
Mode-Automata :
A b o u t Modes and States for React ive Systems*

Florence Maraninchi and Yann R@mond

VERIMAG** - Centre Equation, 2 Av. de Vignate - F38610 GIERES
http ://www. imag. fr/VERIMAG/PEOPLE/Florence. Maraninchi

Abst rac t . In the field of reactive system programming, dataflow syn-
chronous languages like Lustre [BCH+85,CHPP87] or Signal [GBBG85]
offer a syntax similar to block-diagrams, and can be efficiently compiled
into C code~ for instance. Designing a system that clearly exhibits several
"independent" running modes is not difficult since the mode structure
can be encoded explicitly with the available dataflow constructs. How-
ever the mode structure is no longer readable in the resulting program;
modifying it is error prone, and it cannot be used to improve the quality
of the generated code.
We propose to introduce a special construct devoted to the expression
of a mode structure in a reactive system. We call it mode-automaton,
for it is basically an automaton whose states are labeled by dataflow
programs. We also propose a set of operations that allow the composition
of several mode-automata (parallel and hierarchic compositions taken
from Argos [Mar92]), and we study the properties of our model, like
the existence of a congruence of mode-automata for instance, as well as
implementation issues.

1 I n t r o d u c t i o n

The work on which we report here has been motivated by the need to talk about
running modes in a dataflow synchronous language.

Dataflow languages like Lustre [BCH+85,CHPP87] or Signal [GBBG85] be-
long to the family of synchronous languages [BB91] devoted to the design, pro-
gramming and validation of reactive systems. They have a formal semantics and
can be efficiently compiled into C code, for instance.

The dataflow style is clearly appropriate when the behaviour of the system to
be described has some regularity, like in signal-processing. Designing a system
that clearly exhibits several "independent" running modes is not so difficult
since the mode structure can be encoded explicitly with the available dataflow
constructs. However the mode structure is no longer readable in the resulting
program; modifying it is error prone, and it cannot be used to improve the

* This work has been partially supported by Esprit Long Term Research Project
SYRF 22703

** Verimag is a joint laboratory of Universit~ Joseph Fourier (Grenoble I), CNRS and
INPG

186

quality of the generated code, decompose the proofs or at least serve as a guide
in the analysis of the program.

In section 2 we propose a definition of a mode, in order to motivate our ap-
proach. Section 3 defines mini-Lustre, a small subset of Lustre which is sufficient
for presenting our notion of mode-automata in section 4. Section 5 explains how
to compose these mode-automata, with the operators of Argos, and Section 6
defines a congruence. Section 7 compares the approach to others, in which modes
have been studied. Finally, section 8 gives some ideas for further work.

2 W h a t is a M o d e ?

One (and perhaps the only one) way of facing the complexity of a system is to
decompose it into several "independent" tasks. Of course the tasks are never
completely independent, but it should be possible to find a decomposition in
which the tasks are not too strongly connected with each other - - i.e. in which the
interface between tasks is relatively simple, compared to their internal structure.
The tasks correspond to some abstractions of the global behaviour of the system,
and they may be viewed as differents parts of this global behaviour, devoted to
the t reatment of distinct situations. Decomposing a system into tasks allows
independent reasoning about the individual tasks.

Tasks may be concurrent, in which case the system has to be decomposed
into concurrent and communicating components. The interface defines how the
components communicate and synchronize with each other in order to reach a
global goal.

Thinking in terms of independent modes is in some sense an orthogonal point
of view, since a mode structure is rather sequential than concurrent. This is
typically the case with the modes of an airplane, which can be as high level as
"landing" mode, "take-off" mode, etc. The normal behaviour of the system is a
sequence of modes. In a transition between modes, the source mode is designed
to build and guarantee a given configuration of the parameters of the system,
such that the target mode can be entered. On the other hand, modes may be
divided into sub-modes.

Of course the mode structure may interfere with the concurrent structure, in
which case each concurrent subsystem may have its own modes, and the global
view of the system shows a Cartesian product of the sets of modes. Or the main
view of the system may be a set of modes, and the description of each mode
is further decomposed into concurrent tasks. Hence we need a richer notion of
mode.

This seems to give something similar to the notion of mode we find in Mod-
echarts [JM88], where modes are structured like in Statecharts [Har87] (an
And/Or tree). However, see section 7 for more comments about Modecharts,
and a comparison between Modecharts and our approach.

187

2.1 Modes and States

Technically, all systems can be viewed as a (possibly huge, or even infinite) set
of elementary and completely detailed states, such tha t the knowledge about the
current s tate is sufficient to determine the correct output , at any point in time.
States are connected by transitions, whose firing depends on the inputs to the
system. This complete model of the system behaviour may not be manageable,
but it exists. We call its states and transitions execution states and transitions.
Execution states are really concrete ones, related for instance to the content of
the program memory during execution.

The question is: how can we define the modes of a system in terms of its
execution states and transitions?

Since the state-transit ion view of a complex behaviour is intrinsically se-
quential, it seems that , in all cases, it should be possible to relate the abst ract
notion of mode to collections of execution states. The port ion of behaviour cor-
responding to a mode is then defined as a set of execution states together with
the at tached transitions. Related questions are: are these collections disjoint? do
they cover the whole set of states? S. Paynter [Pay96] suggests tha t these two
questions are orthogonal, and defines Real-Time Mode-Machines, which describe
exhaustive but not necessarily exclusive modes (see more comments on this pa-
per in section 7). In fact, the only relevant question is tha t of exclusivity, since,
for non exhaustive modes, one can always consider tha t the "missing" states
form an additional mode.

2.2 Talking about Modes in a Programming Language

All the formalisms or languages defined for reactive systems offer a parallel
composition, together with some synchronization and communication mecha-
nism. This operation supports a conceptual decomposition in terms of concurrent
tasks, and the parallel structure can be used for compositional proofs, generation
of distributed code, etc.

The picture is not so clear for the decomposition into modes. The question
here is how to use the mode structure of a complex system for programming
it, i.e. what construct should we introduce in a language to express this view
of the system? The mode structure should be as readable in a program as the
concurrent structure is, thus making modifications easier; moreover, it should be
usable to improve the quality of the generated code, or to serve as a guide for
decomposing proofs.

The key point is tha t it should be possible to project a program onto a given
mode, and obtain the behaviour restricted to this mode (as it is usually possible
to project a parallel program onto one of its concurrent components, and get the
behaviour restricted to this component).

2.3 Modes and Synchronous Languages

None of the existing synchronous languages can be considered as providing a
construct for expressing the mode structure of a reactive system.

188

We are particularly interested in dataflow languages. When trying to think in
terms of modes in a dataflow language, one has to face two problems: first, there
should be a way to express that some parts of a program are not always active
(and this is not easy); second, if these parts of the program represent different
modes, there should be a way of describing how the modes are organized into
the global behaviour of the system.

Several proposals have been made for introducing some control features in a
dataflow program, and this has been tried for one language or another among
the synchronous family: [RM95] to introduce in Signal a way to define intervals
delimited by some properties of the inputs, and to which the activity of some
subprograms can be attached; [JLMR94,MH96] propose to mix the automaton
constructs of Argos with the dataflow style of Lustre: the refinement operation
of Argos allows to refine a state of an automaton by a (possibly complex) subsys-
tem. Hence the activity of subprograms is attached to states. Embedding Lustre
nodes in an Esterel program is possible, and would have the same effect.

However, providing a full set of start-and-stop control structures for a dataflow
language does not necessarily improve the way modes can be dealt with. It solves
the first problem mentioned above, i.e. the control structures taken in the im-
perative style allow the specification of activity periods of some subprograms
described in a dataflow declarative style. But it does little for the second prob-
lem: a control structure like the interrupt makes it easy to express that the
system switches between different behaviours, losing information about the cur-
rent state of the behaviour that is interrupted, and starting a new one in some
initial configuration. Of course, some information may be transmit ted from the
behaviour that is killed to the one that is started, but this is not the default,
and it has to be expressed explicitly, with the communication mechanism for in-
stance. For switching between modes, we claim that the emphasis should be on
what is transmitted from one mode to another. Transmitting the whole configu-
ration reached by the system should be the default if we consider tha t the source
mode is designed to build and guarantee a given configuration of the parameters
of the system, such that the target mode can be entered.

2.4 A Proposal: Mode-Automata

We propose a programming model called "mode-automatd', made of: operations
on automata taken from the definition of Argos [Mar92]; dataflow equations
taken from Lustre [BCH+85]. We shall see that mode-automata can be con-
sidered as a discrete version of hybrid automata [MMP91], in which the states
are labeled by systems of differential equations that describe how the continu-
ous environment evolves. In our model, states represent the running modes of
a system, and the equations associated with the states could be obtained by
discretizing the control laws. Mode-automata have the property that a program
may be projected onto one of its modes.

189

3 Mini -Lustre : a (very) Smal l Subse t of Lustre

For the rest of the paper, we use a very small subset of Lustre. A program is a
single node, and we avoid the complexity related to types as much as possible. In
some sense, the mini-Lustre model we present below is closer to the DC [CS95]
format used as an intermediate form in the Lustre, Esterel and Argos compilers.

Definition 1 (mini-Lustre p r o g r a m s) . N = (Vi, re, Vt, f , I) where:
Vi, Vo and Vt are pairwise disjoint sets of input, output and local variable names.
I is a total function from 12o U Vt to constants, f is a total function from Vo U Vl
to the set Eq(];i U 12o U Vl) and Eq(V) is the set of expressions with variables in
V , defined by the following grammar: e ::= c I x I op(e, ..., e) I pre(x), c stands
for constants, x stands for a name in V , and op stands for all combinational
operators. An interesting one is the conditional i t el t h e n e2 e l s e e 3 where
el should be a Boolean expression, and e2, e3 should have the same type. pre(x)
stands for the previous value of the flow denoted by x. In case one needs pre(x)
at the first instant, I (x) should be used. []

We restrict mini-Lustre to integer and Boolean values. All expressions are as-
sumed to be typed correctly. As in Lustre, we require tha t the dependency graph
between variables be acyclic. A dependency of X onto Y appears whenever there
exists an equation of the form X Y... and Y does not appear inside a p r e
operator. In the syntax of mini-Lustre programs, it means tha t Y appears in the
expression f (X) , not in a p r e operator.

Definition 2 (T r a c e semantics of mini-Lustre). Each variable name v in
the mini-Lustre program describes a flow of values of its type, i.e. an infinite
sequence v0, Vl,.... Given a sequence of inputs, i.e. the values Vn, for each v �9 Vi
and each n > O, we describe below how to compute the sequences (or t races) of
local and output flows of the program. The initialization function gives values
to variables for the instant "before time starts", since it provides values in case
pre (x) is needed at instant O. Hence we can call it x - x :

Vv �9 Vo u V~. v-1 = I (v)

For all instants in time, the value of an output or local variable is computed
according to its definition as given by f :

Vn > O. Vv �9 Vo u v~. v~ = y(v)[x~lx][x~_l lpre(x)]

We take the expression f (v) , in which we replace each variable name x by its
current value xn, and each occurrence of pre(x) by the previous value xn-1. This
yields an expression in which combinational operators are applied to constants.
The set of equations we obtain for defining the values of all the flows over time
is acyclic, and is a sound definition. []

190

Definition 3 (Union of mini-Lustre nodes). Provided they do not define the
same outputs, i.e.)21 o fq)22 = 0, we can put together two mini-Lustre programs.
This operation consists in connecting the outputs of one of them to the inputs
of the other, if they have the same name. These connecting variables should be
removed from the inputs of the global program, since we now provide definitions
for them. This corresponds to the usual dataflow connection of two nodes.

()2/1,)2ol,)2/1, f l , / 1) [,.J (V? ,)22o ,)22, f2 , I 2) :
((v: u v?) \ v l \ V o, U V o, u v2 ,
Ax.if x e)21o U)21 then f l (x) else f2(x),

x e)2 o then i1() else 12(=))
Local variables should be disjoint also, but we can assume that a renaming is

performed before two mini-Lustre programs are put together. Hence)2~ fq)22 = 0
is guaranteed. The union of sets of equations should still satisfy the acyclicity
constraint. []

Definition 4 (Trace equivalence for mini-Lustre). Two programs L1 =
()2i,)2o,)21, f l , 11) and L2 = 02i,)20,)22, f2,12) having the same input]output
interface are trace-equivalent (denoted by L1 ~', L2) if and only if they give the
same sequence of outputs when fed with the same sequence of inputs. []

Definition 5 (Trace equivalence for mini-Lustre with no initial spec-
ification). We consider mini-Lustre programs without initial specification, i.e.
mini-Lustre programs without the function I that gives values for the flows "be-
fore time starts". Two such objects 5x = ()2i,)20,)2~ , f l) and L2 = ()2~, Vo,)22, f2)
having the same input]output interface are trace-equivalent (denoted by L1 ~ L~)
if and only if, for all initial configuration I, they give the same sequence of out-
puts when fed with the same sequence of inputs. []

P r o p e r t y 1 : Trace equivalence is preserved by union
L,.~ L' ==a L U M ~ L 'U M []

4 M o d e - A u t o m a t a

4.1 Example and Definition

The mode-automaton of figure 1 describes a program that outputs an integer X.
The initial value is 0. Then, the program has two modes: an incrementing mode,
and a decrementing one. Changing modes is done according to the value reached
by variable X: when it reaches 10, the mode is switched to "decrementing"; when
X reaches 0 again, the mode is switched to "incrementing".

For simplicity, we give the definition for a simple case where the equations
define only integer variables. One could easily extend this framework to all types
of variables.

191

x : o]

- ' - "~- '~ - - - - X ~ = 0 1 0

X=pre(X) + 1 X = p r e (X) - 1

Fig. 1. Mode-automata: a simple example

D e f i n i t i o n 6 (M o d e - a u t o m a t a) .

A mode-automaton is a tuple (Q, qo, Vi, Vo, :~, f , T) where:

- Q is the set of states of the automaton part
- qo E Q is the initial state
- Vi and 1)o are sets of names for input and output integer variables.
- T C Q x C(V) • Q is the set of transitions, labeled by conditions on the

variables of V : V~ U 12o
- I : 12o ~ Z is a function defining the initial value of output variables
- f : Q ~ 1)o ~ EqR defines the labeling of states by total]unctions from

12o to the set EqR(Vi U 12o) of expressions that constitute the right parts of
the equations defining the variables of 12o.

The expressions in EqR(]3i U 12o) have the same syntax as in mini-Lustre nodes:
e ::= c [x [op(e,...,e) [pre(x), where c stands for constants, x stands for a
name in Vi U]2o, and op stands for all combinational operators. The conditions
in C(~i U 12o) are expressions of the same form, but without pre operators; the
type of an expression serving as a condition is Boolean. []

Note that Input variables are used only in the right parts of the equations, or in
the conditions. Output variables are used in the left parts of the equations, or in
the conditions.
We require that the automaton part of a mode-automaton be deterministic,
i.e., for each state q E Q, if there exist two outgoing transitions (q, c l ,ql) and
(q, c2, q2), then Cl A c2 is not satisfiable.
We also require that the automaton be reactive, i.e., for each state q E Q, the
formula V(q,c,q')ET C is true.
With these definitions, the example of figure 1 is written as:

({A ,B} ,A ,O , { X } , I : X --+ O,
f(A) = { X = pre(X) + I) , f (B) = { X = pre(X) - 1 }),
{(g,x = 10, B),(B,X = 0, A),(A,X # 10, A),(B,X # 0, B)})

In the graphical notation of the example, we omitted the two loops (A, X # 10, A)
and (B,X # 0, B).

192

4.2 S e m a n t i c s by Translation into Mini-Lustre

The main idea is to translate the automaton structure of a mode-automaton
into mini-Lustre, in a very classical and straightforward way. Then we gather all
the sets of equations attached to states into a single conditional structure. We
choose to encode each state by a Boolean variable. Arguments for a more efficient
encoding exist, and such an encoding could be applied here, independently from
the other part of the translation. However, it is sometimes desirable tha t the
pure Lustre program obtained from mode-automata be readable; in this case,
a clear (and one-to-one) relation between states in the mode-automaton, and
variables in the Lustre program, is required.

The function /: associates a mini-Lustre program with a mode-automaton.
We associate a Boolean local variable with each state in Q = {q0, ql, ..., qn), with
the same name. Hence:

~ ((q , qo,]:~, l;o,27, f , T)) = ():~, ~;o,Q,e,J)

The initial values of the variables in]2o are given by the initialization function 27
of the mode-automaton, hence Vx E ~;o, J(x) = Z(x) . For the local variables of
the mini-Lustre program, which correspond to the states of the mode-automaton,
we have: J(qo) = true and J(q) = false, Vq ~ q0.

The equation for a local variable q that encodes a state q expresses that we
are in state q at a given instant if and only if we were in some state q~, and a
transition (q', c, q) could be taken. Note that, because the automaton is reactive,
the system can always take a transition, in any state. A particular case is q' = q:
staying in a state means taking a loop on that state, at each instant

for q �9 Q, e(q) is the expression: V pre (q' A c)
(q',c,q)ET

For x �9 12o, e(x) is the expression :

if q0 then f(q0)else if ql then f(ql).. .else if q~ then f(q~)

The mini-Lustre program obtained for the example is the following (note
that pre(A and X = 10) is the same as pre(A) and pre(X) = 10, hence the
equations have the form required in the definition of mini-Lustre).

])~ = ~ 14 -- {X)])~ = {A, B)
f(X) :if A then pre(X)+l else pre(X)-I

f(A) :pre (A and not X=IO) or pre(B and X = O)

f(B) :pre (B and not X=O) or pre(A and X = 10)

I (X) = 0 I (A) = true I (B) = fa l se

5 C o m p o s i t i o n s o f M o d e - A u t o m a t a

5.1 Parallel Compos i t ion wi th Shared Variables

A single mode-automaton is appropriate when the structure of the running
modes is flat. Parallel composition of mode-automata is convenient whenever

193

the modes can be split into at least two orthogonal sets, such that a set of
modes is used for controlling some of the variables, and another set of modes is
used for controlling other variables.

v:o[
Y = 1 0

~ ~ ~ - . . _ _ . _ . Y ----- 0

Y = pre(Y) q- 1 Y = p r e (Y) - 1

xX_> 10_2o
<50

X=pre(X) + Y X = pre(X) - Y

Fig. 2. Parallel composition of mode-automata, an example

Def in i t i on Provided l}o 1 N l~o2 = 0, we define the parallel composition of two
mode-automata by :

(Q1, qo ~ ' T 1, V~, Vo ~, Z 1 , fx)[I (Q2, qo 2, T 2, V?, 1;o2, Z 2, f2) =
(Q1 x Q2,(q~,q2),(])l O'l)?)\Vo 1 \)2O2, Vo 1 UI)O2,Z,f)

Where:

Similarly:

S fl(ql)(X) if X e Yo 1
f(ql'q2)(X) = "~ ff(q2)(X) otherwise, i.e. if X e 1;o 2

Z(X) = f zl (X) if X E Vo 1
~, Z 2 (X) if X E 1)o2

And the set T of global transitions is defined by:

(qI,CI,q'I) E TI A(q2,C2,q'2) E T 2 ---> ((ql,q2),CI AC2,(q'I,q'2)) E T

The following property establishes a relationship between the parallel com-
position defined for mode-automata as a synchronous product, and the intrinsic
parallelism of Lustre programs, captured by the union of sets of equations:

Property 2
s) ,~ ~(M~) U L(M2) []

194

5,2 I d e a s for H i e r a r c h i c M o d e s

A very common notion related to modes is tha t of sub-modes. In the hierarchic
composition below, the equation X = pre(X) - 1 associated with state D is
shared by the two submodes, while these submodes have been introduced for
defining Y more precisely. Note tha t the scope of Y is the whole program, not
only state D. Splitting state D for refining the definition of Y has something to
do with equivalences of mode-au tomata (see below). Indeed, we would like the
hierarchic composition to be defined in such a way tha t the program of figure 3
be "equivalent" to that of figure 4, where the program associated with state D
uses a Boolean variable q. "Refining" (or exploding) the conditional definition of
Y into the mode-automaton with states A, B of figure 3 is the work performed
by the Lustre compiler, when building an interpreted au tomaton from a Lustre
program.

IX, Y : O]
~D X=pre (X) - I

Y = I O

Y = pre(Y) + 1 Y -- pre(Y) - 1

~, X=pre(X)+l
X=IO Y=pre(Y)+2

J
X=O

Fig. 3. Hierarchic composition of mode-automata, an example

X, Y, q : 0 q=0

X=pre(X)+l

X = 0 I_Y=pre(Y)+2

q=if pre(q=O and Y=IO or q= l and Y r then 1 else 0
I Y= if q=O then pre(Y) + 1 else pre(Y) - 1

[_X=pre(X)-I

Fig. 4. Describing Y with a conditional program (q = 0 corresponds to A; q --- 1
corresponds to B)

195

6 C o n g r u e n c e s o f M o d e - A u t o m a t a

We try to define an equivalence relation for mode-automata, to be a congruence
for the parallel composition.

There are essentially two ways of defining such an equivalence : either as
a relation induced by the existing trace equivalence of Lustre programs; or by
an explicit definition on the structure of mode-automata, inspired by the trace
equivalence of automata. The idea is that , if two states have equivalent sets of
equations, then they can be identified.

D e f i n i t i o n 7 (I n d u c e d e q u i v a l e n c e o f m o d e - a u t o m a t a) .
M1 --i M2 < ;- /~(M1) ~/~(M2) (see definition ~ for ..~). []

D e f i n i t i o n 8 (D i r e c t e q u i v a l e n c e o f m o d e - a u t o m a t a) . The direct equiva-
lence is a bisimulation, taking the labeling of states into account:

(Ql, q~, Tl,1)~, l)xo , El, f 1) =d (Q2, q2, T2, l;~, V2o , iZ'2, f2) r
3R C_ Rs such that:

e R ^
I (ql,cl,qn) E T 1 ===~ 3qt2,c 2 s. t. (q2,c2,q '2) E T 2

(ql,q2) E R ~ A (qn,q,2) E R
A C 1 = C 2

and conversely.

Where Rs C Q1 • Q2 is the relation on states induced by the equivalence of the
attached sets of equations: (ql,q2) E R, ~ f l(ql) ~ f2(q2) (see definition 5
for ~). []

Note: the conditions labeling transitions are Boolean expressions with subex-
pressions of the form a#b, where a and b are integer constants or variables, and
is a comparison operator yielding a Boolean result. We can always consider
that these conditions are expressed as sums of monomials, and that a transition
labeled by a sum c V c' is replaced by two transitions labeled by c and c ~ (be-
tween the same states). Hence, in the equivalence relation defined above, we can
require that the conditions c 1 and c 2 match. Since c I -- c 2 is usually undecidable
(it is not the syntactic identity), the above definition is not practical.

It is important to note that the two equivalences do not coincide: M1 ----d
M2 ==~ M1 - i M2, but this is not an equivalence. Translating the mode-
automaton into Lustre before testing for equivalence provides a global compari-
son of two mode-automata. On the contrary, the second definition of equivalence
compares subprograms attached to states, and may fail in recognizing that two
mode-automata describe the same global behaviour, when there is no way of
establishing a correspondence between their states (see example below).

Example 1. Let us consider a program that outputs an integer X. X has three
different behaviours, described by: B1 : X = pre(X) + 1, B2 : X = pre(X) + 2

196

and B3 : X = w e (X) - 1. The transitions between these behaviours are triggered
by conditions on X: Cij is the condition for switching from Bi to Bj.

A mode-automaton M1 describes B1 and B2 with a state q12, and B3 with
another state q3. Of course the program associated with q12 has a conditional
structure, depending on C12, C21 and a Boolean variable. The program associ-
ated with q3 is B3.

Now, consider the mode-automaton 11//2 that describes B1 with a state q~, B2
and B3 with a state q23. In M2, the program associated with q23 has a conditional
structure.

There is no relation R between the states of M1 and the states of M2 that
would allow to recognize that they are equivalent. Translating them into mini-
Lustre is a way of translating them into single-state mode-machines (with con-
ditional associated programs), and it allows to show that they are indeed equiv-
alent. On the other hand, if we are able to split ql~ into two states, and q~3 into
two states (as suggested in section 5.2) then the two machines have three states,
and we can show that they are equivalent. []

P r o p e r t y 3 : Congruences of m o d e - a u t o m a t a
The two equivalences are congruences for parallel composition. []

7 R e l a t e d W o r k a n d C o m m e n t s o n t h e N o t i o n o f M o d e

We already explained in section 2.3 that there exists no construct dedicated
to the expression of modes in the main synchronous programming languages.
Mode-automata are a proposal for that. They allow to distinguish between ex-
plicit states (corresponding to modes, and described by the automaton part of
the program) and implicit states (far more detailed and grouped into modes,
described by the dataflow equational part of the program). This is an answer for
people who argue that modes should not be related to states, because they are
far more states than modes.

Other people argue that modes are not necessarily exclusive. The modes in
one mode-automaton are exclusive. However, concurrent modes are elements of
a Cartesian product, and can share something. Similarly, two submodes of a
refined mode also share something. We tried to find a motivation for (and thus
a definition of) non-exclusive modes.

Modecharts have recently joined the synchronous community, and we can
find an Esterel-like semantics in [PSM96]. In this paper, modes are simply hi-
erarchical and concurrent states like in Argos [Mar92]. It is mentioned that "the
actual interaction with the environment is produced by the operations associated
with entry and exit events'. Hence the modes are not dealt with in the language
itself; the language allows to describe a complex control structure, and an exter-
nal activity can be attached to a composed state. It seems that the activity is
not necessarily killed when the state is left; hence the activities associated with

197

exclusive states are not necessarily exclusive. This seems to be the motivation
for non-exclusive modes. Activities are similar to the external tasks of Esterel
but, in Esterel, the way tasks interfere with the control struture is well defined
in the language itself.

Real-time mode-machines have been proposed in [Pay96]. In this paper, modes
are collections of states, in the sense recalled above (section 2.1). These collec-
tions are exhaustive but not exclusive. However, it seems that this requirement
for non-exclusivity is related to pipelining of the execution: part of the system
is still busy with a given piece of data, while another part is already using the
next piece of data. The question is whether pipelining has anything to do with
overlapping or non-exclusive modes. In software pipelining, there may be two
components running in parallel and corresponding to the same piece o] source
program; if this portion of source describes modes, it may be the case that the
two execution instances of it are in different modes at the same time, because one
of them starts treating some piece of data, while the other one finishes treating
another piece of data. Each instance is in exactly one mode at a given instant;
should this phenomenon be called "non-exclusive modes" ?

We are still searching for examples of non-exclusive modes in reactive systems.

8 I m p l e m e n t a t i o n a n d F u r t h e r W o r k

We presented mode-automata, a way to deal with modes in a synchronous lan-
guage. Parallel composition is well defined, and we also have a congruence of
mode-automata, w.r.t, this operation. We still have to study the hierarchic com-
position, following the lines of [HMP95] (in this paper we proposed an extension
of Argos dedicated to hybrid systems, as a description language for the tool
Polka [HPR97], in which hybrid automata may be composed using the Argos
operators. In particular, hierarchic composition in HybridArgos is a way to ex-
press that a set of states share the same description of the environment). We shall
also extend the language of mode-automata by allowing full Lustre in the equa-
tions labeling the states (clocks, node calls, external functions or procedures...).
Mode-automata composed in parallel are already available as a language, com-
piled into pure Lustre, thus benefiting from all the lustre tools.

We said in section 2 that "It should be possible to project a program onto a
given mode, and obtain the behaviour restricted to this mode". How can we do
that for programs made of mode-automata? When a program is reduced to a
single mode-antomaton, the mode is a state, and extracting the subprogram of
this mode consists in taking the equations associated with this state. The object
we obtain is a mini-Lustre program without initial state. When the program is
something more complex, we are still able to extract a non-initialized mini-Lustre
program for a given composed mode; for instance the program of a parallel mode
(q, q~) is the union of the programs attached to q and q~.

Projecting the complete program onto its modes may be useful for generat-
ing efficient sequential code. Indeed, the mode-structure clearly identifies which
parts of a program are active at a given instant. In the SCADE (Safety Critical

198

Application Development Environment) tool sold by Verilog S.A. (based upon a
commercial Lustre compiler), designers use an activation condition if they want
to express that some part of the dataflow program should not be computed at
each instant. It is a low level mechanism, which has to be used carefully: the
activation condition for subprogram P is a Boolean flow' computed elsewhere in
the dataflow program. Our mode structure is a higher level generalization of this
simple mechanism. It is a real language feature, and it can be used for better
code generation.

Another interesting point about the mode-structure of a program is the possi-
bility of decomposing proofs. For the decomposition of a problem into concurrent
tasks, and the usual parallel compositions that support this design, people have
proposed compositional proof rules, for instance the assume-guarantee scheme.
The idea is to prove properties separately for the components, and to infer some
property of the global system. We claim that the decomposition into several
modes - - provided the language allows to deal with modes explicitly, i.e. to
project a global program onto a given mode - - should have a corresponding
compositional proof rule. At least, a mode-automaton is a way of identifying a
control structure in a complex program. It can be used for splitting the work in
analysis tools like Polka [HPR97].

References

[BB91]

[BCH+85]

[CHPP87]

[cs95]

[GBBG85]

[Hat87]

[HMP95]

[HPR97]

[JLMR94]

A. Benveniste and G. Berry. Another look at real-time programming. Special
Section of the Proceedings of the IEEE, 79(9), September 1991.
J-L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud, and E. Pilaud. Outline
of a real time data-flow language. In Real Time Systems Symposium, San
Diego, September 1985.
P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. LUSTRE, a declarative
language for programming synchronous systems. In 14th Symposium on
Principles of Programming Languages, Munich, January 1987.
C2A-SYNCHRON. The common format of synchronous languages - The
declarative code DC version 1.0. Technical report, SYNCHRON project,
October 1995.
P. Le Guernic, A. Benveniste, P. Bournai, and T. Gauthier. Signal: A data

flow oriented language for signal processing. Technical report, IRISA report
246, IRISA, Rennes, France, 1985.
D. Hazel. Statechazts : A visual approach to complex systems. Science of
Computer Programming, 8:231-275, 1987.
N. Halbwachs, F. Mazaninchi, and Y. E. Proy. The railroad crossing prob-
lem, modeling with hybrid argos - analysis with polka. In Second European
Workshop on Real-Time and Hybrid Systems, Grenoble (France), June 1995.
N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time sys-
tems using linear relation analysis. Formal Methods in System Design,
11(2):157-185, August 1997.
M. Jourdan, F. Lagnier, F. Maraninchi, and P. Raymond. A multipazadigm
language for reactive systems. In In 5th IEEE International Conference on
Computer Languages, Toulouse, May 1994. IEEE Computer Society Press.

199

pM88]

[Mar92]

[MH96]

[MMP91]

[Pay96]

[PSM96]

[RM95]

Farnam Jahanian and Aloysius Mok. Modechart: A specification language
for real-time systems. IEEE Transactions on Software Engineering, 14,
1988.
F. Maraninchi. Operational and compositional semantics of synchronous
automaton compositions. In CONCUR. LNCS 630, Springer Verlag, August
1992.
F. Maraninchi and N. Halbwachs. Compiling argos into boolean equations.
In Formal Techniques for Real-Time and Fault Tolerance (FTRTFT), Up-
psala (Sweden), September 1996. Springer verlag, LNCS 1135.
O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In REx
Workshop on Real-Time: Theory in Practice, DePlasmolen (Netherlands),
June 1991. LNCS 600, Springer Verlag.
S. Paynter. Real-time mode-machines. In Formal Techniques for Real-Time
and Fault Tolerance (FTRTFT), pages 90-109. LNCS 1135, Springer Verlag,
1996.
Carlos Puchol, Douglas Stuart, and Aloysius K. Mok. An operational se-
mantics and a compiler for modechart specificiations. Technical Report
CS-TR-95-37, University of Texas, Austin, July 1, 1996.
E. Rutten and F. Martinez. SIGNALGTI, implementing task preemption
and time interval in the synchronous data-flow language SIGNAL. In 7th
Euromiero Workshop on Real Time Systems, Odense (Denmark), June 1995.

