
 Open access Proceedings Article DOI:10.1109/DASC.2003.1245813

Mode confusion analysis of a flight guidance system using formal methods
— Source link

Anjali Joshi, Steven P. Miller, Mats P. E. Heimdahl

Institutions: University of Minnesota, Rockwell Collins

Published on: 02 Dec 2003 - Document Analysis Systems

Topics: Formal methods, Formal verification and Guidance system

Related papers:

 Using model checking to help discover mode confusions and other automation surprises

 Analyzing Software Specifications for Mode Confusion Potential

 A formal methods approach to the analysis of mode confusion

 How in the world did we ever get into that mode? Mode error and awareness in supervisory control

 Model checking

Share this paper:

View more about this paper here: https://typeset.io/papers/mode-confusion-analysis-of-a-flight-guidance-system-using-
1w5n1iaec2

https://typeset.io/
https://www.doi.org/10.1109/DASC.2003.1245813
https://typeset.io/papers/mode-confusion-analysis-of-a-flight-guidance-system-using-1w5n1iaec2
https://typeset.io/authors/anjali-joshi-3yt3dqnqmp
https://typeset.io/authors/steven-p-miller-4zbq77sd6b
https://typeset.io/authors/mats-p-e-heimdahl-4482ems4hz
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/institutions/rockwell-collins-j7xu8d6f
https://typeset.io/conferences/document-analysis-systems-xia5ey43
https://typeset.io/topics/formal-methods-7wam6ooj
https://typeset.io/topics/formal-verification-42wfiuvr
https://typeset.io/topics/guidance-system-32n464cy
https://typeset.io/papers/using-model-checking-to-help-discover-mode-confusions-and-1692qkixno
https://typeset.io/papers/analyzing-software-specifications-for-mode-confusion-47tyyw2noe
https://typeset.io/papers/a-formal-methods-approach-to-the-analysis-of-mode-confusion-2y8acsvuz8
https://typeset.io/papers/how-in-the-world-did-we-ever-get-into-that-mode-mode-error-1ptd2qtqkr
https://typeset.io/papers/model-checking-s5af6to30y
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/mode-confusion-analysis-of-a-flight-guidance-system-using-1w5n1iaec2
https://twitter.com/intent/tweet?text=Mode%20confusion%20analysis%20of%20a%20flight%20guidance%20system%20using%20formal%20methods&url=https://typeset.io/papers/mode-confusion-analysis-of-a-flight-guidance-system-using-1w5n1iaec2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/mode-confusion-analysis-of-a-flight-guidance-system-using-1w5n1iaec2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/mode-confusion-analysis-of-a-flight-guidance-system-using-1w5n1iaec2
https://typeset.io/papers/mode-confusion-analysis-of-a-flight-guidance-system-using-1w5n1iaec2

MODE CONFUSION ANALYSIS OF A FLIGHT GUIDANCE SYSTEM

USING FORMAL METHODS
Anjali Joshi, Department of Computer Science and Engineering, University of Minnesota,

Minneapolis, MN 55455 USA

 Steven P. Miller, Advanced Technology Center, Rockwell Collins Inc.,

Cedar Rapids, IA 52498 USA

Mats P.E. Heimdahl, Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN 55455 USA

Introduction
Advancements in digital avionics systems have

accounted for much of the improvement in air

safety seen over the last few decades. At the same

time, the growing complexity of these systems

places greater demands on the flight crew and in-

creases the risk of mode confusion, a phenomenon

in which pilots become confused about the status of

the system and interact with it incorrectly. To fly

commercial flights today, pilots must master several

complex, dynamically interacting systems, often

operating at different levels of automation. These

systems typically have many different modes of op-
eration, with different responses to crew actions

and the other systems in each mode. Mode confu-

sion occurs when the flight crew believes they are

in a mode different than the one they are actually in

and consequently make inappropriate requests or

responses to the automation. Mode confusion can

also occur when the flight crew does not fully un-

derstand the behavior of the automation in certain

modes, i.e., when the crew have a poor “mental

model” of the automation [4], [10], [9]. This same

phenomenon is sometimes referred to by the more

general name of automation surprises.

There is mounting evidence that mode confusion is

an important safety concern. Several aircraft acci-

dents and incidents involving mode confusion are

listed in [7]. A study conducted by the Massachu-

setts Institute of Technology found 184 incidents

attributed to mode awareness problems in NASA's

Aviation Safety Reporting System (ASRS) [21]. In

a survey of 1,268 pilots published in 1999 by the

 This work was supported in part by the NASA Aviation Safety

program and the Langley Research Center under Contract

NCC-01001.

Australian Bureau of Air Safety Investigation

(BASI), 73% of the respondents indicated that they

had inadvertently selected a wrong mode. More-

over, 61% of the respondents agreed that there were

still things about the automation that took them by

surprise [2]. Of 536 interventions recommended by

the Loss of Control Joint Safety Analysis Team

(JSAT), they recommended improved training of

automated flight systems as their 6
th
 most important

intervention and improved feedback from the auto-

mation as their 22
nd

 most important intervention [6].

Advisory Circular AC/ACJ 25.1329 on Flight

Guidance System Approval identifies “autoflight

mode confusion as a significant safety concern” [1].

The basic premise behind detecting mode con-

fusion through analysis of system requirements or

design specifications is that certain design features
or patterns are more likely to cause mode confusion
than others. Studies by Sarter and Woods have

found evidence for this hypothesis [17], [18], [19],

[20], and Leveson, et. al. [9] used their work to

identify several categories of problematic design

features. In [10], we extended this work with addi-

tional examples from the literature and a checklist

of specific design features to be searched for during

manual reviews. This taxonomy and checklist was

used as the basis for an informal review for poten-

tial sources of mode confusion in a representative

specification of a Flight Guidance System mode

logic [11], [12].

This paper describes the use of automated

analysis tools, such as model-checkers [5] and

theorem provers [13], to search for potential

sources of mode confusion in a representative

specification of the mode logic of a Flight Guidance

System [11].

The Problem Domain
In our studies we have used the Flight Guid-

ance domain. The following sub-sections provide a

brief overview of the Flight Guidance System with

an emphasis on the mode logic.

The Flight Guidance System
A Flight Guidance System (FGS) is a compo-

nent of the overall Flight Control System (FCS). It

compares the measured state of an aircraft (position,

speed, and altitude) to the desired state and gener-

ates pitch and roll guidance commands to minimize

the difference between the measured and desired

state. A simplified overview of an FCS that empha-

sizes the role of the FGS is shown in Figure 1.

Control
Surface

FMSL

Mode
Logic

Control
Laws

Mode
Logic

Auto
pilot PFDRPFDL

Air
DataL

Air
DataR

FMSR

FCP

FGSR
FGSL

Control
Laws

Figure 1: A section of the Avionics System

The flight crew interacts with the FGS primar-

ily through the Flight Control Panel (FCP). The

FCP includes switches for turning the Flight

Director (FD) on and off, and switches for selecting

the different flight modes. The FCP also supplies

feedback to the crew, indicating selected modes by

lighting lamps on either side of a selected mode's

switch.

The mode logic determines which lateral and

vertical modes of operation are active and armed at

any given time. These in turn determine which

flight control laws are active and armed. These are

annunciated, or displayed, on the Primary Flight

Displays (PFD) along with a graphical depiction of

the flight guidance commands generated by the

FGS. The Primary Flight Display annunciates es-

sential information about the aircraft, such as air-

speed, vertical speed, altitude, the horizon, and

heading. The active lateral and vertical modes are

annunciated at the top of the display.

The Flight Guidance System Mode Logic
A mode is defined by Leveson et. al. as a

mutually exclusive set of system behaviors [9]. The

primary modes of interest in an FGS are the lateral

and vertical modes. The lateral modes control the

behavior of the aircraft about the longitudinal, or

roll, axis, while the vertical modes control the

behavior of the aircraft about the vertical, or pitch,

axis. In addition, there are a number of auxiliary

modes, such as half-bank mode, that control other

aspects of the aircraft's behavior.

A mode is said to be selected if it has been

manually requested by the flight crew or if it has

been automatically requested by a subsystem such

as the FMS. The simplest modes have only two

states, cleared and selected. Some modes can be

armed to become active when a criterion is met. In

such modes, the two states armed and active are

sub-states of the selected state. Some modes also

distinguish between capturing and tracking of the

target reference or navigation source. Once in the

active state, such a mode's flight control law first

captures the target by maneuvering the aircraft to

align it with the navigation source or reference.

Once correctly aligned, the mode transitions to the

tracking state that holds the aircraft on the target.

Both the capture and track states are sub-states of

the active state and the mode's flight control law is

active in both states.

The mode logic consists of all the available

modes and the rules for transitioning between them.

Figure 2 provides an overview of the Flight Guid-

ance System modes. Traditionally, aircraft modes

are associated with a flight control law that deter-

mines the guidance provided to the flight director or

autopilot. For example, in Figure 2, there are lateral

modes of Roll Hold, Heading Hold, Navigation,

Lateral Approach, and Lateral Go Around. These

control the guidance about the longitudinal, or roll,

axis. Guidance about the vertical, or pitch, axis is

controlled by the vertical modes of Pitch, Vertical

Speed, Altitude Hold, Altitude Select, Vertical Ap-

proach, and Vertical Go Around. Each of these

modes are associated with one or more control

laws.

In order to provide effective guidance of the

aircraft, these modes are tightly synchronized.

Constraints enforce sequencing of modes that are

dictated by the characteristics of the aircraft and the

airspace. The mode logic is responsible for enforc-

ing these constraints.

Flight Modes

On
Vertical Modes

Off

Lateral Modes

Vertical Approach

Selected

Armed
Cleared

Active

Altitude Select

Selected

Cleared

Vertical Go Around

SelectedCleared

Navigation
Selected

Armed
Cleared

Active

Lateral Approach

Selected

Armed
Cleared

Active

Pitch
SelectedCleared

Vertical Speed
SelectedCleared

Altitude Hold
SelectedCleared

Roll Hold
SelectedCleared

Heading Hold

SelectedCleared

Active

Capture Track

Armed

Lateral Go Around

SelectedCleared

 Pilot Flying

RightLeft

 Independent Mode

OnOff

FD

OnOff

AP

DisengagedEngaged

Figure 2: FGS Mode Logic

The FGS mode logic used in this study was a

representative example created to explore different

specification and verification tools [11] and does

not describe an actual fielded product. The model is

specified in the formal specification language,

RSML
-e
 [22] (Requirements State Machine Lan-

guage Without Events), developed by the Critical

Systems Group at the University of Minnesota.

RSML
-e
 is a synchronous language derived from

RSML [8] (Requirements State Machine

Language), which was developed by Nancy

Leveson’s group at University of California, Irvine.

Mode Confusion Analysis
The basic premise behind detecting mode con-

fusion through analysis of system requirements or

design specifications is that certain design features
or patterns are more likely to cause mode confusion
than others. Studies by Sarter and Woods have

found evidence for this hypothesis [17], [18], [19],

[20], and based on these studies, Nancy Leveson, et.

al. [9] identified categories of design patterns that

have historically been a source of mode confusion.

In [4] and [10], we elaborated on a few of these

categories and sketched out a direction for

approaching mode confusion analysis using formal

methods. The authors also noted the need for under-

standing these categories well enough to formalize

them mathematically so as to perform formal analy-

sis. In this section, we first discuss the general strat-

egy of our formal approach to mode confusion

analysis. We then introduce the formal methods

tools that we used for the mode confusion analysis

and discuss their applicability to this type of analy-

sis. Finally, we provide a few examples of the

formalization of mode confusion properties and

performing the analysis with the help of these tools.

Formal Approach to Mode Confusion
Analysis

A novel aspect of our approach to mode confu-

sion analysis is that it emphasizes the use of formal

verification tools for exploration rather than verifi-
cation. In verification, one postulates a property

that is believed to be true of a model and uses the

verification tool to determine if the property holds

or not. When used for exploration, one postulates a

property that is probably false of the model, and

uses the verification tool to generate insights into

why the property is false.

For example, transitions to infrequently seen,

or off-normal, modes are often cited as a potential

source of mode confusion [9], [18]. Identifying all

the scenarios that can cause an off-normal mode to

be entered may not be obvious in a complex speci-

fication. The following paragraphs cast this

example as both a verification and an exploration

problem and describe our approach in each case.

When approached as a verification problem,

we first enumerate all the acceptable ways of

entering the mode and then verify that it is indeed

an exhaustive list. If we are unable to verify this,

i.e., there are other ways by which we can enter the

mode, we consider it to be an error in the

specification, change the specification to remove

the error, and repeat the process until the original

property is verified. The verification process can

thus be viewed as one of debugging the specifica-

tion to remove errors in it.

When approached as an exploration problem,

our aim is to search for all the unknown ways by

which the mode can be entered. To do this, we

postulate that there are no ways by which the mode

can be entered, then use the formal verification tool

to identify the ways in which this is not true, then

amend our property to state that there are no

scenarios by which the mode can be entered except

for these, and repeat the process until the property is

true. This list of ways in which the mode can be

entered can then be reviewed with pilots and

engineers to determine if any of them pose an

unacceptable risk of pilot confusion.

Most of the mode confusion analysis falls un-

der the exploration category, as we are typically

searching for new scenarios that may be a potential

source of mode confusion.

Formal Methods Tools
To analyze the FGS model for Mode confu-

sion, we made use of two analysis tools– the PVS

theorem prover and the NuSMV model checker.

The NuSMV Model Checking System
Model checking is a formal verification tech-

nique that allows one to check for safety and live-

ness properties of a model through exhaustive ex-

ploration of the state space. This makes verification

of properties highly automated and straightforward.

However, state space explosion limits the size of

the models that can be analyzed.

NuSMV is a re-implementation and extension

of SMV [5], the first model checker based on

BDDs. NuSMV has been designed to be an open

architecture for model checking, which can be re-

liably used for the verification of industrial designs,

as a core for custom verification tools, as a testbed

for formal verification techniques, and applied to

other research areas [13]. Properties to be verified

in NuSMV are specified using either branching

time logic (CTL) or linear time logic (LTL) [5].

The PVS Theorem Proving System
In contrast to model checkers, theorem provers

apply rules of inference to a specification in order

to derive new properties of interest. Theorem

provers are generally harder to use than model

checkers, requiring considerable technical expertise

and understanding of the specification. However,

theorem provers are not limited by the size of the

state space. Also, some properties that cannot be

easily specified using model checkers, such as

comparing properties of two arbitrary states that are

not temporally related, can be easily specified in the

languages of most theorem provers.

PVS is an environment for specification and

verification that has been developed at SRI Interna-

tional’s Computer Science Laboratory. The system

consists of a specification language, a parser, a type

checker, and an interactive proof checker. The PVS

specification language is based on higher order

logic with a richly expressive type system so that a

number of semantic errors in specification can be

caught during type checking. The PVS prover con-

sists of a powerful collection of inference steps that

can be used to reduce a proof goal to simpler sub-

goals that can be discharged automatically by the

primitive proof steps of the prover. The primitive

proof steps involve, among other things, the use of

arithmetic and equality decision procedure, auto-

matic rewriting, and BDD-based Boolean simplifi-

cation [13].

Applicability of the Formal Methods Tools to
Mode Confusion Analysis

Earlier studies support the applicability of

model checkers and theorem provers for mode con-

fusion analysis [4], [15], [16]. To make these for-

mal analysis tools applicable to our domain, the

critical systems research group at the University of

Minnesota built translators from the RSML
-e

specification language to the input languages of

NuSMV and PVS, allowing us to apply these

formal analysis tools to the translated RSML
-e

specification. We used these tools to analyze the

translated FGS specification [11] originally defined

in RSML
-e
 for some of the patterns identified in the

mode confusion taxonomy [10]. This analysis using

NuSMV and PVS is described below.

When given a verification type of mode confu-

sion property, the NuSMV model checker can de-

termine either that the property is true or that there

is an error in the specification indicated by a

counter-example. When checking a false property,

NuSMV can find only one counter-example at a

time. For performing exploratory analysis with the

help of NuSMV, we need to proceed by dismissing

each counter-example that we encounter by adding

that condition as a known way of violating the

property and repeating the process until the prop-

erty is verified. Sometimes NuSMV will generate

several counter-examples due to a single higher-

level condition. In this case, the user may need to

find a single stronger condition that encompasses

all the specific counter-examples. Extracting rele-

vant information from the counter-examples is a

difficult job that often requires domain expertise.

Since the FGS mode logic consists almost en-

tirely of enumerated and Boolean types, it is ideally

suited to verification through model checking. Not

surprisingly, proving a property of the mode logic

with PVS usually required more effort than with

NuSMV. If our specification had included more

integer or real variables, this situation would

probably have been quite different. One surprise

was that once completed, the PVS proofs often ran

faster than the corresponding proof in NuSMV.

One advantage of using PVS for the ex-

ploratory analysis is that it lists all the violations of

the property as un-dismissed sub-goals of the proof

tree. With adequate knowledge of the domain, the

user can recognize an unprovable sub-goal at a

higher level in the proof tree. This avoids the bur-

den of extracting stronger conditions as in NuSMV.

Conversely, the user can proceed down the proof

tree by proving parts of a sub-goal to get a more

refined condition. An advantage of using PVS is

that the user has finer control of the level of detail

exposed in the sub-goals.

We found both NuSMV and PVS useful in

performing our analysis. Since the mode logic lends

itself so well to model checking, the level of auto-

mation provided by NuSMV would often save us

considerable time and effort. On the other hand, a

skilled user of PVS could often gain insights while

doing the proof that might be missed using

NuSMV. We also encountered some properties that

could not be specified in CTL or LTL but could be

expressed in PVS. These are discussed later.

Examples of Mode Confusion Patterns
and their Analysis

We analyzed our specification for several

patterns that might indicate a potential source of

mode confusion. In the following sub-sections, we

will describe in detail the formalization and analysis

of three major patterns. The analysis of the

remaining patterns was similar to these and hence is

described here only briefly.

Transitions between Normal and Off-normal
Modes

Sarter and Woods [18] found that most

difficulties related to mode confusion occur during

off-normal, time critical situations such as aborted

takeoff, disengagement from an automatic mode

during approach, or loss of glide slope signal during

final approach. In a complex specification, it may

be difficult to determine all the scenarios under

which an off-normal mode can be entered or exited.

Formal analysis tools such as a model checker or

theorem prover can be used to identify the

conditions under which these modes can be entered

or exited.

The general strategy to identify all the ways a

system can enter a mode is to first prove that the

system will indeed enter the mode for all the known

ways, and then try to prove that if none of these

conditions exist, the system will not enter the mode.

This will identify any unforeseen ways in which the

mode can be entered, which are then added to the

list of known ways. This process is repeated until

all the ways to enter the mode are identified. The

process is similar for finding all the ways a mode

can be exited.

A committee consisting of engineers, pilots,

and specialists in human factors identified Roll,

Pitch, and Overspeed modes as off-normal modes.

The selection of Roll and Pitch as off-normal modes

may be surprising, as these are the default modes of

operation. However, in our example, they are never

directly selected by the pilot. Instead, they are de-

fault modes that become active when the active

mode is deselected, either by the pilot or by the

system. For this reason, there are many ways to en-

ter these modes.

We performed an analysis of the ways ROLL

and Overspeed mode could be entered using both

PVS and NuSMV. When analyzing for ROLL

mode, we started with nineteen known ways of en-

tering ROLL mode. The first step was to verify that

each of these nineteen conditions indeed caused

entry into ROLL mode. This step frequently re-

vealed exceptions, forcing the conditions to be

strengthened. For example, in PVS, the condition,

that ROLL mode is entered when the FLC switch is

pressed while the mode annunciations are turned off

was originally stated as:

ROLL_Selected_If_FLC_Switch_Pressed_While_Modes
_Off: LEMMA =

verify((Is_This_Side_Active AND

NOT PREV(Is_ROLL_Selected) AND

NOT PREV(Mode_Annunciations_On) AND

When_FLC_Switch_Pressed_Seen) IMPLIES

ROLL == L(Selected))

The verification of this property lead to an unprov-

able sequent in PVS (and a counter-example in

NuSMV) pointing out that HDG mode rather than

ROLL mode would be selected if the pilot or copi-

lot pressed the HDG switch at the same time the

FLC switch was pressed. Consequently, the condi-

tion was modified to state that ROLL mode would

be entered if the modes are off and the FLC switch

is pressed and no other lateral model is requested
at the same time. After all the known ways in which

ROLL mode can be entered were proven, these

were encoded in a condition,

ROLL_Selected_Known_Ways, and the following

theorem was defined to verify that this was indeed

an exhaustive list of conditions causing entry into

ROLL mode:

ROLL_Not_Selected: THEOREM

verify(((NOT (PREV(ROLL)) == L(Selected)) AND

NOT ROLL_Selected_Known_Ways) IMPLIES

NOT (ROLL == L(Selected)))

Attempting to prove this theorem lead to unprov-

able sub-goals, which in turn lead to the discovery

of two additional ways of entering ROLL mode that

had been overlooked. We finally ended up with an

exhaustive list of twenty-one different ways of en-

tering ROLL mode. While none of these were sur-

prising in retrospect, it is notable that individuals

familiar with the specification were unable to come

up with an exhaustive list without formal analysis.

Unintended Side Effects
Unintended side effects occur when an action

intended to have one effect has an additional effect

not anticipated by the operators [9], [18]. These can

include unanticipated mode changes or changes in

the system state. Examples include changing a

mode when a new target value is entered, clearing

related data when new data are entered, or changing

a mode for one controller when a mode in a differ-

ent controller is changed. Not all side effects are

undesirable. Often, they provide convenient short-

cuts for the operator, such as turning the system on

if it is off when selecting a system function, or

clearing out data that is no longer valid. In some

cases, the absence of the side effect may itself be a

source of mode confusion if the operator anticipates

the side effect as a natural consequence of the

original operator action.

An effective way of identifying unintended

side effects, as well as several other potential

sources of mode confusion, is to identify the

response of the system to each operator input. Since

we already have an RSML
-e
 specification of how

the system responds to all its inputs, it is possible to

prove that the new partial specification (i.e., the

response of the system to a single operator input) is

consistent with the full specification. Typically, this

proof identifies several exceptions, which are the

side effects that are not well understood. We conse-

quently revise the specification of the expected

system response until we have captured the actual

system response to the operator input. These speci-

fication fragments provide valuable insight into

how the system behaves in a format that is often

obscured by the full model. Reviewing these

specification fragments with pilots and experts in

human factors can lead to the identification of

several potential sources of mode confusion.

The first step in this process is to identify the

possible operator inputs and to define the notion of

the system state. The next step is to specify how the

system state variables change in response to each

operator input. For the purpose of this analysis, it is

convenient to specify this change in state as a pri-

mary effect and several secondary effects.

For example, PVS can be used to detect unin-

tended side effects by defining what the primary

effect of each operator input should be, and then

trying to prove that for every state, the effect of that

input is only the primary effect. The exceptions to

this proof are the side effects. The proof statement

can then be strengthened to state the effect of the

input is the primary effect and all of the side ef-

fects. In this way, the list of side effects can be

enumerated.

To keep the proofs manageable, we chose to

do this by defining how each component of the

system state responds to each operator input. For

example, based on our experience with the FGS

system, we postulated that the effect of pressing the

FD switch on the first component of the system

state, the autopilot (AP), was to not affect the AP

state at all. This is stated in PVS as the lemma:

FD_Switch_AP_Side_Effects : LEMMA

verify((Is_This_Side_Active AND

When_FD_Switch_Pressed_Seen)

 IMPLIES (AP == PREV(AP)))

which claims that if this side of the FGS is active

and the FD switch is pressed and no higher priority

event preempts the pressing of the FD switch, then

the state of the AP is just its value in the previous

state. This lemma is easily proven in PVS in a few

seconds, confirming that pressing the FD switch has

no side effects on the AP.

The situation becomes more interesting as we

proceed to the display of the lateral and vertical

mode annunciations. The mode annunciations are

turned on when either the onside or the offside FD

are turned on and are turned off when both the on-

side and offside FDs are turned off. However, we

wish to define this not in terms of the onside and

offside FD, but in terms of the FD switch. After a

few iterations defining the behavior of the RSML
-e

mode annunciations when the FD switch is pressed

and trying to prove that behavior agrees with the

model, we proved the following PVS lemma

FD_Switch_Modes_Effects : LEMMA

verify((Is_This_Side_Active AND

 When_FD_Switch_Pressed_Seen) IMPLIES

 IF PREV(Modes) == L(Off)

THEN Modes == L(On)

ELSE

 IF (PREV(Onside_FD) == L(Off) OR

 Overspeed_Condition OR

 Is_AP_Engaged OR

 Offside_FD == L(On))

 THEN Modes == L(On)

 ELSE Modes == L(Off)

 ENDIF

ENDIF)

This lemma states that if this side of the FGS is

active and the FD switch is pressed and no higher

priority event preempts the FD switch, then if the

mode annunciations were off in the previous state,

they will be turned on. If the mode annunciations

were on in the previous state, then if the onside FD

was on in the previous state, or an Overspeed con-

dition exists, or the AP is engaged, or the offside

FD is on, then the mode annunciations will remain

on. Otherwise they will be turned off. As shown by

this simple proof, pressing the FD switch has rather

complicated side effects on the mode annunciations.

The remaining question is whether these side ef-

fects are appropriate, a question best answered by

experts in human factors and pilots. Depending on

the audience’s comfort with mathematical logic, it

may be necessary to present these results in a more

intuitive format.

This process is continued for each operator in-

put and each component of system state in order to

generate a complete description of how the system

state responds to each operator input. As shown by

these examples, the response of the system to each

input can be surprisingly complex. Even for some-

thing as simple as pressing the FD switch, the au-

thors of the full FGS specification found it difficult

to predict how each component of the system state

would change without using formal analysis.

Indirect Mode Changes / Hidden Modes
Indirect mode changes occur when the auto-

mation changes mode without an explicit instruc-

tion by the operator. Indirect mode changes are a

natural consequence of delegating tasks to the

automation and cannot be eliminated without losing

the benefits of automation. At the same time, indi-

rect mode changes are obvious sources of mode

confusion. Most indirect mode changes can be eas-

ily identified through inspection simply by review-

ing how the non-operator inputs are used.

A mode is operationally relevant if the system

responds differently to operator or sensor inputs

while in that mode. Hidden modes are operationally

relevant modes that are not annunciated. The entry

of a hidden mode differs from an indirect mode

change in that the operator receives no indication of

the change in behavior. While this is technically the

same thing as an un-annunciated indirect mode
change, hidden modes seem to be so frequently in-

volved in incidents of mode confusion that we have

chosen to identify them as a separate category.

Finding hidden modes in a large, complex

system appears to be an intrinsically hard problem.

These modes are hidden precisely because they are

buried in a sea of complex logic. What is needed is

a systematic way to search a large, complex

specification for hidden modes of behavior.

Fortunately, the same approach that was used to

search for unintended side effects can be used to

detect hidden modes. The basic idea is to determine

the change in the system state for each operator in-

put, i.e., to differentiate the specification with re-

spect to each operator input. This breaks a large,

complex specification down into many small frag-

ments that can be easily reviewed. Hidden modes

are identified by asking whether the pilot has suffi-

cient information to predict how each new state

value will be changed in response to the operator

input. Situations where the pilot does not have

sufficient information indicate the presence of a

hidden mode.

For example, consider the FD_Switch_Mode_

Effects lemma described in the discussion of unin-

tended side effects. This lemma states that the new

value of the mode annunciations are determined by

values of the previous system state (i.e.,

PREV(Modes) and PREV(Onside_FD)), and the

current inputs (i.e., Overspeed_Condition,

Is_AP_Engaged, and Offside_FD). The key ques-

tion is whether these values are available to the pi-

lot. The status of the mode annunciations and the

onside FD cues in the previous step are available on

the Primary Flight Display (PFD).
1
 The current

status of the autopilot (AP) is also displayed on the

PFD. An overspeed condition is annunciated by

both aural and visual alarms. However, the status of

the offside FD is visible to the pilot only by looking

at the copilot’s display (and vice-versa). If the

offside FD is not adequately visible to the pilot,

there is no way for the pilot to predict whether the

mode annunciations will turn off when pressing the

FD switch. This is a hidden mode.

While this is probably not a significant source

of mode confusion, it does illustrate a systematic

process by which hidden modes can be detected. In

effect, the exact same analysis done to identify un-

intended side effects can also be used to detect hid-

den modes.

Operator Authority Limits / Ignored Operator
Commands

Operator authority limits restrict the control of

the operators in order to prevent the system from

entering a hazardous state. An obvious danger of

operator authority limits is that they may prohibit

maneuvers that are required in extreme situations.

Another danger occurs when pilots are not aware

that these limits are in effect. Mode confusion can

also arise if the crew expects operator authority

limits to be in effect when they are not. This is es-

pecially true if the operator authority limits are pre-

sent in most but not all modes.

The operator authority limits of the most inter-

est are those related to continuous operator inputs,

such as moving the throttles or the yoke. Unfortu-

nately, the operator inputs in the FGS model are all

discreet inputs, such as pressing a mode switch or

1 We assume the pilot will recall the previous displayed values

given the standard 1/20th of a second refresh rate.

engaging the autopilot. Ignored Operator
commands are a special case of operator authority

limits directly relevant to such discreet inputs.

Ignored operator commands commonly occur

when a system ignores an operator command, not to

prevent entry of a hazardous state, but because the

command is meaningless in the current mode. Sim-

ply ignoring an operator command may or may not

be appropriate. In some situations, the operator

should receive an indication of why the command

has been rejected so that they can correct their

mental model. Also, without an indication that a

command has been rejected, the operator may think

the command has been accepted, leading to further

confusion. In other situations, it may be clear both

that the request has been ignored and why and pro-

viding the operator with more feedback is unneces-

sary.

To detect all ignored operator commands so

that each can be reviewed, one attempts to prove

that every operator input causes some visible

change in the system state. The exceptions to this

proof are ignored operator commands. This analysis

closely follows the unintended side effects and

hidden modes and is not described here further.

Interface Interpretation Errors
Interface interpretation errors are those in

which the system interprets user-entered values dif-

ferently than intended or maps multiple conditions

onto the same output depending on the controller’s

current mode [9], [18]. If the users misunderstand

what mode the system is in, or have a poor mental

model and do not understand how the current mode

affects the inputs or the outputs, they are likely to

enter the wrong values or become confused about

what the system is telling them.

Potential input interpretation errors can be de-

tected by looking at each operator input and deter-

mining if its effect on the system state is dependent

on the current state of the system or other inputs.

The analysis for this is very similar to that de-

scribed to detect unintended side effects and hidden
modes.

Lack of Appropriate Feedback
An important source of mode confusion is lack

of appropriate feedback about the system [9], [18],

referred to by Billings as opacity [3]. Feedback

about the current system state is obviously essen-

tial, but operators also need feedback about pending

changes to allow them to anticipate system behavior

[9], [18].

An obvious source of mode confusion occurs

when the operator is not provided with sufficient

information to distinguish between two different

configurations of system modes. To detect this, we

need to define what it means for two arbitrary states

to have the same modes and what it means for two

states to have the same mode annunciations. As it is

not possible to express properties about two

arbitrary states in CTL, we found PVS better suited

for searching for this potential source of mode

confusion than NuSMV.

Reviewing the list of FGS state variables, we

determined that two states s1 and s2 have the same

lateral modes if the following PVS predicate holds:

same_lateral_modes(s1,s2): boolean =

ROLL(s1) = ROLL(s2) AND

 HDG(s1) = HDG(s2) AND

NAV(s1) = NAV(s2) AND

NAV_Selected(s1) = NAV_Selected(s2) AND

LAPPR(s1) = LAPPR(s2) AND

LAPPR_Selected(s1) =
LAPPR_Selected(s2) AND

LGA(s1) = LGA(s2)

Similarly, states s1 and s2 have the same vertical

modes if the following PVS predicate holds:

same_vertical_modes(s1,s2): boolean =

PITCH(s1) = PITCH(s2) AND

VS(s1) = VS(s2) AND

FLC(s1) = FLC(s2) AND

ALT(s1) = ALT(s2) AND

ALTSEL(s1) = ALTSEL(s2) AND

ALTSEL_Selected(s1) =
ALTSEL_Selected(s2) AND

ALTSEL_Active(s1) =
ALTSEL_Active(s2) AND

 VAPPR(s1) = VAPPR(s2) AND

VAPPR_Selected(s1) =
 VAPPR_Selected(s2) AND

VGA(s1) = VGA(s2)

Finally, we define two states s1 and s2 to have the

same modes if the following PVS predicate holds:

same_modes(s1,s2): boolean =

AP(s1) = AP(s2) AND

Pilot_Flying(s1) = Pilot_Flying(s2) AND

Onside_FD(s1) = Onside_FD(s2) AND

Overspeed(s1) = Overspeed(s2) AND

Modes(s1) = Modes(s2) AND

same_lateral_modes(s1,s2) AND

same_vertical_modes(s1,s2)

In a similar manner, we define what it means for

two states to have the same annunciations. To de-

tect a situation where two different mode configu-

rations have the same annunciations, we attempt to

prove the following theorem:

Distinct_Mode_Annunciations : THEOREM

(NOT same_modes(s1,s2)) AND

(Is_This_Side_Active(s1) = &(TRUE)) AND

(Is_This_Side_Active(s2) = &(TRUE)) IMPLIES

NOT same_annunciations(s1,s2)

This theorem claims that if states s1 and s2 do not

have the same modes, their mode annunciations

must also be different. To simplify the proof, we

consider only the case where this side of the FGS is

active for each state. Since an inactive FGS sets its

modes to those of the active side, this is sufficient

to show that distinct mode configurations will have

distinct mode annunciations.

While this theorem can be proven directly in

PVS for the FGS model, it is simpler and more effi-

cient to first prove a number of smaller lemmas re-

lated to each mode and then use these lemmas in the

proof of the theorem. For example, to ensure that

two states s1 and s2 with different Flight Director

modes have different pilot displays, we prove the

following lemma:

Distinct_Onside_FD_Annunciations : LEMMA

NOT (Onside_FD(s1) = Onside_FD(s2)) IMPLIES

NOT(Onside_FD_On(s1) = Onside_FD_On(s2)) OR

NOT (Is_This_Side_Active(s1)=

 Is_This_Side_Active(s2))

stating that if the modes of the onside Flight Direc-

tor (Onside_FD) are different in the two states, than

either the indicators sent to the PFD

(Onside_FD_On) must be different or the FGS can-

not be active in both states.

Similarly, to show that two states with differ-

ent ROLL modes have different displays, we prove

the lemma:

Distinct_ROLL_Annunciations : LEMMA

((NOT (ROLL(s1) = ROLL(s2))) AND

(Is_This_Side_Active(s1) = &(TRUE)) AND

(Is_This_Side_Active(s2) = &(TRUE)))

IMPLIES

NOT (Is_ROLL_Active(s1) =

 Is_ROLL_Active(s2)) OR

NOT (Mode_Annunciations_On(s1) =

 Mode_Annunciations_On(s2))

Here, it is necessary to verify that either the value

sent to the PFD if ROLL mode is active

(Is_ROLL_Active) or the value sent to the PFD to

turn the mode annunciations on

(Mode_Annunciations_On) are different in the two

states. This is because Is_ROLL_Active is false if

ROLL mode is cleared (i.e., not selected) or if the

mode annunciations are turned off.

The lemmas proven for each mode are then

used to prove the overall theorem and show that any

two states with different mode configurations must

have different displays to the pilot in our model.

Conclusion
Mode awareness has been identified by several

researchers, the FAA, and the aviation industry as

an important safety concern. Despite this level of

interest, finding ways to detect and mitigate poten-

tial sources of mode confusion remains as much an

art as a science. The basic premise behind our ap-

proach is that certain design features or patterns are

more likely to cause mode confusion than others.

This paper describes an approach in which require-

ments and design documents can be analyzed for

potential sources of mode confusion through the use

of automated analysis tools, such as model-checkers

and theorem provers.

In particular, we have shown how formal

analysis methods can be used to identify several

potential sources of mode confusion in a system

specification. Even though our analysis was only

partial, we were able to find hidden modes, ignored

operator inputs, unintended side effects, lack of

feedback regarding current modes, and surprises in

how off-normal modes can be entered and exited in

our example specification. If this analysis was

applied to an actual system, these potential sources

of mode confusion could be taken back to the

engineers, pilots, and experts in human factors for

closer review.

References

[1] Anonymous, February 1, 2002, Flight Guidance

System Approval, Joint Advisory Circular AC/ACJ

25.1329.

[2] Austrailian Bureau of Air Safety Investigation

(BASI), June-August 1999, Advanced-technology

Aircraft Safety Survey Report, Flight Safety

Digest, pg. 137-216,.

[3] Billings, Charles E., 1997, Aviation Automation:

the Search for a Human Centered Approach,

Lawrence Erlbaum Associates, Inc., Mahwah, NJ.

[4] Butler, Ricky W., Steven P. Miller, James N.

Potts, Victor A. Carreno, October 1998, A Formal

Methods Approach to the Analysis of Mode

Confusion, in Proceedings of the 17th AIAA/IEEE

Digital Avionics Systems Conference, Bellevue,

WA.

[5] Clarke, Edmund M., Orna Grumberg, and Doron A.

Peled, 2001, Model Checking, The MIT Press,

Cambridge, Massachusetts.

[6] Commercial Aviation Safety Team, December 15,

2000, Final Report of the Loss of Control JSAT:

Results and Analysis, Paul Russell and Jay Pardee,

Co-Chairs,.

[7] Hughes, Dan, Michael Dornheim, January 30-

February 6, 1995, Automated Cockpits Special

Report, Parts I & II, Aviation Week & Space

Technology.

[8] Leveson, Nancy, Mats Heimdahl, Holly Hildreth,

Jon Reese, September 1994, Requirements

Specifications for Process-Control Systems, IEEE

Transactions on Software Engineering, 20(9):684-

707.

[9] Leveson, Nancy, L. Denise Pinnel, Sean David

Sandys, Shuichi Koga, Jon Damon Reese, March

1997, Analyzing Software Specifications for Mode

Confusion Potential, in Proceedings of a Workshop

on Human Error and System Development, C.W.

Johnson, Editor, pg. 132-146, Glasgow, Scotland.

[10] Miller, Steven P., February 2001, Taxonomy of

Mode Confusion Sources Final Report, NASA

Contractor Report.

[11] Miller, Steven P., Alan C. Tribble, Timothy M.

Carlson, Eric J. Danielson, November 2001, Flight

Guidance System Requirements Specification Final

Report, NASA Contractor Report.

[12] Miller, Steven P., February 2002, FGS Model

Visualization: Final Report, NASA Contractor

Report.

[13] NuSMV: A New Symbolic Model Checking,

available at http://nusmv.irst.itc.it/.

[14] PVS: Prototype Verification System, available at

http://www.csl.sri.com/projects/pvs/.

[15] Rushby, John, June 1999, Using Model Checking

to Help Discover Mode Confusions and Other

Automation Surprises, in the Proceedings of the 3

rd Workshop on Human Error, Safety, and System

Development (HESSD’99), Liege, Belgium.

[16] Rushby, John, Judith Crow, Everett Palmer,

October 1999, An Automated Method to Detect

Potential Mode Confusion, in the Proceedings of

the 18 th AIAA/IEEE Digital Avionics Systems

Conference (DASC), St. Louis, MO.

[17] Sarter, Nadine D., David D. Woods, April 1994,

Decomposing Automation: Autonomy, Authority,

Observability and Perceived Animacy, First

Automation Technology and Human Performance

Conference.

[18] Sarter, Nadine D., David D. Woods, 1995, How in

the World Did I Ever Get Into That Mode?, Mode

Error and Awareness in Supervisory Control,

Human Factors, 37(1), pg. 5-19.

[19] Sarter, Nadine D., David D. Woods, February

1995, Strong, Silent, and Out-of-the-Loop, CSEL

Report 95-TR-01, Ohio State University.

[20] Sarter, Nadine D., and David D. Woods, C. E.

Billings, 1997, Automaton Surprises, in Handbook

of Human Factors/Ergonomics, 2 nd Edition, G.

Salvendy (editor), Wiley, New York.

[21] Vakil, Sanjay S. and John R. Hansman,.Jr., 2002,

“Approaches to Mitigating Complexity-Driven

Issues in Commercial Autoflight Systems,”

Reliability Engineering and System Safety, Vol. 75,

pp. 133-145,.

[22] Whalen, Michael W., May 2000, A Formal

Semantics of RSML
-e

, Master’s Thesis, University

of Minnesota.

