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Abst rac t .  In the field of reactive system programming, dataflow syn- 
chronous languages like Lustre [BCH+85,CHPP87] or Signal [GBBG85] 
offer a syntax similar to block-diagrams, and can be efficiently compiled 
into C code~ for instance. Designing a system that clearly exhibits several 
"independent" running modes is not difficult since the mode structure 
can be encoded explicitly with the available dataflow constructs. How- 
ever the mode structure is no longer readable in the resulting program; 
modifying it is error prone, and it cannot be used to improve the quality 
of the generated code. 
We propose to introduce a special construct devoted to the expression 
of a mode structure in a reactive system. We call it mode-automaton, 
for it is basically an automaton whose states are labeled by dataflow 
programs. We also propose a set of operations that allow the composition 
of several mode-automata (parallel and hierarchic compositions taken 
from Argos [Mar92]), and we study the properties of our model, like 
the existence of a congruence of mode-automata for instance, as well as 
implementation issues. 

1 I n t r o d u c t i o n  

The work on which we report here has been motivated by the need to talk about 
running modes in a dataflow synchronous language. 

Dataflow languages like Lustre [BCH+85,CHPP87] or Signal [GBBG85] be- 
long to the family of synchronous languages [BB91] devoted to the design, pro- 
gramming and validation of reactive systems. They have a formal semantics and 
can be efficiently compiled into C code, for instance. 

The dataflow style is clearly appropriate when the behaviour of the system to 
be described has some regularity, like in signal-processing. Designing a system 
that  clearly exhibits several "independent" running modes is not so difficult 
since the mode structure can be encoded explicitly with the available dataflow 
constructs. However the mode structure is no longer readable in the resulting 
program; modifying it is error prone, and it cannot be used to improve the 
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quality of the generated code, decompose the proofs or at least serve as a guide 
in the analysis of the program. 

In section 2 we propose a definition of a mode, in order to motivate our ap- 
proach. Section 3 defines mini-Lustre, a small subset of Lustre which is sufficient 
for presenting our notion of mode-automata in section 4. Section 5 explains how 
to compose these mode-automata,  with the operators of Argos, and Section 6 
defines a congruence. Section 7 compares the approach to others, in which modes 
have been studied. Finally, section 8 gives some ideas for further work. 

2 W h a t  is  a M o d e ?  

One (and perhaps the only one) way of facing the complexity of a system is to 
decompose it into several "independent" tasks. Of course the tasks are never 
completely independent, but it should be possible to find a decomposition in 
which the tasks are not too strongly connected with each other - -  i.e. in which the 
interface between tasks is relatively simple, compared to their internal structure. 
The tasks correspond to some abstractions of the global behaviour of the system, 
and they may be viewed as differents parts of this global behaviour, devoted to 
the t reatment  of distinct situations. Decomposing a system into tasks allows 
independent reasoning about the individual tasks. 

Tasks may be concurrent, in which case the system has to be decomposed 
into concurrent and communicating components. The interface defines how the 
components communicate and synchronize with each other in order to reach a 
global goal. 

Thinking in terms of independent modes is in some sense an orthogonal point 
of view, since a mode structure is rather sequential than concurrent. This is 
typically the case with the modes of an airplane, which can be as high level as 
"landing" mode, "take-off" mode, etc. The normal behaviour of the system is a 
sequence of modes. In a transition between modes, the source mode is designed 
to build and guarantee a given configuration of the parameters of the system, 
such that  the target  mode can be entered. On the other hand, modes may be 
divided into sub-modes. 

Of course the mode structure may interfere with the concurrent structure, in 
which case each concurrent subsystem may have its own modes, and the global 
view of the system shows a Cartesian product of the sets of modes. Or the main 
view of the system may be a set of modes, and the description of each mode 
is further decomposed into concurrent tasks. Hence we need a richer notion of 
mode. 

This seems to give something similar to the notion of mode we find in Mod- 
echarts [JM88], where modes are structured like in Statecharts [Har87] (an 
And/Or  tree). However, see section 7 for more comments about Modecharts, 
and a comparison between Modecharts and our approach. 
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2.1 Modes and States 

Technically, all systems can be viewed as a (possibly huge, or even infinite) set 
of elementary and completely detailed states, such tha t  the knowledge about  the 
current s tate is sufficient to determine the correct output ,  at any point in time. 
States are connected by transitions, whose firing depends on the inputs to the 
system. This complete model of the system behaviour may not be manageable,  
but  it exists. We call its states and transitions execution states and transitions. 
Execution states are really concrete ones, related for instance to the content of 
the program memory  during execution. 

The question is: how can we define the modes of a system in terms of its 
execution states and transitions? 

Since the state-transit ion view of a complex behaviour is intrinsically se- 
quential, it seems that ,  in all cases, it should be possible to relate the abst ract  
notion of mode to collections of execution states. The port ion of behaviour cor- 
responding to a mode is then defined as a set of execution states together with 
the at tached transitions. Related questions are: are these collections disjoint? do 
they cover the whole set of states? S. Paynter  [Pay96] suggests tha t  these two 
questions are orthogonal, and defines Real-Time Mode-Machines, which describe 
exhaustive but not necessarily exclusive modes (see more comments on this pa- 
per in section 7). In fact, the only relevant question is tha t  of exclusivity, since, 
for non exhaustive modes, one can always consider tha t  the "missing" states 
form an additional mode. 

2.2 Talking about Modes in a Programming Language 

All the formalisms or languages defined for reactive systems offer a parallel 
composition, together with some synchronization and communication mecha- 
nism. This operation supports  a conceptual decomposition in terms of concurrent 
tasks, and the parallel structure can be used for compositional proofs, generation 
of distributed code, etc. 

The picture is not so clear for the decomposition into modes. The question 
here is how to use the mode structure of a complex system for programming 
it, i.e. what  construct should we introduce in a language to express this view 
of the system? The mode structure should be as readable in a program as the 
concurrent structure is, thus making modifications easier; moreover, it should be 
usable to improve the quality of the generated code, or to serve as a guide for 
decomposing proofs. 

The key point is tha t  it should be possible to project a program onto a given 
mode, and obtain the behaviour restricted to this mode (as it is usually possible 
to project a parallel program onto one of its concurrent components,  and get the 
behaviour restricted to this component).  

2.3 Modes and Synchronous Languages 

None of the existing synchronous languages can be considered as providing a 
construct for expressing the mode structure of a reactive system. 
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We are particularly interested in dataflow languages. When trying to think in 
terms of modes in a dataflow language, one has to face two problems: first, there 
should be a way to express that  some parts of a program are not always active 
(and this is not easy); second, if these parts of the program represent different 
modes, there should be a way of describing how the modes are organized into 
the global behaviour of the system. 

Several proposals have been made for introducing some control features in a 
dataflow program, and this has been tried for one language or another among 
the synchronous family: [RM95] to introduce in Signal a way to define intervals 
delimited by some properties of the inputs, and to which the activity of some 
subprograms can be attached; [JLMR94,MH96] propose to mix the automaton 
constructs of Argos with the dataflow style of Lustre: the refinement operation 
of Argos allows to refine a state of an automaton by a (possibly complex) subsys- 
tem. Hence the activity of subprograms is attached to states. Embedding Lustre 
nodes in an Esterel program is possible, and would have the same effect. 

However, providing a full set of start-and-stop control structures for a dataflow 
language does not necessarily improve the way modes can be dealt with. It solves 
the first problem mentioned above, i.e. the control structures taken in the im- 
perative style allow the specification of activity periods of some subprograms 
described in a dataflow declarative style. But it does little for the second prob- 
lem: a control structure like the interrupt makes it easy to express that  the 
system switches between different behaviours, losing information about  the cur- 
rent state of the behaviour that  is interrupted, and starting a new one in some 
initial configuration. Of course, some information may be transmit ted from the 
behaviour that  is killed to the one that  is started, but  this is not the default, 
and it has to be expressed explicitly, with the communication mechanism for in- 
stance. For switching between modes, we claim that  the emphasis should be on 
what is transmitted from one mode to another. Transmitting the whole configu- 
ration reached by the system should be the default if we consider tha t  the source 
mode is designed to build and guarantee a given configuration of the parameters 
of the system, such that  the target mode can be entered. 

2.4 A Proposal:  Mode-Automata  

We propose a programming model called "mode-automatd', made of: operations 
on automata  taken from the definition of Argos [Mar92]; dataflow equations 
taken from Lustre [BCH+85]. We shall see that  mode-automata  can be con- 
sidered as a discrete version of hybrid automata [MMP91], in which the states 
are labeled by systems of differential equations that  describe how the continu- 
ous environment evolves. In our model, states represent the running modes of 
a system, and the equations associated with the states could be obtained by 
discretizing the control laws. Mode-automata have the property that  a program 
may be projected onto one of its modes. 
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3 Mini -Lustre :  a (very)  Smal l  Subse t  of  Lustre  

For the rest of the paper,  we use a very small subset of Lustre. A program is a 
single node, and we avoid the complexity related to types as much as possible. In 
some sense, the mini-Lustre model we present below is closer to the DC [CS95] 
format  used as an intermediate form in the Lustre, Esterel and Argos compilers. 

Definition 1 (mini-Lustre p r o g r a m s ) .  N = (Vi, re, Vt, f ,  I)  where: 
Vi, Vo and Vt are pairwise disjoint sets of input, output  and local variable names. 
I is a total function from 12o U Vt to constants, f is a total function from Vo U Vl 
to the set Eq(];i U 12o U Vl) and Eq(V)  is the set of expressions with variables in 
V ,  defined by the following grammar: e ::= c I x I op(e, ..., e) I pre(x), c stands 
for constants, x stands for a name in V ,  and op stands for all combinational 
operators. An interesting one is the conditional i t  el t h e n  e2 e l s e  e 3 where 
el should be a Boolean expression, and e2, e3 should have the same type. pre(x) 
stands for the previous value of the flow denoted by x. In case one needs pre(x) 
at the first instant, I (x)  should be used. [] 

We restrict mini-Lustre to integer and Boolean values. All expressions are as- 
sumed to be typed correctly. As in Lustre, we require tha t  the dependency graph 
between variables be acyclic. A dependency of X onto Y appears  whenever there 
exists an equation of the form X . . . .  Y... and Y does not appear  inside a p r e  
operator.  In the syntax of mini-Lustre programs, it means tha t  Y appears  in the 
expression f ( X ) ,  not in a p r e  operator.  

Definition 2 ( T r a c e  semantics of mini-Lustre).  Each variable name v in 
the mini-Lustre program describes a flow of values of its type, i.e. an infinite 
sequence v0, Vl,.... Given a sequence of inputs, i.e. the values Vn, for each v �9 Vi 
and each n > O, we describe below how to compute the sequences (or t races)  of 
local and output flows of the program. The initialization function gives values 
to variables for the instant "before time starts", since it provides values in case 
pre (x )  is needed at instant O. Hence we can call it x - x :  

Vv �9 Vo u V~. v-1  = I (v )  

For all instants in time, the value of an output or local variable is computed 
according to its definition as given by f :  

Vn > O. Vv �9 Vo u v~. v~ = y(v)[x~lx][x~_l lpre(x)]  

We take the expression f (v ) ,  in which we replace each variable name x by its 
current value xn, and each occurrence of pre(x)  by the previous value xn-1.  This 
yields an expression in which combinational operators are applied to constants. 
The set of equations we obtain for defining the values of all the flows over time 
is acyclic, and is a sound definition. [] 



190 

Definition 3 (Union of  mini-Lustre nodes). Provided they do not define the 
same outputs, i.e. )21 o fq )22 = 0, we can put together two mini-Lustre programs. 
This operation consists in connecting the outputs of one of them to the inputs 
of the other, if they have the same name. These connecting variables should be 
removed from the inputs of the global program, since we now provide definitions 
for them. This corresponds to the usual dataflow connection of two nodes. 

()2/1,)2ol,)2/1, f l , / 1  ) [,.J (V? , )22o , )22, f2 ,  I 2) : 
( (v: u v?) \ v l  \ V o, U V o, u v2 , 
Ax.if x e )21o U )21 then f l ( x )  else f2(x), 

x e )2 o then i1( ) else 12(=)) 
Local variables should be disjoint also, but we can assume that a renaming is 

performed before two mini-Lustre programs are put together. Hence )2~ fq )22 = 0 
is guaranteed. The union of sets of equations should still satisfy the acyclicity 
constraint. [] 

Definition 4 (Trace equivalence for mini-Lustre). Two programs L1 = 
()2i,)2o, )21, f l ,  11) and L2 = 02i, )20, )22, f2,12) having the same input]output 
interface are trace-equivalent (denoted by L1 ~', L2) if and only if they give the 
same sequence of outputs when fed with the same sequence of inputs. [] 

Definition 5 (Trace equivalence for mini-Lustre with no initial spec- 
ification). We consider mini-Lustre programs without initial specification, i.e. 
mini-Lustre programs without the function I that gives values for the flows "be- 
fore time starts". Two such objects 5x = ()2i,)20, )2~ , f l  ) and L2 = ()2~, Vo, )22, f2)  
having the same input]output interface are trace-equivalent (denoted by L1 ~ L~) 
if and only if, for all initial configuration I, they give the same sequence of out- 
puts when fed with the same sequence of inputs. [] 

P r o p e r t y  1 : Trace equivalence is preserved by union 
L,.~ L' ==a L U  M ~ L 'U  M [] 

4 M o d e - A u t o m a t a  

4.1 Example and Definition 

The mode-automaton of figure 1 describes a program that outputs an integer X. 
The initial value is 0. Then, the program has two modes: an incrementing mode, 
and a decrementing one. Changing modes is done according to the value reached 
by variable X: when it reaches 10, the mode is switched to "decrementing"; when 
X reaches 0 again, the mode is switched to "incrementing". 

For simplicity, we give the definition for a simple case where the equations 
define only integer variables. One could easily extend this framework to all types 
of variables. 
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x : o  ] 

- ' - "~- '~ - - - - . . . . .  X ~ = 0 1 0  

X=pre(X) + 1 X = p r e ( X ) -  1 

Fig. 1. Mode-automata: a simple example 

D e f i n i t i o n  6 ( M o d e - a u t o m a t a ) .  

A mode-automaton is a tuple (Q, qo, Vi, Vo, :~, f ,  T)  where: 

- Q is the set of states of the automaton part 
- qo E Q is the initial state 
- Vi and 1)o are sets of names for input and output integer variables. 
- T C Q x C(V) • Q is the set of transitions, labeled by conditions on the 

variables of V : V~ U 12o 
- I : 12o ~ Z is a function defining the initial value of output variables 
- f : Q ~ 1)o ~ EqR defines the labeling of states by total ]unctions from 

12o to the set EqR(Vi U 12o) of expressions that constitute the right parts of 
the equations defining the variables of 12o. 

The expressions in EqR(]3i U 12o) have the same syntax as in mini-Lustre nodes: 
e ::= c [ x [ op(e,...,e) [ pre(x), where c stands for constants, x stands for a 
name in Vi U ]2o, and op stands for all combinational operators. The conditions 
in C(~i U 12o) are expressions of the same form, but without pre operators; the 
type of an expression serving as a condition is Boolean. [] 

Note that Input variables are used only in the right parts of the equations, or in 
the conditions. Output variables are used in the left parts of the equations, or in 
the conditions. 
We require that the automaton part of a mode-automaton be deterministic, 
i.e., for each state q E Q, if there exist two outgoing transitions (q, c l ,ql)  and 
(q, c2, q2), then Cl A c2 is not satisfiable. 
We also require that the automaton be reactive, i.e., for each state q E Q, the 
formula V(q,c,q')ET C is true. 
With these definitions, the example of figure 1 is written as: 

( {A ,B} ,A ,O ,  { X } , I  : X --+ O, 
f(A) = { X = pre(X) + I ) , f ( B ) =  { X = pre(X) - 1 }), 
{(g,x = 10, B),(B,X = 0, A),(A,X # 10, A),(B,X # 0, B)}) 

In the graphical notation of the example, we omitted the two loops (A, X # 10, A) 
and (B,X # 0, B). 
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4.2 S e m a n t i c s  by  Translation into Mini-Lustre 

The main idea is to translate the automaton structure of a mode-automaton 
into mini-Lustre, in a very classical and straightforward way. Then we gather all 
the sets of equations attached to states into a single conditional structure. We 
choose to encode each state by a Boolean variable. Arguments for a more efficient 
encoding exist, and such an encoding could be applied here, independently from 
the other part  of the translation. However, it is sometimes desirable tha t  the 
pure Lustre program obtained from mode-automata be readable; in this case, 
a clear (and one-to-one) relation between states in the mode-automaton,  and 
variables in the Lustre program, is required. 

The function /: associates a mini-Lustre program with a mode-automaton.  
We associate a Boolean local variable with each state in Q = {q0, ql, ..., qn), with 
the same name. Hence: 

~ ( ( q ,  qo, ]:~, l;o,27, f , T ) )  = ():~, ~;o,Q,e,J) 

The initial values of the variables in ]2o are given by the initialization function 27 
of the mode-automaton,  hence Vx E ~;o, J(x)  = Z(x) .  For the local variables of 
the mini-Lustre program, which correspond to the states of the mode-automaton,  
we have: J(qo) = true and J(q) = false, Vq ~ q0. 

The equation for a local variable q that  encodes a state q expresses that  we 
are in state q at a given instant if and only if we were in some state q~, and a 
transition (q', c, q) could be taken. Note that,  because the automaton is reactive, 
the system can always take a transition, in any state. A particular case is q' = q: 
staying in a state means taking a loop on that  state, at each instant 

for q �9 Q, e(q) is the expression: V pre (q' A c) 
(q',c,q)ET 

For x �9 12o, e(x) is the expression : 

if q0 then f(q0)else if ql then f(ql).. .else if q~ then f(q~) 

The mini-Lustre program obtained for the example is the following (note 
that  pre(A and X = 10) is the same as pre(A) and pre(X) = 10, hence the 
equations have the form required in the definition of mini-Lustre). 

])~ = ~ 14 -- {X)  ])~ = {A, B )  
f(X) :if A then pre(X)+l else pre(X)-I 

f(A) :pre (A and not X=IO) or pre(B and X = O) 

f(B) :pre (B and not X=O) or pre(A and X = 10) 

I ( X )  = 0 I (A)  = true I ( B )  = fa l se  

5 C o m p o s i t i o n s  o f  M o d e - A u t o m a t a  

5.1 Parallel  Compos i t ion  wi th  Shared Variables 

A single mode-automaton is appropriate when the structure of the running 
modes is flat. Parallel composition of mode-automata is convenient whenever 
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the modes can be split into at least two orthogonal sets, such that  a set of 
modes is used for controlling some of the variables, and another set of modes is 
used for controlling other variables. 

v:o[ 
Y = 1 0  

~ ~ ~ - . . _ _ . _ .  Y ----- 0 

Y = pre(Y) q- 1 Y = p r e ( Y ) -  1 

xX_> 10_2o 
<50 

X=pre(X)  + Y  X = pre(X) - Y 

Fig. 2. Parallel composition of mode-automata, an example 

Def in i t i on  Provided l}o 1 N l~o2 = 0, we define the parallel composition of two 
mode-automata by : 

(Q1, qo ~ ' T 1, V~, Vo ~, Z 1 , fx)[I (Q2, qo 2, T 2, V?, 1;o2, Z 2, f2) = 
(Q1 x Q2,(q~,q2),(])l O'l)?)\Vo 1 \ )2O2, Vo 1 UI)O2,Z,f) 

Where: 

Similarly: 

S fl(ql)(X) if X e Yo 1 
f(ql'q2)(X) = "~ ff(q2)(X) otherwise, i.e. if X e 1;o 2 

Z(X) = f zl  (X) if X E Vo 1 
~, Z 2 (X) if X E 1)o2 

And the set T of global transitions is defined by: 

(qI,CI,q'I) E TI A(q2,C2,q'2) E T 2 ---> ((ql,q2),CI AC2,(q'I,q'2)) E T 

The following property establishes a relationship between the parallel com- 
position defined for mode-automata as a synchronous product, and the intrinsic 
parallelism of Lustre programs, captured by the union of sets of equations: 

Property 2 
s ) ,~ ~(M~) U L(M2) [] 
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5,2 I d e a s  for  H i e r a r c h i c  M o d e s  

A very common notion related to modes is tha t  of sub-modes. In the hierarchic 
composition below, the equation X = pre(X)  - 1 associated with state D is 
shared by the two submodes, while these submodes have been introduced for 
defining Y more precisely. Note tha t  the scope of Y is the whole program, not 
only state D. Splitting state D for refining the definition of Y has something to 
do with equivalences of mode-au tomata  (see below). Indeed, we would like the 
hierarchic composition to be defined in such a way tha t  the program of figure 3 
be "equivalent" to that  of figure 4, where the program associated with state D 
uses a Boolean variable q. "Refining" (or exploding) the conditional definition of 
Y into the mode-automaton  with states A, B of figure 3 is the work performed 
by the Lustre compiler, when building an interpreted au tomaton  from a Lustre 
program. 

IX, Y : O  ] 
~D X=pre (X) - I  

Y = I O  

Y = pre(Y) + 1 Y -- pre(Y) - 1 

~, X=pre(X)+l  
X=IO Y=pre(Y)+2 

J 
X=O 

Fig. 3. Hierarchic composition of mode-automata, an example 

X, Y, q : 0 q=0 

X=pre(X)+l  

X = 0 I_Y=pre(Y)+2 

q=if pre(q=O and Y=IO or q= l  and Y r then 1 else 0 
I Y= if q=O then pre(Y) + 1 else pre(Y) - 1 

[_X=pre(X)-I 

Fig. 4. Describing Y with a conditional program (q = 0 corresponds to A; q --- 1 
corresponds to B) 
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6 C o n g r u e n c e s  o f  M o d e - A u t o m a t a  

We try to define an equivalence relation for mode-automata,  to be a congruence 
for the parallel composition. 

There are essentially two ways of defining such an equivalence : either as 
a relation induced by the existing trace equivalence of Lustre programs; or by 
an explicit definition on the structure of mode-automata,  inspired by the trace 
equivalence of automata.  The idea is that ,  if two states have equivalent sets of 
equations, then they can be identified. 

D e f i n i t i o n  7 ( I n d u c e d  e q u i v a l e n c e  o f  m o d e - a u t o m a t a ) .  
M1 --i M2 < ;- /~(M1) ~/~(M2) (see definition ~ for ..~). [] 

D e f i n i t i o n  8 ( D i r e c t  e q u i v a l e n c e  o f  m o d e - a u t o m a t a ) .  The direct equiva- 
lence is a bisimulation, taking the labeling of states into account: 

( Ql, q~, Tl,1)~, l)xo , El, f 1) =d ( Q2, q2, T2, l;~, V2o , iZ'2, f2) r 
3R C_ Rs such that: 

e R ^ 
I (ql,cl,qn) E T 1 ===~ 3qt2,c  2 s. t. (q2,c2,q '2)  E T 2 

(ql,q2) E R ~ A (qn,q,2) E R 
A C 1 = C 2 

and conversely. 

Where Rs C Q1 • Q2 is the relation on states induced by the equivalence of the 
attached sets of equations: (ql,q2) E R, ~ f l(ql)  ~ f2(q2) (see definition 5 
for ~). [] 

Note: the conditions labeling transitions are Boolean expressions with subex- 
pressions of the form a#b, where a and b are integer constants or variables, and 
# is a comparison operator yielding a Boolean result. We can always consider 
that  these conditions are expressed as sums of monomials, and that  a transition 
labeled by a sum c V c' is replaced by two transitions labeled by c and c ~ (be- 
tween the same states). Hence, in the equivalence relation defined above, we can 
require that  the conditions c 1 and c 2 match. Since c I -- c 2 is usually undecidable 
(it is not the syntactic identity), the above definition is not practical. 

It is important  to note that  the two equivalences do not coincide: M1 ----d 
M2 ==~ M1 - i  M2, but this is not an equivalence. Translating the mode- 
automaton into Lustre before testing for equivalence provides a global compari- 
son of two mode-automata.  On the contrary, the second definition of equivalence 
compares subprograms attached to states, and may fail in recognizing that  two 
mode-automata  describe the same global behaviour, when there is no way of 
establishing a correspondence between their states (see example below). 

Example 1. Let us consider a program that  outputs  an integer X. X has three 
different behaviours, described by: B1 : X = pre(X) + 1, B2 : X = pre(X) + 2 
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and B3 : X = w e ( X )  - 1. The transitions between these behaviours are triggered 
by conditions on X: Cij is the condition for switching from Bi to Bj.  

A mode-automaton M1 describes B1 and B2 with a state q12, and B3 with 
another state q3. Of course the program associated with q12 has a conditional 
structure, depending on C12, C21 and a Boolean variable. The program associ- 
ated with q3 is B3. 

Now, consider the mode-automaton 11//2 that  describes B1 with a state q~, B2 
and B3 with a state q23. In M2, the program associated with q23 has a conditional 
structure. 

There is no relation R between the states of M1 and the states of M2 that  
would allow to recognize that they are equivalent. Translating them into mini- 
Lustre is a way of translating them into single-state mode-machines (with con- 
ditional associated programs), and it allows to show that  they are indeed equiv- 
alent. On the other hand, if we are able to split ql~ into two states, and q~3 into 
two states (as suggested in section 5.2) then the two machines have three states, 
and we can show that  they are equivalent. [] 

P r o p e r t y  3 : Congruences  of  m o d e - a u t o m a t a  
The two equivalences are congruences for parallel composition. [] 

7 R e l a t e d  W o r k  a n d  C o m m e n t s  o n  t h e  N o t i o n  o f  M o d e  

We already explained in section 2.3 that  there exists no construct dedicated 
to the expression of modes in the main synchronous programming languages. 
Mode-automata are a proposal for that.  They allow to distinguish between ex- 
plicit states (corresponding to modes, and described by the automaton part  of 
the program) and implicit states (far more detailed and grouped into modes, 
described by the dataflow equational part of the program). This is an answer for 
people who argue that  modes should not be related to states, because they are 
far more states than modes. 

Other people argue that  modes are not necessarily exclusive. The modes in 
one mode-automaton are exclusive. However, concurrent modes are elements of 
a Cartesian product, and can share something. Similarly, two submodes of a 
refined mode also share something. We tried to find a motivation for (and thus 
a definition of) non-exclusive modes. 

Modecharts have recently joined the synchronous community, and we can 
find an Esterel-like semantics in [PSM96]. In this paper, modes are simply hi- 
erarchical and concurrent states like in Argos [Mar92]. It is mentioned that  "the 
actual interaction with the environment is produced by the operations associated 
with entry and exit events'. Hence the modes are not dealt with in the language 
itself; the language allows to describe a complex control structure, and an exter- 
nal activity can be attached to a composed state. It seems that  the activity is 
not necessarily killed when the state is left; hence the activities associated with 
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exclusive states are not necessarily exclusive. This seems to be the motivation 
for non-exclusive modes. Activities are similar to the external tasks of Esterel 
but, in Esterel, the way tasks interfere with the control struture is well defined 
in the language itself. 

Real-time mode-machines have been proposed in [Pay96]. In this paper, modes 
are collections of states, in the sense recalled above (section 2.1). These collec- 
tions are exhaustive but  not exclusive. However, it seems that  this requirement 
for non-exclusivity is related to pipelining of the execution: part  of the system 
is still busy with a given piece of data, while another part  is already using the 
next piece of data. The question is whether pipelining has anything to do with 
overlapping or non-exclusive modes. In software pipelining, there may be two 
components running in parallel and corresponding to the same piece o] source 
program; if this portion of source describes modes, it may be the case that  the 
two execution instances of it are in different modes at the same time, because one 
of them starts treating some piece of data, while the other one finishes treating 
another piece of data. Each instance is in exactly one mode at a given instant; 
should this phenomenon be called "non-exclusive modes" ? 

We are still searching for examples of non-exclusive modes in reactive systems. 

8 I m p l e m e n t a t i o n  a n d  F u r t h e r  W o r k  

We presented mode-automata,  a way to deal with modes in a synchronous lan- 
guage. Parallel composition is well defined, and we also have a congruence of 
mode-automata,  w.r.t, this operation. We still have to study the hierarchic com- 
position, following the lines of [HMP95] (in this paper we proposed an extension 
of Argos dedicated to hybrid systems, as a description language for the tool 
Polka [HPR97], in which hybrid automata  may be composed using the Argos 
operators. In particular, hierarchic composition in HybridArgos is a way to ex- 
press that  a set of states share the same description of the environment). We shall 
also extend the language of mode-automata by allowing full Lustre in the equa- 
tions labeling the  states (clocks, node calls, external functions or procedures...). 
Mode-automata composed in parallel are already available as a language, com- 
piled into pure Lustre, thus benefiting from all the lustre tools. 

We said in section 2 that  "It should be possible to project a program onto a 
given mode, and obtain the behaviour restricted to this mode". How can we do 
that  for programs made of mode-automata? When a program is reduced to a 
single mode-antomaton,  the mode is a state, and extracting the subprogram of 
this mode consists in taking the equations associated with this state. The object 
we obtain is a mini-Lustre program without initial state. When the program is 
something more  complex, we are still able to extract  a non-initialized mini-Lustre 
program for a given composed mode; for instance the program of a parallel mode 
(q, q~) is the union of the programs attached to q and q~. 

Projecting the complete program onto its modes may be useful for generat- 
ing efficient sequential code. Indeed, the mode-structure clearly identifies which 
parts of a program are active at a given instant. In the SCADE (Safety Critical 



198 

Application Development Environment) tool sold by Verilog S.A. (based upon a 
commercial Lustre compiler), designers use an activation condition if they want 
to express that  some part  of the dataflow program should not be computed at 
each instant. It is a low level mechanism, which has to be used carefully: the 
activation condition for subprogram P is a Boolean flow' computed elsewhere in 
the dataflow program. Our mode structure is a higher level generalization of this 
simple mechanism. It is a real language feature, and it can be used for better  
code generation. 

Another interesting point about the mode-structure of a program is the possi- 
bility of decomposing proofs. For the decomposition of a problem into concurrent 
tasks, and the usual parallel compositions that  support this design, people have 
proposed compositional proof rules, for instance the assume-guarantee scheme. 
The idea is to prove properties separately for the components, and to infer some 
property of the global system. We claim that  the decomposition into several 
modes - -  provided the language allows to deal with modes explicitly, i.e. to 
project a global program onto a given mode - -  should have a corresponding 
compositional proof rule. At least, a mode-automaton is a way of identifying a 
control structure in a complex program. It can be used for splitting the work in 
analysis tools like Polka [HPR97]. 
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