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PAPER Special Section on Emerging Technologies and Applications for Microwave and Millimeter-Wave Systems

Mode Analysis of Phase-Constant Nonreciprocity in

Ferrite-Embedded CRLH Metamaterials

Andrey POROKHNYUK†a), Nonmember, Tetsuya UEDA†, Yuichi KADO†, and Tatsuo ITOH††, Members

SUMMARY Phase-nonreciprocal ε-negative and CRLH metamaterials

are analyzed using a new approach in which field analysis and transmission

line model are combined. The examined one-dimensional nonreciprocal

metamaterials are composed of a ferrite-embedded microstrip line periodi-

cally loaded with shunt stubs. In the present approach, the phase constant

nonreciprocity is analytically estimated and formulated under the assump-

tion of operating frequency far above the ferromagnetic resonant frequency.

The present approach gives a good explanation to the phenomenon in terms

of ferromagnetic properties of the ferrite and asymmetric geometry of the

metamaterial structure, showing a good agreement with numerical simula-

tions and experiment.

key words: metamaterials, leaky-wave antennas, electromagnetic analysis,

transmission line matrix methods, beam steering, ferrite devices

1. Introduction

In the field of metamaterial-based functional device elec-

tronics that emerged in the latest decade, a great atten-

tion has been paid to reciprocal composite right/left handed

(CRLH) metamaterials [1]–[4]. In combination of the

CRLH metamaterials and nonreciprocal device technology,

nonreciprocal transmission line-based metamaterials were

proposed. In the early work, they are generally considered

in view of nonreciprocity in the amplitude of transmission

coefficients caused by dominance of CRLH modes in one

direction and damping modes in the opposite direction of

transmission for the applications to isolators and circulators

[5]–[8].

From a phase-controlling point of view, phase-

nonreciprocal CRLH metamaterial have been proposed and

demonstrated [9], [10]. They can support right-handed (RH)

mode propagation with positive effective refractive index in

one direction and left-handed (LH) mode propagation with

negative refractive index in the opposite direction of power

transmission at the same frequency, resulting in unidirec-

tional phase flow [9]. This phenomenon was applied to

the design of nonreciprocal leaky wave antennas with en-

hanced gain and directivity by recycling some part of propa-

gating waves reflected at the terminal [10], [11], as well as to

pseudo-traveling-wave resonator [10], [12], [13] that is sim-

ilar to zeroth-order resonator [1], [3], [14], [15] in that the
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resonant frequency is independent of the size, but has unique

field profile with uniform magnitude and linear phase gra-

dient along the structure. The pseudo-traveling-wave res-

onator with tunable phase gradient by varying the applied

dc magnetic field was implemented for beam scanning an-

tennas [10], [13], [16].

In our previous approach, when estimating phase non-

reciprocal transmission characteristics of the CRLH meta-

materials, an equivalent circuit model was employed in

which nonreciprocal transmission line sections with differ-

ent phase constants depending on propagation directions

were introduced into the conventional CRLH transmission

line model [9]. However, the phase nonreciprocity in the

nonreciprocal sections was numerically extracted from sep-

arate full-wave electromagnetic simulation results. The dif-

ferent popular method for analyzing reciprocal and nonre-

ciprocal periodic structures using transmission matrix tech-

nique was described in [17], [18]. But it was not applied

to ferrite-based left-handed metamaterials previously. Like-

wise, dominant electromagnetic modes in the structures

were not analyzed using this method.

In order to avoid relying on numerical simulation, we

proposed recently a new approach to combine a simplified

field analysis and transmission line model for the ε-negative

metamaterial [19], expanding the method described above

[18]. However, the application of the approach was lim-

ited to a specific ε-negative structure in lossless case and

the nonreciprocity in phase constant had neither been intrin-

sically formulated nor discussed from a physical point of

view.

In this paper, we show the detailed procedure in the

proposed approach using a simplified field theory and trans-

mission line model to analyze phase-nonreciprocal metama-

terials. The periodic section is decomposed into several sec-

tions in the longitudinal direction. Generalized nonrecipro-

cal dispersion relation is derived and the eigenmode solu-

tion for each section is achieved. The phase-constant non-

reciprocity of the ε-negative metamaterial structure is ap-

proximately formulated and estimated under the assumption

of operating frequency far above the ferromagnetic resonant

frequency. It gives a good explanation to the phenomenon

and is expressed explicitly in terms of ferromagnetic prop-

erties of the ferrite and asymmetric geometry of the meta-

material structure, showing a good agreement with numer-

ical simulations and experiment. The applicability of the

approach to nonreciprocal and CRLH structures is also dis-

cussed and proven by simulation.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers
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2. Nonreciprocal Edge-Guided Modes

The phase constant-nonreciprocal metamaterial under con-

sideration is shown in Fig. 1. It is composed of a microstrip

line with a ferrite rod embedded under the center strip and

occupying all the space beneath it. An internal dc magnetic

field Ho and induced saturation magnetization MS in the fer-

rite rod are directed normal to the microstrip surface. The

microstrip line is periodically loaded with microstrip stubs,

as shown in Fig. 1. The stubs play two important roles in

providing negative effective permittivity in the cutoff band

and in introducing an asymmetry of the wave-guiding struc-

ture with respect to a plane including the saturation magne-

tization vector and the longitudinal direction.

It is well-known that the quasi-TE edge-guided modes

[20] are dominant along the normally magnetized ferrite mi-

crostrip line. The waves propagate in opposite directions

along opposite side walls below the strip edge, which is de-

picted in Fig. 1 and Fig. 2 with red- and blue-filled profiles

of the field component Ez as a function of x. If the struc-

Fig. 1 Transmission line based ε-negative metamaterial structure.

(a) Schematic appearance. (b) Combined field theory and transmission line

analysis model.

Fig. 2 Electromagnetic model of ferrite rod-embedded microstrip line in

cross-section.

ture is symmetric, the transmission is reciprocal. Otherwise

with introduction of the asymmetry, the transmission shows

nonreciprocal characteristics. Similar transmission charac-

teristics were also confirmed in ferrite rod-embedded mi-

crostrip lines [21], [22]. In our approach, the asymmetry of

the structure is described and approximated with different

boundary conditions on the side walls of the ferrite-rod em-

bedded microstrip line [19]. Periodic insertion of load stubs

provides such a difference of boundary conditions and in-

duces nonreciprocity in discrete and partial domains along

the microstrip line. In order to analyze a dominant mode

along the structure using field theory, the structure is de-

composed into two different types of uniform sections, as

shown in Fig. 1(b). One section is a reciprocal section (RS),

in which no stubs are inserted and the structure is symmet-

ric. The other section is a nonreciprocal section (NRS) in

which an inserted microstrip stub provides asymmetry of

boundary conditions on the side walls of the rod. These

asymmetric boundary conditions are described by bound-

ary admittances that are ratios of magnetic to electric field

components on the plane of side walls Y1 = Hy/Ez at x = 0

and Y2 = −Hy/Ez at x = w as outlined in Fig. 2 with dashed

lines. In the reciprocal section without load stubs, both

side walls correspond to a magnetic wall. In the nonrecip-

rocal section, the microstrip stub provides imaginary input

impedance that is converted to boundary admittance Y2 on

the corresponding side wall [19]. It is convenient to treat

the microstrip stub as a simple transformer of terminating

impedance. The input impedance of the shunt stub has a

positive imaginary value when the stub length is less than

quarter wavelength. It should be mentioned that introduc-

tion of different stubs on both sides can give several poten-

tial advantages, such as enhancement of the phase-constant

nonreciprocity or additional control of nonreciprocal disper-

sion.

3. Eigen-Mode Analysis in Reciprocal and Nonrecipro-

cal Sections

3.1 Simplified Electromagnetic Model

In the present approach, the dominant electromagnetic

waves propagating along the ferrite-embedded microstrip

line are simplified to TE modes. The analysis is done un-

der the assumption of the substrate thickness to be much

smaller than the wavelength. The ferrite rod is also treated

as homogenous and uniformly saturated by the dc magnetic

field Ho. Such assumptions greatly simplify the problem

and virtually give a uniform field distribution along z-axis.

Eigenmode analysis is applied separately to reciprocal and

nonreciprocal sections, as shown in Fig. 2. The analysis is

performed only in cross-section of the ferrite rod between

left and right boundary walls. In the reciprocal section, ad-

mittances Y1 and Y2 imposed on the left and right walls are

zero for magnetic wall boundaries. In the nonreciprocal sec-

tion, the left wall where no stub is inserted, has Y1 = 0 for

magnetic wall. The admittance Y2 takes finite imaginary
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value on the right wall where the stub is inserted.

We begin with a simple Helmholtz wave equation to

find the nonreciprocal eigenmode solution,

∂2Ez

∂x2
+ k2

xEz = 0 (1)

with

k2
x = µeεr

(

ω

c

)2

+ γ2, µe = (µ2 − µ2
a)/µ

where kx describes transverse wave number component

along x-axis, and γ = α + jβ is propagation constant in the

longitudinal y-direction. The quantities α and β are attenu-

ation and phase constants, respectively. The quantity εr is

dielectric constant of the ferrite, while µ and µa denote con-

ventional diagonal and off-diagonal components of Polder’s

tensor µ̂r for the ferrite media magnetized along z-axis.

µ̂r =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

µ jµa 0

− jµa µ 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
µ=1+

ωHωM

ω2
H
− ω2

, µa=
ωMω

ω2
H
− ω2

,

ωH= |g|µoHo, ωM= |g|µoMS

(2)

where ω is an operational frequency, µo is the permeability

of vacuum, and g is the gyromagnetic ratio.

3.2 Dispersion Relations

The eigenmode analysis of (1) with applied boundary con-

ditions described by Y1 and Y2 gives generalized dispersion

relations in reciprocal and nonreciprocal sections,

Φ = j cot(wkx) −

γ2

(ω/c)
+

(

ω

c

)

µ(Ỹ1Ỹ2µe + εr)

µkx(Ỹ1 + Ỹ2)

− γµa(Ỹ1 − Ỹ2)

µkx(Ỹ1 + Ỹ2)
= 0 (3)

with

Ỹ1 = Y1

√

µo/εo, Ỹ2 = Y2

√

µo/εo

where εo is the permittivity of vacuum. In (3), only the last

term is an odd function of γ, thus determining nonreciproc-

ity. Equation (3) can be simplified to dispersion relation for

insertion with shunt stub only from one side with Ỹ1 = 0,

cot(wkx) =
1

jỸ2

(

γ2

(ω/c)kxµ
+
εr(ω/c)

kx

)

+ j
γµa

µkx

(4)

Equations (3) and (4) are transcendental and have no so-

lution in algebraic form; neither series expansion gives a

consistent solution. We used Newton method to find com-

plex values of γ. However, in the reciprocal section without

stubs, Y1 = Y2 = 0. Then, (3) reduces to γ = ± j(ω/c)
√
µεr

which is well-known edge-guided mode [20].

Figures 3(a) and (b) illustrate dispersion curves of re-

ciprocal edge guided modes in reciprocal section and non-

reciprocal modes in nonreciprocal section according to (4)

for the lossless case. Red and blue colored lines represent

Fig. 3 Properties of RS and NRS. (a), (b) Dispersion characteristics.

(c), (d) Characteristic impedances in both directions.

positive and negative transmission directions for α and β,

including the sign. The configuration parameters used in

the calculation are as follows; cross-section of the saturated

ferrite rod is 0.8 mm × 0.8 mm, µoHo = 10 mT and µoMS

= 175 mT. The right boundary admittance Y2 was provided

by input impedance of 1 mm-width and 2 mm-length shunt

stub on dielectric substrate with dielectric constant of 2.6.

The square marks in Fig. 3(a) represent the dispersion con-

verted for convenience from the phase shift acquired with

numerical simulation.

3.3 Estimate of Phase-Constant Nonreciprocity

In the previous section, we have derived generalized nonre-

ciprocal dispersion relation (3) as eigenmode solution in the

nonreciprocal section. Therefore, the phase-constant non-

reciprocity can be estimated in an implicit manner by di-

rectly solving the transcendental equation. In order to under-

stand the mechanism of nonreciprocity, it is more instructive

and useful to explicitly express the phase-constant nonre-

ciprocity in terms of the configuration parameters, such as

magnetic properties of the ferrite and the asymmetry of the

waveguide. In what follows, we will approximately formu-

late such information.

The nonreciprocal effects stem from the off-diagonal

components in Polder’s tensor (2), µa, in the ferrite medium.

Before turning to nonreciprocal case, we find the eigenmode

solution of (3) under the assumption µa = 0 and find the so-

lution for propagation constant γ = γo that we call a zeroth-

order approximation of γ. Taking into consideration nonre-

ciprocal effects, we regard Φ in (3) as a function of µa and

γ = γo+∆γNR, where ∆γNR is a magnitude of nonreciprocity

induced by µa. In the vicinity of γ = γo and µa = 0, we can
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express ∆γNR as

∆γNR = −µa

∂

∂µa

Φ|µa=0
γ=γo

/ ∂

∂γ
Φ|µa=0
γ=γo

.

From (3) we achieve

∆γNR ≈
µa(ω/c)(Ỹ1 − Ỹ2)

Ỹ1Ỹ2

(

ω

c

µ

kxo

)2

− j
ω

c

wµ(Ỹ1 + Ỹ2)

sin2(wkxo)
− 1

(5)

where a variable kxo in (5) is defined by k2
xo = γ

2
o+µεr(ω/c)2,

and it can be approximately expressed from Φ|µa=0,γ=γo
= 0

using Taylor series by

k2
xo ≈

j(ω/c)µwỸ1Ỹ2 + Ỹ1 + Ỹ2
(

w2
(Ỹ1 + Ỹ2)

2
+

w

j(ω/c)µ

) . (6)

The expression (5) can be simplified under the assumption

that the operation frequency is much higher than ωH and

ωM. The nonreciprocity in propagation constant for gener-

alized boundary condition is given by

∆γNR ≈ j
(ωM/c)(Ỹ2 − Ỹ1)

w

(

ω

c

)

(Ỹ2 + Ỹ1)

2
− 2 j

. (7)

The derivation of (7) is one of the main points of this

work. For lossless cases when ωM is real and Ỹ1, Ỹ2 are pure

imaginary, ∆γNR is also pure imaginary, which implies that

the nonreciprocity manifests itself only in the phase constant

β as ∆βNR = − j∆γNR, that also comes into agreement with

Fig. 3(b). For a specific structure with Ỹ1 = 0 in Fig. 1, (7)

reduces to

∆γNR|Ỹ1=0 ≈ j
(ωM/c)

w

2

(

ω

c

)

+
2

jỸ2

.

Equations (5) and (7) reveal the proportional depen-

dence of the phase-constant nonreciprocity ∆βNR on the

saturation magnetization MS . As it will be discussed in

Sect. 4.3, (7) supports the experimental results in [13], in

which the measured phase-constant nonreciprocity of the

nonreciprocal CRLH transmission line was approximately

proportional to the effective magnetization of the unsatu-

rated ferrite. The nonreciprocity diminishes at higher fre-

quencies with reduction of µa inversely proportional to ω.

Equation (7) suggests that the use of ferrites with larger MS

can provide stronger nonreciprocity. It is also found from

(7) that the phase-constant nonreciprocity is proportional to

the factor Ỹ1 − Ỹ2, the difference of admittances at both side

walls, which verify that the asymmetry of the waveguiding

structure contributes to nonreciprocity. The factor Ỹ1 + Ỹ2

in the denominator of (5) or (7) shows total shunt admit-

tance that can control the effective permittivity of the struc-

ture [23].

3.4 Characteristic Impedance

Characteristic impedances of each section are estimated

from the field profiles as a ratio of integrals of the Poynt-

ing vector over the cross-section and surface current along

the microstrip line,

Zc =
2P

|I|2
≈

h
∫ w

0
EzH

∗
xdx

|
∫ w

0
Hxd x|2

(8)

Figures 3(c) and (d) illustrate the characteristic impedance

obtained from (8) for reciprocal and nonreciprocal sections.

It is found from the figure that in the absence of propagation

losses, the characteristic impedance is reciprocal, regardless

of phase constant nonreciprocity.

An important conclusion from Fig. 3(d) is that the non-

reciprocal section supports ε-negative cutoff modes. This

can be explained in terms of effective permeability and per-

mittivity as

εeff = Re

(

−γ j

Zc

c

ω

h

w

√

µo

εo

)

,

µeff = Re

(

γ
Zc

j

c

ω

w

h

√

εo

µo

)

(9)

or below cutoff region,

εeff =
−1

Im(Zc)

α

(ω/c)

h

w

√

µo

εo

,

µeff = Im(Zc)
α

(ω/c)

w

h

√

εo

µo

(10)

In the cutoff region, the term α/(ω/c) has positive value, and

the imaginary part of the characteristic impedance Im(Zc) is

also positive. Therefore, (10) gives negative εeff and positive

µeff .

3.5 Microstrip Stubs Model

As mentioned in the previous section, the sole role of in-

serted microstrip stubs in the proposed model is to provide

boundary admittances Y1 and Y2 that are input admittances

of the stubs normalized with respect to stub’s effective cross-

section. The input admittance can be altered via stub length

and terminating conditions. The effective width of the stub

should also be taken into account when defining a distance

between neighboring stubs to avoid mutual coupling. In this

paper, conventional relations describing properties of mi-

crostrip line were used to achieve input impedance of the

shunt stubs [24]. The applicability of those relations was

carefully examined using numerical FEM simulations.

3.6 Influence of Ferrite Losses on Dispersion

In the proposed model for the field analysis, we can easily

take into account the magnetic and dielectric losses in the

ferrite rod that introduce a considerable perturbation in γ.

The magnetic losses are taken into account by replacing the

ferromagnetic resonance frequency ωH in the Gilbert form

by (ωH+ jω∆H/Ho) [25]. The modification of Fig. 3(b) with

the magnetic loss of µo∆H = 5 mT is shown in Fig. 4. Real
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Fig. 4 Estimated perturbation of propagation constant ∆γ∆H , induced by

magnetic dissipation with a factor µo∆H = 5 mT.

parts of boundary admittances representing loss in the stubs

are also taken into account, which provides slight smoothing

of dispersion curves. The perturbation ∆γ∆H of the propaga-

tion constant was plotted in Fig. 4 by applying perturbation

theory to (3). The guided wave band and a frequency region

just below the cutoff are less affected by magnetic dissipa-

tion, while the dispersion around cutoff is changed signifi-

cantly due to slow group velocity.

4. Transmission Line Analysis of the Periodic Struc-

ture

4.1 ABCD Matrix Techniques

Circuit parameters in the nonreciprocal metamaterial struc-

ture, as shown in Fig. 5, are acquired from ABCD matrix

of the simplest unit cell using transmission line analysis for

infinitely periodic structure [17]. The unit cell is composed

of two types of sections studied earlier, and its ABCD ma-

trix FCell becomes a product of corresponding matrices for

reciprocal section FRS and for nonreciprocal section FNRS

FCell = FRS FNRSFRS =

[

ACell BCell

CCell DCell

]

Therefore, in the first place, it is necessary to determine the

matrices of these sections. The matrix FRS is a well known

ABCD matrix of reciprocal transmission line [17]. On the

other hand, the ABCD matrix FNRS is derived in terms of

different propagation constants γ+ and γ− in analogy to the

transmission line section with nonreciprocal phase constants

[9], where the indices “+” and “–” denote directions of

transmission,

FNRS =

[

ANRS BNRS

CNRS DNRS

]

(11)

with

ANRS = e∆γNRlN

(

cos( jγ̄N lN) − j
∆ZN sin( jγ̄N lN)

2Z̄N

)

BNRS = −e∆γNRlN

⎛

⎜

⎜

⎜

⎜

⎝

jZ̄N

⎛

⎜

⎜

⎜

⎜

⎝

1 −
∆Z2

N

4Z̄2
N

⎞

⎟

⎟

⎟

⎟

⎠

sin( jγN lN)

⎞

⎟

⎟

⎟

⎟

⎠

Fig. 5 Model of unit cell of the periodic metamaterial structure.

CNRS = −e∆γNRlN

(

j
sin( jγN lN)

Z̄N

)

DNRS = e∆γNRlN

(

cos( jγN lN) + j
∆ZN sin( jγN lN)

2Z̄N

)

γ̄N = (γ+ + γ−)/2,∆ZN = Z+ − Z−, Z̄N = (Z+ + Z−)/2

where Z+ and Z– are characteristic impedances in oppo-

site directions, and lN is a length of NRS. The magnitude

of propagation-constant nonreciprocity in NRS is treated as

∆γNR = (γ+ − γ−)/2. For lossless transmission line, charac-

teristic impedance is reciprocal and ∆ZN ≈ 0, as found in

Fig. 3(d). In this case, (11) can be reduced to

FNRS = e∆γNRlN

[

cos( jγ̄N lN) − jZ̄N sin( jγ̄N lN)

− j 1
Z̄N

sin( jγ̄N lN) cos( jγ̄N lN)

]

4.2 Dispersion and Bloch Characteristic Impedance

By applying periodic boundary conditions to the single unit

cell in the longitudinal direction, we have
[

V1

I1

]

= FCell

[

V2

I2

]

= ÎeγMM p

[

V2

I2

]

(12)

where Vi and Ii are voltages and currents at ports i (i = 1, 2)

of the unit cell, and p is the period, γMM is the propagation

constant in the whole periodic structure that will be treated

in terms of attenuation and phase constants as γMM = αMM+

jβMM.

Eigenmode analysis of (12) allows deriving a disper-

sion relation for propagation constant γMM in the metama-

terial,

det(FCell) + e2γMM p − eγMM p(Acell + Dcell) = 0. (13)

For ε-negative structure, (13) becomes

cosh(γMM p−∆γNRlN)

=cos mN cos mR+R+ sin mN sin mR (14)

with

R+=
∆Z2

N
−4(Z̄2

N
+Z2

R
)

8Z̄N Z̄R

,mR= jγRlR,mN = jγ̄N lN

where γR, lR and ZR are the propagation constant, length and

characteristic impedance of reciprocal section, respectively.

An example of dispersion curves obtained from (14) is illus-

trated in Fig. 6(a). The frequency characteristics of recip-

rocal and nonreciprocal sections are the same as in Fig. 3.



1268
IEICE TRANS. ELECTRON., VOL.E96–C, NO.10 OCTOBER 2013

Fig. 6 Comparison of the proposed model with numerical simulation

of the nonreciprocal ε-negative metamaterial. (a) Dispersion diagram.

(b) Characteristic Bloch impedance. (c) S−parameters. Solid and dashed

lines are for proposed approach, figure marks are for FEM simulation.

The calculations are made for lossless case with yttrium-

iron garnet (YIG) rod of 0.8 mm × 0.8 mm in cross-section

and 2 mm-length shunt-stubs inserted from one side of the

structure. The internal dc field is µoHo = 10 mT. The values

of lR and lN are 3 mm and 1 mm, respectively.

The Bloch impedance is derived by using voltage-

current analysis in (12)

ZB =
2BCell

DCell−ACell±
√

(ACell+DCell)2−4e2∆γNRlN

. (15)

By substituting (11) into (15), Bloch impedance for

ε-negative metamaterial is given by

ZB =

j
ZR{sin mN(R+ cos mR + R−) − sin mR cos mN}

r sin mN± j
√

1−(cos mN cos mR+R+ sin mN sin mR)2
(16)

with

R− =
∆Z2

N
− 4(Z̄2

N
− Z2

R
)

8Z̄N Z̄R

, r = j
∆ZN

2Z̄N

.

From (16), it is obvious that for lossless case, where

r ≈ 0, the Bloch impedance is always reciprocal, as it is il-

lustrated in Fig. 6(b). We believe that notable discrepancy

with numerical simulation in Fig. 6(b) is caused by the fring-

ing effect of the microstrip line that is taken into account in

the simulation and results in a little lower impedance values.

However, we have not found a simple and accurate way of

taking this into account in the current model because of the

substrate nonuniformity.

Like the nonreciprocal section, the metamaterial struc-

ture should also be ε-negative. This can be proven by ana-

lyzing the imaginary part of Bloch impedance below the cut-

off of nonreciprocal section. Supposing that the unit cell is

much shorter than the wavelength, that gives |mN |, |mR| ≪ 1,

a low-order perturbation approximation can be applied to

(16), reducing it with respect to positive propagation direc-

tion to

ZB≈
ZR(mN(R++R−)−mR)
√

m2
R
+m2

N
−2R+mRmN

≈ −(ZNmN+ZRmR)
√

m2
R
+m2

N
− 2R+mRmN

(17)

If we simplify R+ and propagation constants using the loss-

less approximation as follows:

R+ ≈ j

2

(
∣

∣

∣

∣

∣

ZR

ZN

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

ZN

ZR

∣

∣

∣

∣

∣

)

, mR ≈ −βRlR,mN ≈ jαN lN ,

we can modify (17) further

ZB ≈ |ZN |

√

(
∣

∣

∣

∣

∣

ZR

ZN

∣

∣

∣

∣

∣

βRlR + αN lN

)

/

(
∣

∣

∣

∣

∣

ZN

ZR

∣

∣

∣

∣

∣

βRlR − αN lN

)

. (18)

The relation (18) can give either positive real or positive

imaginary values above and below the cutoff of the metama-

terial structure respectively, where the cutoff is very roughly

estimated by condition of βRlR/|ZR| = αN lN/|ZN |. This char-

acterizes the structure as ε-negative. Relation (18) gains a

physical meaning if we rewrite it in terms of effective di-

electric and magnetic constants εR, µR in reciprocal section

and εN , µN in nonreciprocal section, respectively

ZR=

√

µoµR

εoεR

, |ZN |=
√

µoµN

εo|εN |
,
βR=
ω

c

√
εRµR

αN =
ω

c

√

|εN |µN

, εN = −|εN |

ZB ≈
√

µo

εo

√

(µRlR + µN lN)/p

(εRlR + εN lN)/p
=

√

µo

εo

√

µeff

εeff

. (19)

The upper term of (19) is proportional to effective perme-

ability µeff , and the lower term is proportional to effective

permittivity εeff , averaged along the longitudinal direction

of the unit cell. The condition εeff = (εRlR + εN lN)/p = 0 de-

termines the cutoff. The value of εN is explained in Sect. 3.4,

while εR is a conventional effective permittivity of the mi-

crostrip line.
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4.3 Magnitude of Phase-Constant Nonreciprocity

It is clearly seen from Fig. 6(a) that the dispersion diagram

and particularly the magnitude of nonreciprocity is some-

what a result of combination of properties of nonreciprocal

and reciprocal sections. It can be explained in lossless case

by applying the perturbation theory to (14) with respect to

parameter ∆γNR that induces a perturbation ∆γMM of propa-

gation constant in the metamaterial as follows;

Ω = Ω|∆γNR=0
∆γMM=0

+ ∆γMM

∂Ω

∂∆γMM

∣

∣

∣

∣

∣∆γNR=0
∆γMM=0

+ ∆γNR

∂Ω

∂∆γNR

∣

∣

∣

∣

∣∆γNR=0
∆γMM=0

= 0, (20)

that is,

Ω(∆γNR,∆γMM) = cosh ((γMMo + ∆γMM)p − ∆γNRlN)

− cos mN cos mR − R+ sin mN sin mR = 0

where ∆γMMo is the value of ∆γMM approximated without

nonreciprocal effects. After substituting derivatives of Ω

into (20), we acquire

(∆γlN − ∆γMM p) sinh (γMMo p) = 0

With respect to pure imaginary ∆γNR ≈ j∆βNR in lossless

approximation, the equation above gives nonreciprocity for

the periodic structure

∆βMM ≈ − j∆γMM ≈ ∆βNRlN/p (21)

Equation (21) states the linear dependence of the nonre-

ciprocity on the longitudinal fraction of nonreciprocal sec-

tion in the unit cell. The estimation of the nonreciprocity as

a function of the frequency is plotted for the validity with a

magenta dash-dot line in Fig. 6(a).

4.4 Numerical Simulation

In Fig. 6(c), S -parameters of the metamaterial are obtained

for a finite number of unit cells ncells from F
ncells

Cell
. Fig-

ure 6 also includes the FEM numerical simulation results

by ANSYS HFSSTM ver.13 for comparison. The simulated

phase shift was converted for convenience into dispersion

diagram in Fig. 6(a). The calculations by the proposed ap-

proach are in good agreement with the numerical simula-

tion. Visible discrepancy below the cutoff is caused by the

fact that FEM simulation is carried out for finite number of

cells and in the cutoff region, so simulation errors increase

significantly due to the small amplitude of transmission co-

efficients for the damping mode. For that reason, the simula-

tion below the cutoff was made for 8 unit cells, while other

simulations are processed for 30 unit cells. Small nonre-

ciprocity found in the magnitude of S 21 and S 12 is about

1 dB, and originates from nonreciprocity of attenuation con-

stant, as confirmed in Fig. 4. It is caused by small dissipation

factor ∆H used in the simulation. The proposed approach

has not taken into account the radiation losses that make

up about a half of total losses around cutoff in the exam-

ple. We believe that discrepancy between analyzed and sim-

ulated Bloch impedances in Fig. 6(b) can be explained by

the effective electromagnetic width of the structure, which

is larger than w and can vary depending on the stub parame-

ters and period p.

Fig. 7 Comparison of the proposed approach with numerical simulation

of nonreciprocal CHRL metamaterial. (a) Schematic appearance of the

metamaterial transmission line. (b) Dispersion diagram. (c) Characteristic

Bloch impedance. (d) S -parameters.
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5. Analysis of CRLH Structure

The proposed ε-negative structure can be converted to

CRLH transmission line by means of series capacitors in-

troduced in the circuit, as shown in Fig. 7(a). By providing

a capacitance of certain value, we can create a µ-negative

frequency band with the same cutoff frequency as in the ε-

negative structure, thus supporting gapless propagation be-

low the cutoff. The series capacitance CL is introduced in

the unit cell in the form of ABCD matrices F2CL of double

capacitances 2CL by FCell = F2CLFRS FNRSFRS F2CL. Fig-

ures 7(b), (c), (d) illustrate the dispersion, Bloch impedance

and S -parameters acquired by using (13) and (15) in com-

parison with the results of FEM simulation. Configuration

parameters are the same as in previous section. The ca-

pacitance has a value CL = 0.3 pF in the proposed model

and simulation. Good agreement with FEM simulation was

achieved. In Fig. 7(d), the discrepancy above 5–5.5 GHz for

S 21 and S 12, respectively, is related to the radiation losses

that are not taken into account in the proposed approach.

Lower radiation band bounds are marked with round marks

in Fig. 7(d) and exactly correspond to intersection of dis-

persion diagram with air lines, as shown in Fig. 7(b). The

discrepancy in Bloch impedance in Fig. 7(c) has the same

nature as discussed in Sect. 4.2.

6. Experimental Investigation

Although it is not the first time that the phase-constant non-

reciprocal metamaterial is being presented in experimental

work [12], [16], the main aim of this subsection is to prove

that the model proposed in this paper gives a good explana-

tion to measured nonreciprocal transmission coefficients.

The ε-negative and CRLH metamaterial structures

were constructed. The designed operational frequencies of

the metamaterials and the frequency range of experiment

were chosen to be considerably higher than ferromagnetic

resonance. The structures were designed using the proposed

approach to provide a considerable magnitude of phase-

constant nonreciprocity of approximately 0.3–0.4 cm−1 near

the cutoff.

The photos of the prototype transmission lines are

shown in Fig. 8. Both structures were fabricated by mi-

crostrip technology. First, the 45 mm-length YIG ferrite

rod of 0.8 mm × 0.8 mm in cross-section was fixed with di-

electric glue on the brass ground plate between two SMA-

microstrip connectors. A copper strip of 45 mm × 0.8 mm

was attached to the top face of the ferrite rod, thus forming a

ferrite-embedded microstrip line. A set of microstrip shunt

stubs was produced with a period p = 4 mm on the 0.8 mm-

thick RexoliteTM 2200 substrate and affixed to the microstrip

line. For the ε-negative structure in Fig. 8(a), the stub length

was 1.86 mm, and for CRLH structure in Fig. 8(b), the stub

length was 1.7 mm. Series capacitors with a capacitance CL

= 0.2 pF were inserted in the gaps between unit cells of the

CRLH structure. The assemblies were placed into exter-

Fig. 8 Experimental model of the metamaterial TL. (a) ε-negative

structure, (b) CRLH structure.

Fig. 9 Comparison of the proposed model with experiment for the ε-

negative metamaterial. (a) Dispersion diagram. (b) S−parameters. Solid

and dashed lines are for the proposed approach, figure marks are for exper-

imental data.

nal saturating dc magnetic field µoHext = 100 mT, normal to

the microstrip line. The circuit was connected to AgilentTM

PNA series network analyzer where complex S -parameters

and phase shifts in both directions were measured in the fre-

quency range of 5–9 GHz.

The phase shift data were converted for convenience

into dispersion diagram in Fig. 9(a) and Fig. 10(a). The

amplitude responses for both structures are presented in

Fig. 9(b) and Fig. 10(b). In both figures, results of our mod-

eling are presented with solid and dashed lines, experimen-

tal results are presented with figure marks.

The analytic dispersion diagram and S -parameters pro-

file were calculated by taking into account the magnetic dis-
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Fig. 10 Comparison of the proposed model with experiment for the

CRLH metamaterial. (a) Dispersion diagram. (b) S -parameters. Solid

and dashed lines are for the proposed approach, figure marks are for exper-

imental data.

sipation with factor µo∆H = 4 mT for polycrystalline YIG

and finite resistive part of boundary impedances. The re-

sults show good agreement with the experimental data and

calculations within the guided wave frequency region. The

metamaterials exhibits nonreciprocity in the phase constant

of 0.35 cm−1 for ε-negative structure, and 0.31 cm−1 for

CRLH structure, that is close to the expected value and the

discrepancy can be explained by imperfect assembly qual-

ity. Larger discrepancy of phase constant below the cutoff

in Fig. 9(a) originates from parasitic resonance notches at

5.5 GHz that could be seen only below a level of −60 dB. In

Fig. 10, a small band-gap can be identified at 7.25 GHz that

is caused by deviation of CL from the projected value. This

deviation was taken into account in our model when prepar-

ing Fig. 9. The port impedance mismatch caused by the

band-gap, resulting in increased insertion loss below 7 GHz

was also taken into account.

Both Fig. 9 and Fig. 10 show good agreement between

the present model, and the experiment, especially in the

guided wave region. According to our further analysis,

small nonreciprocity of the magnitude of transmission co-

efficients, found in Fig. 10(b), could be reduced by the use

of low-loss ferrites.

7. Conclusions

The proposed approach allowed estimating propagation

characteristics of the nonreciprocal metamaterials com-

posed of the normally magnetized ferrite-embedded mi-

crostrip line periodically loaded with stubs demonstrating

a good precision. The present approach described not only

ε-negative characteristics below the cutoff but also the non-

reciprocity in phase characteristics of the metamaterial. The

analysis carried out also revealed and explained a number

of methods of control over nonreciprocity that give certain

freedom in design of nonreciprocal transmission line based

metamaterials.

It was demonstrated that the proposed approach is well

applicable to the analysis of both nonreciprocal CRLH and

ε-negative metamaterials without significant changes in the

model.
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