical rules such as the conservation of momentum and

ground reaction forces strongly in�uence the motions. Simulating

such movements requires either using physically-based animation

or data-driven techniques.

In the rest of this section, we �rst review physics-based quadruped

control, and then data-driven techniques which can potentially be

applied to quadruped motion synthesis. Finally, we brie�y review

mixture of experts, which is a concept that inspires our approach.

2.1 Physics-Based�adruped Controllers

Physically-based controllers are e�ective to generate dynamic move-

ments, where the animals make use of elasticity, energy minimiza-

tion and conservation of momentum. Such methods can be di-

vided into trajectory-based approaches where the motion is op-

timized based on physical properties such as torques, momentum

and feasibility [Levine and Popović 2012; Wampler and Popović

2009; Wampler et al. 2014], and torque-based approaches where

the body is directly driven by torques [Coros et al. 2011; Liu and

Hodgins 2017; Peng et al. 2015, 2016; Raibert and Hodgins 1991;

van de Panne 1996].

Trajectory-Based Approaches: Many trajectory optimization tech-

niques are developed for human motion synthesis [Al Borno et al.

2013; Liu et al. 2005; Liu and Popović’ 2002; Ye and Liu 2012] and

some of these ideas are applied for quadruped motion synthesis.

Wampler and Popovic [2009] compute the motion of various types

of animals including quadrupeds by optimizing an objective func-

tion composed of the torques and constraint terms over cyclic gaits.

Wampler et al. [2014] extend this technique to predict the motion

of animals whose appearance is known but the motion is unknown.

These are spacetime approaches which cannot be applied for online

applications. Levine and Popovic [2012] adapt the dog locomotion to

dynamically deforming terrains in a quasi-physical manner. Such an

approach is useful for adapting a small number of exemplar motions
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to di�erent environments, but still need a set of motion to start from,

which leads to data-driven approaches that are discussed later.

Torque-Based Approaches: Torque-based controllers have long

been developed for human characters [Liu and Hodgins 2017; Peng

et al. 2016; Yin et al. 2007] and quadruped characters[Coros et al.

2011; Peng et al. 2015; Raibert and Hodgins 1991; van de Panne

1996]. Designing such controllers is not trivial as the characters

should perform the desired motion while keeping balance. Raibert

and Hodgins [1991] develop control strategies for trotting, bouncing

and galloping gaits. Van de Panne [1996] optimizes the parameters

of a control graph to control a cat model using speed as the pri-

mary metric. Coros et al. [2011] design a detailed controller for

quadrupeds that can simulate a wide range of locomotion including

walk, trot, canter and traverse gallop by optimizing PD controllers

to follow reference movements from videos while satisfying con-

straints. Peng et al. [2015] apply reinforcement learning to control

quadruped models to adapt to di�erent terrains in 2D. Designing a

stable controller in a high dimensional state space is a very di�cult

problem and thus low-dimensional features need to be carefully

hand-tuned to keep the controller stable. Peng et al. [2016] over-

come this problem by applying deep reinforcement learning, where

the feature space is automatically computed from the data. This

approach was further enhanced for 3D environments and applied

to biped characters in [Peng et al. 2016].

Physically-based controllers are very powerful tools for designing

dynamic plausible movements though some subtle minor voluntary

movements that make the motion realistic tend to be skipped due to

the di�culty in describing them from simple rewards such as mov-

ing forward, energy minimization and balance control. Adversarial

training as done in [Merel et al. 2017a] could be a future direction

to overcome this issue.

2.2 Data-Driven Character Control

A counterpart of physically-based animation is data-driven char-

acter animation techniques that make use of motion capture data

for interactive character control. Data structures such as motion

graphs [Arikan and Forsyth 2002; Kovar et al. 2002; Lee et al. 2002]

are introduced to synthesize continuous character movements from

unstructured motion capture data. As the connectivity of the graph

can signi�cantly a�ect the responsiveness of the controlled charac-

ter, computer games and other interactive applications often use a

more straightforward structure such as �nite state machines where

the connectivity is explicit and the subsequent motion is predictable,

as proposed by Lau and Ku�ner [2005].

In the rest of this section, we �rst review methods that make use

of early machine learning approaches for motion synthesis, time

series models whichmodel themotion from the dynamic perspective

and then the recent methods that make use of deep learning-based

approaches.

Motion Synthesis by Classic Machine Learning Techniques: To im-

prove the transitions between the actions and increase the generality

of the output motion, the system should preferably be synthesizing

novel motions rather than simply replaying the given data. Various

techniques based on machine learning such as K-Nearest Neigh-

bours (KNN), principal component analysis [Chai and Hodgins 2005;

Min and Chai 2012; Safonova et al. 2004; Tautges et al. 2011], radial

basis functions (RBF) [Kovar and Gleicher 2004; Rose et al. 1998],

reinforcement learning [Safonova and Hodgins 2007] and Gaussian

processes (GP) [Grochow et al. 2004; Ikemoto et al. 2009; Mukai and

Kuriyama 2005] are studies to achieve this goal.

Most methods based on classic machine learning techniques suf-

fer from scalability issues: they �rst require a huge amount of data

preprocessing including motion classi�cation and alignment. KNN

requires keeping all the motion data, and kernel-based approaches

like RBF and GP require square order memory and cube order

computation time. PCA-based approaches perform well in high-

dimensional problems such as when motion trajectories are used

as the representation, but requires local structures for time-series

models [Chai and Hodgins 2005; Tautges et al. 2011], where again a

lot of preprocessing is needed.

Time Series Models: Time series models predict the motion for the

current frame given the motion in the previous frames. Such models

are useful for real-time applications such as computer games. Similar

to motion interpolation, methods based on linear regression [Hsu

et al. 2005; Xia et al. 2015], KNN [Lee et al. 2010] and kernel-based

approaches [Wang et al. 2008] are proposed. Linear models [Hsu

et al. 2005] are simple but have issues with modeling nonlinearity.

Xia et al. [2015] copewith this problem by using expert gates, though

their method requires prede�ning the classes of each experts, which

we overcome in our research. Kernel-based approaches [Levine et al.

2012; Wang et al. 2008] can model nonlinearity in motion, but the

trained model is limited to express a speci�c type of motion. Motion

�elds [Lee et al. 2010] require preserving the original data and

conducting KNN search during runtime, which limits the scalability.

Learning Character Motion by Neural Networks: Neural networks

are getting attention due to their scalability and high run-time

performance. Neural networks can learn from a massive amount

of data, while keeping their sizes much smaller than the original

data sizes. Taylor et al. [2009; 2011] present human motion capture

data can be learned by conditional Restricted Boltzmann Machines

(cRBM), although it su�ers from the noise due to per-frame sampling.

Recurrent Neural Networks (RNN) that predict the following posture

from the previous motion are attractive frameworks for learning

time series data such as human motion, but are known to su�er

from converging to an average pose [Fragkiadaki et al. 2015]. Li

et al. [2017] avoid the problem by linking the network predictions

into future inputs, which drags the generated motion of the RNN

back to the original motion data. The focus of these works are in

the reconstruction of the time series data, and they do not receive

extra control signals for the control. How they interpolate between

di�erent movements that follow the user instructions is yet to be

examined.

For the character animation purpose, Holden et al. [2015] use con-

volutional neural network (CNN) and learn temporal �lters as the

representation ofmotions. They also demonstrate CNN’s capabilities

to map high-level user instructions to character movements [Holden

et al. 2016]. Holden et al. [2017] propose a real-time framework, the

phase-functioned neural network (PFNN), that maps the inputs from
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Fig. 3. The architecture of our neural network composed of the gating network and the motion prediction network. The gating network takes as input the

current end e�ector velocities of the feet, the desired velocity and the action vector. The motion prediction network takes as input the posture and trajectory

control variables from the previous frame, and predicts the updated posture and trajectory for the current frame.

a gamepad controller to the motion of the character. Naive applica-

tion of the same technique to quadrupeds exposes issues caused by

the complexity of the quadruped motion and the di�culty in gait

type and phase labeling. Most importantly, they introduce the phase

as a parameter to align the locomotion along the timeline, such that

they do not blend motion at the wrong timing. This is only possible

if the way the feet contact the ground is consistent. For quadrupeds,

this pattern can drastically change between modes, and thus can

result in artifacts. We present such examples in Section 8.

2.3 Mixture of Experts

Mixture of Experts (MoE) [Jacobs et al. 1991; Jordan and Jacobs

1994] is a classic machine learning approach where a number of

experts are used to cope with the inputs in di�erent regions. A

gating network decides which set of experts to use for the given

input. Once trained, the experts become locally specialized for some

subdomain assigned by the gating network. We refer the readers to

Yukel et al. [2012] for a broad survey. Recently its combination with

deep learning architectures [Chang et al. 2018; Eigen et al. 2013;

Shazeer et al. 2017] is showing promising results. Our architecture

has similarity withMoE, as we also use a gating function, though our

blending is occurring at the feature level, while for MoE it happens

at the output level.

3 SYSTEM OVERVIEW

Our system is a time series model that predicts y, the state of the

character in the current frame, given x, the state in the previous

frame and the user control signals. For achieving this task for char-

acters such as quadrupeds who produce a wide range of periodic

and non-periodic movements, we propose a novel neural network

structure called Mode-Adaptive Neural Networks (MANN) (see Sec-

tion 6, Fig. 3). The motion in the current frame is computed by a

network that we call the motion prediction network (see Section 6.1,

Fig. 3, right), whose network weights are dynamically computed by

another neural network structure that we call the gating network

(see Section 6.2, Fig. 3, left). The gating network receives a motion

feature x̂, which is a subset of x, and computes the blending coef-

�cients of the expert weights (see Fig. 3, center), each of which is

trained to be specialized in particular movements.

To prepare the training dataset, we �rst preprocess the dogmotion

capture dataset and add the action labels to the data (see Section 4),

and prepare the input and output vectors (see Section 5). During

training, the entire network is trained end-to-end using the prepared

training dataset (see Section 7). During runtime, the system animates

the character in real-time using the previous state of the character

and the control signals provided by the user (see Section 8).

4 DATA PREPARATION

Here we describe the motion capture and motion classi�cation

stages, and present the breakdown of our data.

Dog Motion Capture. Our motion capture data consists of 30 min-

utes of unstructured dog motion capture data that is composed of

various locomotion modes including walk, pace, trot, and canter, as

well as other types of motions such as sitting, standing, idling, lying

and jumping. The size of the data is doubled by mirroring. All the

motion data was only captured on a �at terrain due to the limitation

of the capture facilities. A skeleton model that is composed of 27

bones (see Fig. 4) is �tted to the captured data. The body has 81

degrees of freedom in total.

Fig. 4. The skeleton structure of the dog model used in our experiments. It

is composed of 27 bones and has 81 degrees of freedom in total.
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Table 1. The breakdown of our dog motion dataset for training. This dataset

includes the original and mirrored unstructured dog motion capture.

Motion Type time (sec) frames ratio (%)

idle 1614.37 96862 36.42

locomotion 1828.70 109722 41.25

jump 30.27 1816 0.68

sit 497.93 29876 11.23

lie 397.13 23828 8.96

stand 64.83 3890 1.46

Motion Classi�cation. The motions are �rst classi�ed into loco-

motion, sitting, standing, idling, lying and jumping such that the

user can control the character during runtime by specifying such

labels. This process is done manually, though, it should not be dif-

�cult to automate this process, as the motions are rather distinct

between these classes. The breakdown of the ratio of the motion

data is shown in Table 1.

Locomotion Modes. In our paper, we speci�cally work on four

types of locomotion modes: walk, pace, trot, and canter. Although

our system does not require the labels of the locomotion modes for

controlling the character during runtime, we analyzed the distri-

bution of the modes in the dataset. Classi�cation of the data into

locomotion modes is a rather di�cult process due to the complex

transitions and the ambiguous cases; we �rst roughly classify the

motions based on the velocity pro�le and then manually divide

them into each mode. The �nal breakdown/correlation of the speed

and the mode types are visualized in Fig. 5. This correlation matches

well to the model by Coros et al. [2011].

5 INPUT AND OUTPUT FORMATS

The input and output data formats of our system follow those of

Motion Matching [Clavet 2016] and PFNN [Holden et al. 2017].

The data is composed of the ground trajectory transformations and

velocities in the past and future states, the labels of the action type

at those frames, and the body joint transformations and velocities of

the current state. More speci�cally, for each frame i , we uniformly

sample another 11 frames which cover one second in the future and

Fig. 5. Distribution of velocities for di�erent quadruped locomotion modes.

past. From these 12 frames of motion, we extract features including

the character positions, rotations and velocities relative to the body’s

local transformation, which is projected onto the ground with its

rotation facing in the character’s forward direction. We call this

the root transformation of our system, which also represents the

trajectory transformation for the current frame. We then include the

action labels at those 12 frames to be part of the state vector. Finally,

all trajectory and body joint transformations are computed relative

to the root trajectory transformation. The desired velocity of each

frame is simply calculated by the length of the future trajectory at

this particular state.

The input vector at frame i is xi = { t
p
i tdi tvi tv̂i t

a
i j

p
i−1 j

r
i−1 jvi−1} ∈

R
n , where t

p
i ∈ R

2t are user-predicted trajectory positions of t

samples (in our case 12) in a 2D-horizontal plane relative to the

current state i , tdi ∈ R
2t are trajectory forward facing directions

relative to state i , tvi ∈ R
2t are the trajectory velocities relative

to state i , tv̂i ∈ R
1t are the desired trajectory velocity values in

state i , and tai ∈ R
6t are one-hot vectors for the character action

type of the samples along the trajectory. j
p
i−1 ∈ R

3j , jri−1 ∈ R
6j and

jvi−1 ∈ R
3j are the relative joint positions, rotations and velocities

of the previous state where j denotes the number of joints (in our

case 27). In addition to the PFNN [Holden et al. 2017], also using

the joint rotations for the input of the network instead of only for

the output layer could be observed to immediately produce a much

sharper motion for our quadruped motion dataset.

Similarly, the output is yi = { t
p
i+1 t

d
i+1 t

v

i+1 j
p
i jri j

v

i ṙxi ṙzi ṙai } ∈

R
m where t

p
i+1 ∈ R

2t , tdi+1 ∈ R
2t and tvi+1 ∈ R

2t are the predicted

relative trajectory positions, directions and velocities for the next

state, and j
p
i ∈ R

3j , jri ∈ R
6j and jvi ∈ R

3j are the relative joint

positions, rotations and velocities for the current state. ṙxi ∈ R

and ṙzi ∈ R are the root translational x and z velocities relative to

the previous frame which de�ne the local transformation into the

current frame, and ṙai ∈ R is the corresponding root angular velocity

in the 2D-horizontal plane. This is similar to the data preparation of

PFNN, though our system does not output any information about

the foot contact or the phase increment, but additionally includes the

trajectory velocities to get a better controllability. Also, we represent

the joint rotations by the relative forward and upward vectors in

order to avoid quaternion interpolation issues by the neural network

during training. Those are obtained from the original quaternions

in the motion capture, and transformed back for generating the

motion during runtime.

6 MODE-ADAPTIVE NEURAL NETWORKS FOR

QUADRUPED CONTROL

In this section, we describe the architecture of the Mode-Adaptive

Neural Networks (MANN) in Fig. 3, which is composed of the mo-

tion prediction network and the gating network. We �rst describe

the motion prediction network, which predicts the motion in the cur-

rent frame given the state in the previous frame, and then describe

the gating network, which computes the weights of the motion

prediction network dynamically.
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6.1 Motion Prediction Network

The motion prediction network, whose operation is denoted byΘ(·),

is a simple three layer neural network that receives the previous

state of the character x, and outputs the data in the format of y as

follows:

Θ(x;α ) =W2 ELU( W1 ELU( W0 x + b0) + b1) + b2, (1)

where the parameters of the network α are de�ned by α = {W0 ∈

R
h×n ,W1 ∈ R

h×h ,W2 ∈ R
m×h , b0 ∈ R

h , b1 ∈ R
h , b2 ∈ R

m }. Here

h is the number of units used in the hidden layers, which in our work

is set to 512, and the activation function used is the exponential

recti�ed linear function [Clevert et al. 2015] de�ned by

ELU(x ) = max(x , 0) + exp(min(x , 0)) − 1. (2)

The neural network weights α is computed by blending K ex-

pert weights β = {α1, ...,αK }, each of which in the form of neural

network weight con�gurations: α =
∑K
i=1 ωiαi . K is a meta param-

eter that can be adjusted according to the complexity and size of

the training data, and ω = {ω1, ...,ωK } are the blending coe�cients

computed by gating network described in Section 6.2. We found that

K = 4 is enough to generate high-quality motions, though K = 8

is able to produce even better results with sharper movements. We

will discuss about this in Section 8.

6.2 Gating Network:

The gating network, whose operation is denoted by Ω(·), is a three

layer neural network that computes the blending coe�cients ω

given the input data x:

Ω(x̂; µ ) = σ (W′2 ELU( W
′
1 ELU( W

′
0 x̂ + b

′
0) + b

′
1) + b

′
2), (3)

where x̂ ∈ R19 is a subset of x that are the foot end e�ector velocities,

the current action variables and the desired velocity of the char-

acter. The parameters of the network µ are de�ned by µ = {W′0 ∈

R
h′×19,W′1 ∈ R

h′×h′ ,W′2 ∈ R
K×h′ , b′0 ∈ R

h′ , b′1 ∈ R
h′ , b′2 ∈ R

K }

where h′ is the number of hidden layer units which is set to 32. σ (·)

is a softmax operator that normalizes the inputs such that they sum

up to 1, which is required for the further linear blending.

We have tested various other inputs including the full x, the end

e�ector positions, and the combination of their position and velocity,

as well as the rotations, and found those features alone to clearly

produce the best results. This could be due to the strong correla-

tion of the feet velocity with the locomotion phase, resulting in an

e�ect similar to the phase function in [Holden et al. 2017], which

helps to avoid blending between motions of di�erent phases. Ideally,

the network could learn the informative features from the input,

though this could be di�cult due to our relatively small amount of

training data as listed in our experiments in Section 8. Meanwhile,

we observed that the using the action variables and the desired

velocity helps to improve the controllability and responsiveness of

the character.

7 TRAINING

The entire network is trained end-to-end using the processedmotion

capture data. The input x and y for each frames are stacked into

matrix form: X = [x1x2...],Y = [y1y2...]. These values are shifted

and scaled using their mean and standard deviation such that the

Fig. 6. Learning curves of vanilla neural network, PFNN and MANN with

4 or 8 expert weights respectively. The warm restarts of the AdamWR

algorithm at epoch 11, 31 and 71 result in hikes of the loss.

data is normalized. As the cycles of trot and canter are very limited,

we copied the data of those motions 11 times each, which helps

them to appear during runtime more robustly.

The goal of training our network is that for a given set of inputs

X, we can produce the corresponding output variables Y, which is

a typical regression task with the following cost function, which

is the mean squared error between the predicted output and the

ground truth:

Cost(X,Y; β, µ ) = ∥Y − Θ(X,Ω(X̂; µ ); β )∥22 , (4)

We use the stochastic gradient descent algorithm with the warm

restart technique of AdamWR [Loshchilov and Hutter 2017], which

automatically calculates the derivatives of the cost function with

respect to β and µ. The model is implemented in Tensor�ow [Abadi

et al. 2016]. As AdamWR does the regularization within the opti-

mization procedure, no regularization term is contained in the cost

function. Instead, it uses two parameters Ti and Tmult that control

the decrease and restart of the learning rate η and weight decay rate

λ, which we chose to be initialized as η = 1.0 ·10−4 and λ = 2.5 ·10−3.

Ti is the total number of epochs within the i-th run/restart with an

initial value of 10. At every restart, we choose Ti to be multiplied

by the factor of Tmult = 2, i.e. Ti+1 = 2Ti . We set the total epochs

as 150, hence a total of 3 restarts will occur at epoch 11, 31 and

71. During the training, we iterate over the data in mini-batches

with a size of 32, where the training samples in each mini-batch are

selected randomly. Dropout is applied with a retention probability

of 0.7. Full training with 4 or 8 experts networks takes around 20

or 30 hours on a NVIDIA GeForce GTX 970 GPU, respectively. In

Fig. 6, we show the learning curves of di�erent methods. Note that

a lower training loss or test loss does not necessarily correspond to

a higher quality of motion.

8 EXPERIMENTS AND RESULTS

In this section, we �rst describe the character control scheme during

runtime, and then show the results when controlling the character

interactively during runtime.
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Runtime Control: The system is implemented in the Unity 3D

engine, and requires∼2ms per frame for running the neural network

single-threaded on an Intel Core i-7 CPU using a port of the Eigen

library. The memory usage for the trained model is ∼22MB using

8 expert weights. The character can be controlled by discrete and

continuous control signals. By selecting the key that corresponds

to the element of the one hot vector, the desired action, which is

either of sit, stand, idle, lie, jump and move, is launched. The speed

of the character, which is also included in the control parameters, is

discretely speci�ed by the arrow keys, increasing and interpolating

the velocity in the forward, backward, left and right directions. The

facing direction of the locomotion is controlled by two keys in

order to perform a turning motion. Both the target velocity and

direction are smoothly interpolated and �nally used to predict the

future trajectory which the user wants to navigate. The curve of

the trajectory is extrapolated using an exponentially-weighted bias

value which de�nes the maximum length of the future trajectory —

and thus providing the desired velocity of the character in m/s. This

always results in a smooth trajectory, which is crucial for the input

of the neural network to achieve good looking motion by trying to

resemble realistic trajectories as in the original motion capture data.

Runtime Results: Various gaits including walk, pace and canter are

successfully produced by setting the speed to 0.5m/s (walk), 1.1m/s

(pace), 1.9m/s (trot) and 3.3m/s (canter), respectively. Smooth tran-

sitions can be produced by gradually changing the speed. All types

of locomotion quickly respond to the direction and velocity input,

although some gaits do not include the turning motion. This means

the network is well generalizing the turning motion of the standard

gait like walk to other gaits. Motions such as sit, lie, stand and jump

are successfully launched with little delay when the correspond-

ing hotkey is pressed (see Fig. 1). This indicates that the network

Fig. 7. The quadruped character walking over a smooth uneven terrain

synthesized by full-body inverse kinematics.

can learn at which state particular actions may be performed. The

readers are referred to the supplementary video for further details.

Finally, we prepare an environment where the character can

move along an uneven terrain (see Fig. 7). Instead of training the

character to walk over di�erent terrains as done in [Holden et al.

2017], we simply apply a CCD full-body inverse kinematics to the

character movements. The positions of the paw end e�ectors are

post-processed such that they incorporate the terrain height o�-

set in addition to the generated motion, and the spine joints are

simultaneously updated with respect to the surrounding heights.

This is required to avoid outstretched limbs when walking up- and

downhills, and thus to create more natural movements.

9 EVALUATION

We evaluate our system through comparison to existing methods

in terms of the motion quality, foot sliding artifacts, leg sti�ness,

and responsiveness. We also examine the activation of the expert

weights, and analyze their functionality by deactivating them during

the motion.

Comparisonwith Other Frameworks: We compare the performance

of the proposed system with baselines such as vanilla feedforward

neural networks and phase-functioned neural networks (PFNN)

with semi-automatic phase labeling. Note that all the rest of the

inputs and outputs are kept the same as our method, and no foot

contact information are included in the state vector of each method.

For a fair comparison, we make the number of layers and parameters

in the vanilla neural network and the PFNN the same as for the

MANN using 4 expert weights. Thus, the vanilla network has 2048

units in the hidden layers, and the PFNN has 4 control points, each

of which has 512 units in the hidden layers (4 × 512). Meanwhile,

we also show the results of MANN with 8 expert weights, and list

the ground truth (GT) values from the original motion capture data.

Vanilla feedforward consistently su�ers from undesired blending

which results in blurry movements and loss of high-frequency com-

ponents. This artifact is apparent even for a constant walk and pace

cycles, for which the data is relatively rich. The artifacts such as foot

skating and sti� legs become signi�cantly worse when conducting

turning behaviors and when landing after jumps.

In comparison to PFNN, our system performs signi�cantly better,

despite the fact that ours does not require any phase labels. For

testing the PFNN, the phase labels are added to the dog motion data.

The phases are de�ned based on the velocity pro�le of the front two

legs, computed and aligned by an optimization technique 2. The gait

type is speci�ed through one-hot vectors. Such a PFNN performs

well in general, though the motion of the back legs often appear

sti� and unnatural, and also resulting in foot skating. This can be

due to the di�culty of de�ning a consistent phase function that can

well align di�erent gait types; as we de�ne the phase based on the

velocity of the front legs, the artifacts become more observable at

the back legs.

2The cost function is de�ned by �tting the parameters of a trigonometric function
such that it matches the velocity update of the feet. This takes into account symmetry
information in the motion, and adaptively detects di�erent types of locomotion. The
beginning and end of each cycle is then analytically extracted by computing the either
negative or positive turning points. This enables us to automatically label the phase of
the whole motion dataset with high accuracy.
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Fig. 8. The character following predefined trajectories on the ground. The parameter τ for correction with the predicted trajectories of the network is set to 0.5

in order to perform realistic motions along artificial paths. It can be observed that the character is following the curves well even when there are sudden turns.

Table 2. The average foot skating for all legs and the back legs in the ground

truth data, and when using the vanilla NN, PFNN and MANN models with

4 or 8 expert weights respectively.

Motion GT vNN PFNN MANN4 MANN8 cm/frame

Walk
0.21 0.32 0.25 0.23 0.22 all legs

0.08 0.15 0.12 0.10 0.09 back legs

Canter
0.14 0.24 0.19 0.17 0.16 all legs

0.05 0.19 0.11 0.08 0.06 back legs

Turn
0.17 0.28 0.34 0.24 0.20 all legs

0.06 0.17 0.21 0.13 0.08 back legs

In biped locomotion, it is relatively easy to align the motion based

on the foot contact pattern for di�erent modes like walking and

running. However, such a simple rule is di�cult to be adopted for

quadrupeds, where the relative phases of the swing and support legs

change signi�cantly across the locomotion modes. On the contrary,

the gating network has more degrees of freedom for blending the

features to minimize the cost function, which o�ers more �exibility

to align di�erent modes of locomotion.

Foot Skating Artifacts: We also compare our system with the

vanilla neural networks and PFNN in terms of foot skating arti-

facts, listed in Table 2. The foot velocities are added if a position

height h is within a maximum threshold of H = 2.5cm. Each veloc-

ity magnitude v in the horizontal plane is further weighted by an

exponential interpolation s = v (2 − 2
h

H ) to estimate the amount of

skating s during motion, where the exponent is clamped between 0

and 1.

Leg Sti�ness: In PFNN, the foot skating is caused by the back leg

sti�ness, which happens due to the blending of back leg movements

Table 3. The average angular update per joint along all legs and the back

legs in the ground truth data, and when using the vanilla NN, PFNN and

MANN models with 4 or 8 expert weights respectively.

Motion GT vNN PFNN MANN4 MANN8 ◦/frame

Walk
3.87 3.02 3.36 3.43 3.69 all legs

3.16 2.47 2.71 2.82 3.05 back legs

Canter
6.53 4.61 4.63 5.23 5.72 all legs

5.56 3.73 3.52 4.56 5.14 back legs

Turn
2.74 1.37 1.84 2.24 2.31 all legs

2.15 1.02 1.06 1.54 1.82 back legs

Table 4. Average values for position and angle deviation while aiming to

smoothly follow predefined trajectories of di�erent curves, when using

vanilla NN, PFNN and MANN models.

Path vNN PFNN MANN

Circle
2.28 1.96 2.98 Position Deviation (cm)

3.07 1.70 3.21 Angle Deviation (°)

Square
5.80 3.72 4.65 Position Deviation (cm)

5.20 3.78 7.21 Angle Deviation (°)

Star
7.45 8.37 6.61 Position Deviation (cm)

8.80 11.94 8.76 Angle Deviation (°)

Custom
8.14 9.50 5.31 Position Deviation (cm)

7.69 9.28 6.75 Angle Deviation (°)

under a phase computed by the front leg movements. To quantita-

tively evaluate such sti�ness, we compute the average update per

joint angle along all legs and the back legs (see Table 3). It can be

observed that the leg motion is much smaller in vanilla NN and

PFNN compared to MANN, especially for the back legs.

Responsiveness: We �nally evaluate the responsiveness and the

path-following accuracy of our method. We create several prede-

�ned paths and instruct the character to follow them in di�erent

modes. In order to make the character follow the trajectory, we use a

blending parameter τ which interpolates between the future points

of the desired trajectoryT ∗ as well as the corrected trajectoryT+ in

the output of our network to obtain the input trajectory T for the

motion update. This blending can be de�ned asT = τT ∗ + (1−τ )T+.

The trajectories made by the character are shown in Fig. 8. We then

measure the di�erence between the desired trajectory and the actual

trajectory of the character considering their root transformations

(see Table 4). It can be observed that the character is well following

the paths and the average distance is low.

What are the Networks Learning?: To examine the situation, we

plot the pro�le of the blending coe�cients ω with K = 4 and 8

expert weights when the character is performing di�erent types of

actions and locomotion modes in Fig. 9. It can be observed that the

weight values are equally cycling around for low speed movements

(see Fig. 9, second bottom, bottom, upper rows), making the gating

network function in the same fashion as the phase function in PFNN.

The period that the expert weights corresponding to the purple line

is active, becomes longer and constant as the speed of the locomotion

increases, while the others tend to activate less in such situations.

This means that these expert weights are trained to be responsible

for fast movements, jumpy movements while the others could be
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responsible for synthesizing rather slower movements. In particular,

by selectively disabling single dimensions of blending coe�cients,

we observed the character no longer being able to perform certain

movements, such as single types of locomotion modes, turning or

jumping. Our observations for a learned network with eight trained

Table 5. Resulting motion artifacts and disablings when selectively deacti-

vating a weight αi by ignoring the corresponding blending coe�icient of the

gating network. Some weights have learned features which are specifically

responsible for certain motions.

αi Observation

1 jumping motion fails (drops down after initiate)

2 left turning not possible (right turning works normally)

3 jumping motion fails; less accurate movements in general

4 right turning not possible (left turning works normally)

5 canter and trot motion not possible

6 only tiny movements along the limbs

7 right turning fails; everything else works

8 hard to activate modes; rather sti� limbs

Fig. 9. The activation profile of the experts during di�erent actions. The

plots for two cycles of motions are shown.

blending coe�cients are listed in Table 5. While most of them are

clearly contributing to the overall quality of motion, a few became

entirely responsible for speci�c actions or modes. Speci�cally for

turning either left or right, it could be observed that turning into

the opposite direction remained largely or even entirely una�ected.

Expert Imbalance: One concern that is reported in previous simi-

lar architectures [Bengio et al. 2015; Eigen et al. 2013; Shazeer et al.

2017] is that a small set of experts tend to receive higher weights

by the gating network. This imbalance will increase as the favored

experts will be trained even more rapidly. In fact, we observe this

phenomenon when applying the original mixture of experts archi-

tecture [Jacobs et al. 1991] in our setup, where we prepare four

experts and blend the outputs using a gating network: only one

expert is trained well without exploiting others. Previous work in

this area copes with this issue by imposing hard constraints [Eigen

et al. 2013], or by imposing additional penalty in the loss that infa-

vors such imbalance [Bengio et al. 2015; Eigen et al. 2013; Shazeer

et al. 2017]. It seems such a penalty is not needed for our system

with a small number of control points, as their usage becomes rela-

tively balanced, and the system is performing well for animating

the character.

10 DISCUSSIONS

Belowwe discuss the advantages of our proposed model for learning

quadruped motion, followed by the limitations of our system.

Learning Time Series Models: Time series data are rather di�cult

to learn, often converging to average poses by blending poses at

di�erent phases in cyclic motions, or timing in acyclic motions.

Also, the output motions tend to be smoothed out due to such

averaging. Although a simple feedforward network can interpolate

well where the samples are rich, such as during the gait cycle, the

results appear smoothed out and unnatural with a lot of foot sliding

when the transitions happen at con�gurations with less training

data. PFNN is introduced to produce good interpolation even at

such con�gurations by aligning the motion data along the phase

dimension and only interpolating motion at the same phase. One

way to view MANN is that it is a generalization of PFNN. The

control points can be trained to be specialized for a motion at a

certain timing and its activation can be further adjusted by the gating

network in an unsupervised fashion. Once trained, bad interpolation

can be reduced as there is little blending between di�erent expert

weights which are specialized for di�erent phases.

Sparse Dataset: As mentioned above, deep neural networks can

tend to fail at domains where there is less training data. The domain

with sparse samples can be strongly a�ected by the surrounding

domain with dense samples. The dog motion capture dataset could

stay in such a distribution until the capture facilities become more

lightweighted. One hour of motion capture data can be considered

small for human data, but is relatively large for quadruped data.

Given such nature of the training dataset, the proposed architecture

is a good match to manage such locally sparse training data.

Limitations: Our dataset is limited to those from �at terrain and

thus movements such as jumping on to/o� from high positions
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cannot be synthesized. The inverse kinematics approach that we

presented is useful for simple motion synthesis, but cannot pro-

duce more dynamic movements such as jumping on/o� from a box.

Thus we do not conduct any terrain �tting and adaption as done

in [Holden et al. 2017] although it can be easily done once the data is

obtained. One possibility to augment the data to synthesize results

is to apply physically-based animation to synthesize training data

where the characters make use of the preservation of momentum

and bouncing e�ects and augment the data.

11 FUTURE WORK

In addition to the combination of our method with physically-based

animation as mentioned above, there are several interesting direc-

tions for further research.

One direction can be motion retargeting to quadrupeds of di�er-

ent sizes and morphology. The motion capture of quadrupeds is not

straightforward and thus the amount of data is usually small and

the motion for the desired body size may not be always available.

Wampler et al. [2014] propose an optimization approach for synthe-

sizing locomotion of quadrupeds with di�erent sizes and skeletal

structure but the movements are limited to planer frontal move-

ments, and retargeting each motion will be an o�ine process. It will

be interesting to see if neural domain transfer type of approaches

based on factorization [Bertinetto et al. 2016] or Resnets [Rebu�

et al. 2017] can be applied such that a wide variation of gaits and

movements can be created from a rich set of locomotion of one

animal and a small set of exemplar motion of another animal.

Another interesting direction to look into is to compute the ad-

versarial loss of the generated motion and use such loss for the

optimization to avoid the ambiguity problem. This has been ex-

plored in the physically-based environment [Merel et al. 2017b] and

preliminary results for motion capture data [Barsoum et al. 2017],

but a framework for interactive character control is yet to be done.

Automatically controlling non-player characters to interact with

the user controlled characters or with dynamic obstacles in a com-

plex environment can be an interesting direction of research. One

possibility is to apply reinforcement learning for deciding the con-

trol signals of our framework.

MANN proved to be powerful for capturing the multi-modal

nature of quadruped motion. We would like to explore if the MANN

architecture is generally e�ective on other machine learning tasks

with highly multi-modal data.
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