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A new mode analysis is proposed for optical fibers with arbitrary refractive-index profile. Scalar
wave equations including gradient-index terms and characteristic equations including an abrupt
change of the refractive index at the core-cladding boundary are derived for HE, EH, TE, and TM
modes. The propagation constant, cutoff frequency, group velocity, and field distribution of each
mode are calculated with high accuracy by direct numerical integration of a differential equation
and the numerical solution of a transcendental equation.

INTRODUCTION

The optical fiber has merits as an information transmission
line for such properties as low loss and wide bandwidth. The
mode analysis of optical fibers with arbitrary refractive-index
profile is necessary for understanding the transmission
characteristics of not only graded-index multimode fibers but
also single-mode and dual-mode fibers.1"2 The field distri-
bution and propagation constant are determined by both the
wave equation derived from Maxwell's equations and the
characteristic equation derived from the boundary condition
at the core-cladding boundary. The wave equation consists
of two second-order differential equations coupled to each
other owing to the gradient-index term (vector wave equa-
tion).3 These coupled differential equations are difficult to
solve analytically and require much time to solve numerically. 4

Thus far, the scalar wave equation, ignoring gradient terms,
has been used to descriibe the field distribution and propa-
gation constant of the fiber. Various approximation methods
such as the perturbation method, 5 the WKB method,6 - 8 the

variational method 9 and the power-series-expansion method1 0

were used to solve this equation, but these are not accurate
enough to obtain the solution for the single-mode and dual-
mode regions. On the other hand, as a vector analysis, the
perturbation method,3 which treats the gradient-index terms
as a perturbation, was used for the parabolic-index distribu-
tion, and the stratified multilayer matrix method" and the
finite element method1 2 were proposed for an arbitrary
graded-index fiber. However, these aim at only the numerical
calculation.

On the other hand, if the scalar wave equation including the
gradient-index term is derived, conventional approximation
methods (such as the variational method, the power-series-
expansion method, etc.) can be applied to solve this problem,
and it becomes possible to numerically integrate this equation
with reduced computation time. However, in the conven-
tional analysis,1 3 only the scalar wave equation, ignoring all
the gradient-index terms, was obtained as the result of an
approximation.
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In this paper, (i) scalar wave equations and characteristic
equations are derived for a fiber which has a graded index
inside the core and an abrupt change of the refractive index
at the core-cladding boundary, and (ii) a new mode analysis
that utilizes the combination of direct numerical integration
of a differential equation and numerical solution of a tran-
scendental equation is proposed. The propagation constant,
cutoff frequency, group velocity, and field distribution of HE,
EH, TE, and TM modes are calculated by means of this mode
analysis.

1. DERIVATION OF SCALAR WAVE EQUATION
INCLUDING GRADIENT-INDEX TERMS

In this paper, we consider a cylindrically symmetric fiber
and employ the notation of Ref. 13. The arbitrary permit-
tivity distribution is described by

e(r) = e[ - h(r)]

= e2

r - a
r > a,

where a is the core radius, e2 is the permittivity in the cladding,
and e1 is the maximum value of the permittivity (see Fig. 1).
Therefore, h (r) - 0. The refractive indices are given by

ni = Ei/Eo

and

n2 = \/f 2/Eo- (2)

The axial field components, E, and H., in cylindrical coor-
dinates are

E W] = $L 2 (r)ej(n6+0)

H, = wEl4'(r)ej(n0+0-1r/2)

(3)

(4)

where n is an integer, X = 0 or 7r/2, and 4(r) and TO(r) are
functions of r. In Eqs. (3) and (4), the exponential depen-
dence ej(wt1-z) on time t and distance z is omitted for sim-
plicity, where w is the radial frequency and : the propagation
constant. By substituting Eqs. (3) and (4) into Maxwell's
equations, the following pair of simultaneous differential
equations are derived:

(x-h) - - ( h) -r] + [w2ElEo(X -h) 4]')

dr X-rh+ (5) h dX
1 d(1-h) d4)?!! n 0,

(1-h) dr dr r

C(r)

I S ---

£2

o a

FIG. 1. Cylindrically symmetric
dielectric distribution.

r dr h [(Xh)dr] + [° Elto(X-h)-J2] 4
+n( -h) d ( 1)= 0,

r dr X-h

where the parameter X is defined by

X = 1 - 0 2 /W2 Eliuo.

(6)

(7)

The remaining transverse components Er, Eo, Hr, and H0
are obtained by substituting Eqs. (3) and (4) into Maxwell's
equations:

1 [d4) n1
Er =-j (k-h) | + -4' ej(nO+0), (8)IX-h dr r

Eo = j 1 [d 4 + n(DI ej(n0+0-/2 9___-_h__ d4' r1
Hr =-J 0 1 [dT+ 4) h e (nO+ jnO+/

2 ) 2

f3 1 [d4' ( 1-h)n 1
Hr t- wo(x-h) [dr + 1-X r I'

(10)

Ho =-j- [( _- d4) + 4'] ej(n0+k)
oo (x-h) 1l-X dr r

(11)-

A. Hybrid modes

First we consider the case n #z 0. Let us define new func-
tions G1(r) and G2(r) by

G(r) = ( ) + (r)'
- 2

G2(r) = 4)(r) - AV(r)
2

Addition and subtraction of Eqs. (5) and (6) give

(12)

(x -h) --[ ) r-] + [W 2E1O(x -h) - 2 1 + (X -h) d ,)
r dr X-h dr r2 r dr X - h

±1 1 d(l-h) [d(Gi + G2) + (G1 + G2) =0,
2 (1 -h) dr dr r

(x - h) 1 d ) r d-| + [,2E1/o(x - h) - CZ 2 - r (x - h) - h) 2

1 1 d(l -h) 1d(G + G2) +- (C1 + C2)] =0,
2 (1- h) dr [Gdr r

(14)

(15)
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TABLE I. Values of parameter P in the case of a step-index profile.

Far from cutoff At cutoff

HE -1 -1
EH +1 El/C2(- +1)

respectively. These two equations couple to each other owing
to the gradient term. If we neglect this coupling, Eqs. (14) and
(15) reduce to two independent differential equations, and
each of them gives the scalar wave equation for the HE and
EH modes, respectively. 13 However, if we examine the gra-
dient term more carefully, we see that a small part of it con-
tributes the coupling between Eqs. (14) and (15). This can
be explained in the following way.

According to Ref. (14), the parameter P, which is defined
by

p = Et jH= G+-G2  (16)
E, -1 GI + G2

is approximated to be i1 for the step-index fiber as shown in
Table I. Since this approximation is expected to hold for
graded-index fibers with an appropriate accuracy, either G1

or G2 is also approximated to be zero.11 Therefore, Eqs. (14)
and (15) become two independent differential equations, and
they include the gradient term.'5 The case with G, Id 0 and
G2 = 0 () = C = G1) corresponds to HE modes, and the case
with GC = 0 and G2 5d 0 (4) =- = G2) corresponds to EH
modes.

For HE modes, we introduce a new scalar wave function

R r j(1- h)1/2 [d,+nG(17)
(X -h) [dr r

Assuming G2 = 0, substitution of Eq. (17) into (14) gives

Gi(r) =-i I R_ Ri (18)
G2ciyo(l - h)1"2 [dr r I '

Further, substitution of Eq. (18) into (17) yields the following
scalar wave equation:

1 d-[r dR] + -2(/0(X-h)_(n 1)2] 2R

r dr T r] I r2

1 1 d(1-h) dR- R 0. (19)
2(1-h) dr dr r

Rewriting the dielectric distribution function h (r) as

h(p) = 2 Af(p), (20)

where p = rna and 2A = (El - C2 )/E, and defining new pa-
rameters b and V by

b = n2 (21)
n2 _n2

V = konja\/2A (ho= 2r/X), (22)

Eq. (19) can be rewritten as in Table II. It is interesting to
note that Eq. (19) includes gradient terms although it is a
scalar wave equation.

As for EH modes, upon defining a new scalar wave function
R(r) by

RW (1 -h)1/ 2 rdG2  n 12(3

(X-h) [ dr r
the scalar wave equation is derived in the same manner and
the result is shown in Table II.

In order to describe the transverse field components simply,
we introduce circularly polarized components"l defined by

E' = Er i jEo,
H = Hr i jHo,

FP = jEz ± (wgo/f3)H.

(24)

(25)

By using Eqs. (3), (4), and (8)-(11), Eqs. (24)-(26) become

1 [d (4)v4 N) _n (,.14I _j-(4) ')I ' (27
(x-h) [ dr r

colo (x-h)[( dr r (1-x)8 dr r J I

TABLE II. Scalar wave equation including gradient terms and relationships among A, I, and R.

Mode Scalar wave equation Relationships among 4), IF, and R

HE d (P dR _b-()- (n =-1) 2 1=- [d nl R
HE + dj -p -- + {V21( 2 )} R ==-j iO [ [I - 2 R]

pdp dp 2 2e ALoa[1 2Af(p)]1/ 2 [dp p

1 2A df dR (n1) 1 =
2 (1A-2Af (p)) dp _dp _

1T [dR n +1 _J
EH -* HE mode 4 =-4 = J 1-+ RI+

wc2 eijioa[1-22Af(p)]'1 2 [dp P

+: EH mode

TEld ( dR? _ 2[bf(p)1 1 R=O D= .~ 1 [dR +1 1TE --Ip-l + |V2[1 -b - '1' 2P) l- -+ -R
p dp dp p2J , 2eiloa dp p

1 d (pL bJfVL
pdp dp df dR2[ I 1Af=0,4 R+

TM + A df [dR I R0 a} =W2coa[1 - 2Af(p)] dp p I
1 - 2Af (p) dp dp p
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Few = jEIA (P4 1F)ej(n0+O. (29)

By substituting the relationships among Ab, 4', and R into Eqs.
(27)-(29), it can easily be seen that the plus components be-
come zero for HE modes and the minus components become
zero for EH modes. The results are summarized in Table
III.

B. TE and TM modes

When n = 0, Eqs. (5) and (6) become two independent
differential equations. The case with 4) = 0 and 4' i 0 cor-
responds to TE modes, and the case 4) 5 0 and 4 = 0 corre-
sponds to TM modes.

For TM modes, we define the scalar wave function R(r)

R(r) = i I - d+. (30)

Substitution of Eq. (30) into Eq. (5) yields

+b(r) = j 1 (- 1dR 1 ]
w02 Eigo( - h) [dr r

(31)

The scalar wave equation is obtained by substituting Eq. (31)
into Eq. (30) as follows

I dJr [dR] + [°2El/Ao(X -h) -1 R

1 d([-[h) [dR 1
(1-h) dr [dR+1R] 0 (32)

Further, Eq. (32) is rewritten as shown in Table II by using
Eqs. (20)-(22). Eq. (32) also includes the gradient term, al-
though the approximation such as P = i1 which was used for
hybrid modes is not used at all.

The transverse components are given by using Eqs. (8)-(11)
and (31) as

TABLE ll. Transverse field component of each mode.

Mode Transverse field component

2
E= _ R(p)ej(no+0 )

(1 ( h)-/2

E+ = O. h+-
H-+- + =] R(p)ei(n 0pn)

(Ao (l -P /2 I1 - x |

E-=O, H--O

E+ = 2 RpPeej~no+ 0

TE Hr- 1 1 (h+IRPeno0

E-=Er H0 0

Er = R(p)ei(n0 +'n )

TM
TM Ho R(p)ej(no+A)

WAo (1-X)
Hz Eo = Hr = 0

Hr = -(01/wuo)R(r)ej(n 0+'p)

Er = Ho = 0.

II. CHARACTERISTIC EQUATION

Er = I R(r)ej(nO+k),(1 -h)I

Ho== /3 1 (r)ej(nO+ )
Wii0 (1 - X)

Eo = Hr = 0.

As for TE modes, defining the scalar wave function by

R(r) =-j -.
(X -h) dr

we derive the scalar wave equation in the same manner
the result is shown in Table II. This equation does no
dude the gradient term.

The transverse field components are given by

Eo = R(r)ej(nO+O),
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(33) A. Hybrid modes
In the case with n 5 0, the assumption that P = L1 implies

that circularly polarized components with one sign (plus or
(34) minus) defined by Eqs. (24)-(26) are zero. The boundary

condition for these circular polarized components is given
by 1 1

(35)--

_____ (40)
[E4 Ir=a+O -0 J2 + 2 [ IE Jr=a-O,

where E2 is the dielectric constant in the cladding and E2
= Ei[1 - 2Af(1)]. The scalar wave function R(p) in the
cladding is expressed by the modified Bessel function of the
second kind as

R(p) = AKm(wp), (41)

(36)

(37) where A is a constant, w = N/02-kon2 a, and
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TABLE IV. Characteristic equation and cutoff condition of each mode.

Mode Characteristic equation Cutoff condition

HE[ dR(p) n - 1) e2 + e 2 [- wKn(w)] 1 dR(p) + e (n-1) = 0
(p)dp p=' 2(2 Kn-.(W)J R(p) dp p=1 e2

Wi dR (p)I 1 E2 +E [ wKn(w) 11 dR (p)EH f p + (n+ l) = I_7_ + (n+ 1) =0
dp p= 2e2 Kn+ (w) R(p) dp p=1

TE 1 dR(p) - wKo(w) 1  1 dR(p) + 1 = 0
R(p) dp Ip=i KI(w) R(p) dp IP=1

TM [ 1 dR(p) I = [ wKo(W)] 1 dR(p) +1=0
R(p) dp p=' K(w) R(p) dp p='

n - 1: HE mode
m = n+1:EHmode

1: TE and TM modes.
(42)

The characteristic equation is then derived as shown in Table
IV by using Eqs. (27), (29), (40), (41) and the relationships
among 4), I, and R given in Table II.

B. TE and TM modes
In the case with n = 0, the characteristic equations for TE

and TM modes are derived as shown in Table IV from the
boundary conditions that the tangential field components Ez,
E0, H, and Ho are continuous at the core-cladding boundary,
instead of considering the circularly polarized components.

C. Cutoff conditions
At cutoff, the propagation constant j approaches k 0n 2, and

so w reaches zero. The cutoff condition can be obtained from
the characteristic equations by using the asymptotic formulas
of the modified Bessel functions at the limit of w - 0. The
results are summarized in Table IV together with the char-
acteristic equations.

Ill. NUMERICAL CALCULATION

The propagation constant of graded-index fibers is deter-
mined from the condition that two field functions, namely,
one in the core and the other in the cladding, satisfy inde-
pendently the scalar wave function given in Table II and that
these fields satisfy the characteristic equation given in Table
IV simultaneously. In this paper, the scalar wave equation
is solved numerically by means of a direct integration method
(Milne method) and the characteristic equation is solved by
means of the numerical solution of a transcendental equation.
The propagation constant, cutoff frequency, group velocity,
and field distribution of each mode are calculated by using
these two numerical solutions simultaneously.

A. Steps of numerical calculation

1. Propagation constant
(i) First, we suppose that the normalized propagation
constant b is given a certain value (for example, b = 0).

The normalized frequency V is fixed to be a required
value.
(ii) In the vicinity of p = 0, the scalar wave function R (p)
is approximated to be

R(p) = AJn4 I(uop), (43)

where A is a constant, Jm (x) is the Bessel function of mth
order, and u0 = vkon-2(0) -2 a. The plus sign corre-
sponds to the EH mode, the minus sign to the HE mode,
and n = 0 corresponds to the TE and TM modes.
(iii) The scalar wave equation is solved by means of the
direct integration method (Milne method) under the ini-
tial condition of Eq. (43), and the values of R(p) and
dR(p)/dp at p = 1 are obtained.
(iv) Let us define a new function I(Vb) by

I(V,b) = (left-hand side of the characteristic equation)

- (right-hand side of the characteristic equation).

Since the values of V and b are given at step (i), the value
of I(V,b) can be calculated by using the values of R (p) and
dR(p)/dp at p = 1 obtained in step (iii).
(v) Determine whether the value of I(Vb) is close
enough to zero or not. If the value is not close to zero, the

TABLE V. Cutoff frequency of each mode in a parabolic-index fiber
[comparison of values in Ref. (16)].

A 1 Stratified This
LP solutionl multylayer analysis HE, EH, TE, TM

method' 8  (A = 0.5%)

3.521 16 HE21
1,1 3.518 3.517 3.517 52 TEol

3.513 37 TMo1

0,2 5.068 5.061 5.066 24 HE12

2,1 5.744 5.747 5.740 36 EHE3

7.451 68 HE 2 2

1,2 7.451 7.448 7.450 37 TE 0 2

7.447 59 TM 0 2

392 J. Opt. Soc. Am., Vol. 70, No. 4, April 1980 Yasuo Kokubun and Kenichi Iga 392



--- After Gambling,
Payne, and

a 3.8 Matsumura

44 3.4 -
4-'
4..
0
4J

3.0 -

E2.6 -

'0a

82.61

2.2 I , , I
1 10 100 400

FIG. 2. Cutoff frequency of TEO, mode of a-power-law fibers.

initial value of b given at step (i) is then revised and the
above steps repeated until the value converges to zero.
(vi) The propagation constant is obtained from the
value of b when the value of I(V,b) converges to zero.

2. Cutoff frequency
In the above step (i), the roles of b and V are exchanged (b

is fixed to be zero), and the above steps are repeated with re-
spect to V. The cutoff frequency is the V value at the time
of convergence of I(Vb) to zero.

3. Group velocity
After I(V b) converges to zero, the group velocity is calcu-

lated by

db bI(V~b)1oV 1(V+ a b)
= - - ',44)dV 6I(Vb)/1b I(Vb + t)

Vg = I[n + (n2 - n2)b]1/2
n2N2 + [b + (1/2)V(db/dV)](niNj - n2N2)

(45)

where 6 is an arbitrary small number, C is the velocity of light.
in a vacuum, and

N= d(kn1)
dk

10(=.

D|> - , AH- HE,

0.5-

2 3 4
V

> >3.11 4,11/
.10 HE11  2.

0.5 - 2,1

0 1 2 3 4 5 6 7
V

FIG. 4. Group delay characteristic of fourth-power-law index profile.

and L16)

N =d(kn 2 )
dk

4. Field distribution
The field distribution can be calculated by substituting R (p)

obtained at step (iii) into Eqs. (27)-(29) for hybrid modes, into
Eqs. (33)-(35) for TM modes, and into Eqs. (37)-(39) for TE
modes, respectively.

B. Numerical results
In order to confirm the accuracy of this analysis, the cutoff

frequency of a parabolic-index profile was calculated and
compared with the result of Ref. (16) (see Table V). When
the number of divided points in the numerical integration was
9000, the error in the cutoff frequency of the TEO, mode was
within 0.01%. In this analysis, the degeneracy of LP modes
is removed because of the gradient term in the scalar wave
equation. In the case of a parabolic-index profile, the cutoff
frequency of the TMo1 mode is smaller than that of the TEO,
mode, and the relationship between them can be expressed
by

V, = 3.5175 - 8.33 X 10-3A. (47)

Next, the cutoff frequency of the TEO, mode of a-power-law
profiles is shown in Fig. 2. The number of divided points of
numerical integration was 2000, and the result of this analysis
(solid curve) coincides with that of Ref. (17) (dashed curve)
within an error of 0.1%. Lastly, the group delay characteris-
tics of parabolic, fourth power, and tenth power index profiles
are shown in Figs. 3, 4, and 5, respectively.

. 0

D| HE> , 2,1

0.5F--

3 4
V

FIG. 3. Group delay characteristic of parabolic-index profile.
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FIG. 5. Group delay characteristic of tenth-power-law index profile.
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IV. CONCLUSION

The scalar wave equation including the gradient-index term
and the characteristic equation including an abrupt change
of the refractive index at the core-cladding boundary was
derived for each of the HE, EH, TE, and TM modes, and a
new numerical solution combining direct integration of the
differential equation with numerical solution of the tran-
scendental equation was investigated. In this analysis, the
degeneracies in propagation constant, group velocity, cutoff
frequency, and field distribution of LP modes are removed,
because the scalar wave equation includes most of the gradi-
ent-index term and the characteristic equation includes an
abrupt change of the refractive index at the core-cladding
boundary.

Thus this analysis seems to correspond to the 2 X 2 matrix
analysis of the stratified multilayer matrix method," because
the parameter P defined by Eq. (16) is approximated to be + 1.
The computation time required to obtain the same amount
of accuracy is almost the same. The stratified multilayer
matrix method includes the gradient-index term as the
boundary condition at each boundary between adjacent layers.
On the other hand, this analysis includes the gradient-index
term in the scalar wave equation and the field distribution is
obtained by means of direct numerical integration.
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