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Introduction     
Advancements in digital avionics systems have 

accounted for much of the improvement in air 

safety seen over the last few decades. At the same 

time, the growing complexity of these systems 

places greater demands on the flight crew and in-

creases the risk of mode confusion, a phenomenon 

in which pilots become confused about the status of 

the system and interact with it incorrectly. To fly 

commercial flights today, pilots must master several 

complex, dynamically interacting systems, often 

operating at different levels of automation. These 

systems typically have many different modes of op-
eration, with different responses to crew actions 

and the other systems in each mode. Mode confu-

sion occurs when the flight crew believes they are 

in a mode different than the one they are actually in 

and consequently make inappropriate requests or 

responses to the automation. Mode confusion can 

also occur when the flight crew does not fully un-

derstand the behavior of the automation in certain 

modes, i.e., when the crew have a poor “mental 

model” of the automation [4], [10], [9]. This same 

phenomenon is sometimes referred to by the more 

general name of automation surprises. 

There is mounting evidence that mode confusion is 

an important safety concern. Several aircraft acci-

dents and incidents involving mode confusion are 

listed in [7]. A study conducted by the Massachu-

setts Institute of Technology found 184 incidents 

attributed to mode awareness problems in NASA's 

Aviation Safety Reporting System (ASRS) [21]. In 

a survey of 1,268 pilots published in 1999 by the 
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Australian Bureau of Air Safety Investigation 

(BASI), 73% of the respondents indicated that they 

had inadvertently selected a wrong mode. More-

over, 61% of the respondents agreed that there were 

still things about the automation that took them by 

surprise [2]. Of 536 interventions recommended by 

the Loss of Control Joint Safety Analysis Team 

(JSAT), they recommended improved training of 

automated flight systems as their 6
th
 most important 

intervention and improved feedback from the auto-

mation as their 22
nd

 most important intervention [6]. 

Advisory Circular AC/ACJ 25.1329 on Flight 

Guidance System Approval identifies “autoflight 

mode confusion as a significant safety concern” [1]. 

The basic premise behind detecting mode con-

fusion through analysis of system requirements or 

design specifications is that certain design features 
or patterns are more likely to cause mode confusion 
than others. Studies by Sarter and Woods have 

found evidence for this hypothesis [17], [18], [19], 

[20], and Leveson, et. al. [9] used their work to 

identify several categories of problematic design 

features. In [10], we extended this work with addi-

tional examples from the literature and a checklist 

of specific design features to be searched for during 

manual reviews. This taxonomy and checklist was 

used as the basis for an informal review for poten-

tial sources of mode confusion in a representative 

specification of a Flight Guidance System mode 

logic [11], [12]. 

This paper describes the use of automated 

analysis tools, such as model-checkers [5] and 

theorem provers [13], to search for potential 

sources of mode confusion in a representative 

specification of the mode logic of a Flight Guidance 

System [11].  



The Problem Domain 
In our studies we have used the Flight Guid-

ance domain. The following sub-sections provide a 

brief overview of the Flight Guidance System with 

an emphasis on the mode logic.  

The Flight Guidance System  
A Flight Guidance System (FGS) is a compo-

nent of the overall Flight Control System (FCS). It 

compares the measured state of an aircraft (position, 

speed, and altitude) to the desired state and gener-

ates pitch and roll guidance commands to minimize 

the difference between the measured and desired 

state. A simplified overview of an FCS that empha-

sizes the role of the FGS is shown in Figure 1. 
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Figure 1: A section of the Avionics System 

The flight crew interacts with the FGS primar-

ily through the Flight Control Panel (FCP). The 

FCP includes switches for turning the Flight 

Director (FD) on and off, and switches for selecting 

the different flight modes. The FCP also supplies 

feedback to the crew, indicating selected modes by 

lighting lamps on either side of a selected mode's 

switch. 

The mode logic determines which lateral and 

vertical modes of operation are active and armed at 

any given time. These in turn determine which 

flight control laws are active and armed. These are 

annunciated, or displayed, on the Primary Flight 

Displays (PFD) along with a graphical depiction of 

the flight guidance commands generated by the 

FGS. The Primary Flight Display annunciates es-

sential information about the aircraft, such as air-

speed, vertical speed, altitude, the horizon, and 

heading. The active lateral and vertical modes are 

annunciated at the top of the display. 

The Flight Guidance System Mode Logic 
A mode is defined by Leveson et. al. as a 

mutually exclusive set of system behaviors [9]. The 

primary modes of interest in an FGS are the lateral 

and vertical modes. The lateral modes control the 

behavior of the aircraft about the longitudinal, or 

roll, axis, while the vertical modes control the 

behavior of the aircraft about the vertical, or pitch, 

axis. In addition, there are a number of auxiliary 

modes, such as half-bank mode, that control other 

aspects of the aircraft's behavior. 

A mode is said to be selected if it has been 

manually requested by the flight crew or if it has 

been automatically requested by a subsystem such 

as the FMS. The simplest modes have only two 

states, cleared and selected. Some modes can be 

armed to become active when a criterion is met. In 

such modes, the two states armed and active are 

sub-states of the selected state. Some modes also 

distinguish between capturing and tracking of the 

target reference or navigation source. Once in the 

active state, such a mode's flight control law first 

captures the target by maneuvering the aircraft to 

align it with the navigation source or reference. 

Once correctly aligned, the mode transitions to the 

tracking state that holds the aircraft on the target. 

Both the capture and track states are sub-states of 

the active state and the mode's flight control law is 

active in both states. 

The mode logic consists of all the available 

modes and the rules for transitioning between them. 

Figure 2 provides an overview of the Flight Guid-

ance System modes. Traditionally, aircraft modes 

are associated with a flight control law that deter-

mines the guidance provided to the flight director or 

autopilot. For example, in Figure 2, there are lateral 

modes of Roll Hold, Heading Hold, Navigation, 

Lateral Approach, and Lateral Go Around. These 



control the guidance about the longitudinal, or roll, 

axis. Guidance about the vertical, or pitch, axis is 

controlled by the vertical modes of Pitch, Vertical 

Speed, Altitude Hold, Altitude Select, Vertical Ap-

proach, and Vertical Go Around. Each of these 

modes are associated with one or more control 

laws. 

In order to provide effective guidance of the 

aircraft, these modes are tightly synchronized. 

Constraints enforce sequencing of modes that are 

dictated by the characteristics of the aircraft and the 

airspace. The mode logic is responsible for enforc-

ing these constraints. 
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Figure 2: FGS Mode Logic 



 

The FGS mode logic used in this study was a 

representative example created to explore different 

specification and verification tools [11] and does 

not describe an actual fielded product. The model is 

specified in the formal specification language, 

RSML
-e
 [22] (Requirements State Machine Lan-

guage Without Events), developed by the Critical 

Systems Group at the University of Minnesota. 

RSML
-e
 is a synchronous language derived from 

RSML [8] (Requirements State Machine 

Language), which was developed by Nancy 

Leveson’s group at University of California, Irvine. 

Mode Confusion Analysis 
The basic premise behind detecting mode con-

fusion through analysis of system requirements or 

design specifications is that certain design features 
or patterns are more likely to cause mode confusion 
than others. Studies by Sarter and Woods have 

found evidence for this hypothesis [17], [18], [19], 

[20], and based on these studies, Nancy Leveson, et. 

al. [9] identified categories of design patterns that 

have historically been a source of mode confusion. 

In [4] and [10], we elaborated on a few of these 

categories and sketched out a direction for 

approaching mode confusion analysis using formal 

methods. The authors also noted the need for under-

standing these categories well enough to formalize 

them mathematically so as to perform formal analy-

sis. In this section, we first discuss the general strat-

egy of our formal approach to mode confusion 

analysis. We then introduce the formal methods 

tools that we used for the mode confusion analysis 

and discuss their applicability to this type of analy-

sis. Finally, we provide a few examples of the 

formalization of mode confusion properties and 

performing the analysis with the help of these tools. 

Formal Approach to Mode Confusion 
Analysis 

A novel aspect of our approach to mode confu-

sion analysis is that it emphasizes the use of formal 

verification tools for exploration rather than verifi-
cation. In verification, one postulates a property 

that is believed to be true of a model and uses the 

verification tool to determine if the property holds 

or not. When used for exploration, one postulates a 

property that is probably false of the model, and 

uses the verification tool to generate insights into 

why the property is false.  

For example, transitions to infrequently seen, 

or off-normal, modes are often cited as a potential 

source of mode confusion [9], [18]. Identifying all 

the scenarios that can cause an off-normal mode to 

be entered may not be obvious in a complex speci-

fication. The following paragraphs cast this 

example as both a verification and an exploration 

problem and describe our approach in each case. 

When approached as a verification problem, 

we first enumerate all the acceptable ways of 

entering the mode and then verify that it is indeed 

an exhaustive list. If we are unable to verify this, 

i.e., there are other ways by which we can enter the 

mode, we consider it to be an error in the 

specification, change the specification to remove 

the error, and repeat the process until the original 

property is verified. The verification process can 

thus be viewed as one of debugging the specifica-

tion to remove errors in it. 

When approached as an exploration problem, 

our aim is to search for all the unknown ways by 

which the mode can be entered. To do this, we 

postulate that there are no ways by which the mode 

can be entered, then use the formal verification tool 

to identify the ways in which this is not true, then 

amend our property to state that there are no 

scenarios by which the mode can be entered except 

for these, and repeat the process until the property is 

true. This list of ways in which the mode can be 

entered can then be reviewed with pilots and 

engineers to determine if any of them pose an 

unacceptable risk of pilot confusion.  

Most of the mode confusion analysis falls un-

der the exploration category, as we are typically 

searching for new scenarios that may be a potential 

source of mode confusion. 

Formal Methods Tools 
To analyze the FGS model for Mode confu-

sion, we made use of two analysis tools– the PVS 

theorem prover and the NuSMV model checker. 



The NuSMV Model Checking System 
Model checking is a formal verification tech-

nique that allows one to check for safety and live-

ness properties of a model through exhaustive ex-

ploration of the state space. This makes verification 

of properties highly automated and straightforward. 

However, state space explosion limits the size of 

the models that can be analyzed. 

NuSMV is a re-implementation and extension 

of SMV [5], the first model checker based on 

BDDs. NuSMV has been designed to be an open 

architecture for model checking, which can be re-

liably used for the verification of industrial designs, 

as a core for custom verification tools, as a testbed 

for formal verification techniques, and applied to 

other research areas [13]. Properties to be verified 

in NuSMV are specified using either branching 

time logic (CTL) or linear time logic (LTL) [5]. 

The PVS Theorem Proving System 
In contrast to model checkers, theorem provers 

apply rules of inference to a specification in order 

to derive new properties of interest. Theorem 

provers are generally harder to use than model 

checkers, requiring considerable technical expertise 

and understanding of the specification. However, 

theorem provers are not limited by the size of the 

state space. Also, some properties that cannot be 

easily specified using model checkers, such as 

comparing properties of two arbitrary states that are 

not temporally related, can be easily specified in the 

languages of most theorem provers. 

PVS is an environment for specification and 

verification that has been developed at SRI Interna-

tional’s Computer Science Laboratory. The system 

consists of a specification language, a parser, a type 

checker, and an interactive proof checker. The PVS 

specification language is based on higher order 

logic with a richly expressive type system so that a 

number of semantic errors in specification can be 

caught during type checking. The PVS prover con-

sists of a powerful collection of inference steps that 

can be used to reduce a proof goal to simpler sub-

goals that can be discharged automatically by the 

primitive proof steps of the prover. The primitive 

proof steps involve, among other things, the use of 

arithmetic and equality decision procedure, auto-

matic rewriting, and BDD-based Boolean simplifi-

cation [13]. 

Applicability of the Formal Methods Tools to 
Mode Confusion Analysis 

Earlier studies support the applicability of 

model checkers and theorem provers for mode con-

fusion analysis [4], [15], [16]. To make these for-

mal analysis tools applicable to our domain, the 

critical systems research group at the University of 

Minnesota built translators from the RSML
-e
 

specification language to the input languages of 

NuSMV and PVS, allowing us to apply these 

formal analysis tools to the translated RSML
-e
 

specification. We used these tools to analyze the 

translated FGS specification [11] originally defined 

in RSML
-e
 for some of the patterns identified in the 

mode confusion taxonomy [10]. This analysis using 

NuSMV and PVS is described below.  

When given a verification type of mode confu-

sion property, the NuSMV model checker can de-

termine either that the property is true or that there 

is an error in the specification indicated by a 

counter-example. When checking a false property, 

NuSMV can find only one counter-example at a 

time. For performing exploratory analysis with the 

help of NuSMV, we need to proceed by dismissing 

each counter-example that we encounter by adding 

that condition as a known way of violating the 

property and repeating the process until the prop-

erty is verified. Sometimes NuSMV will generate 

several counter-examples due to a single higher-

level condition. In this case, the user may need to 

find a single stronger condition that encompasses 

all the specific counter-examples. Extracting rele-

vant information from the counter-examples is a 

difficult job that often requires domain expertise.  

Since the FGS mode logic consists almost en-

tirely of enumerated and Boolean types, it is ideally 

suited to verification through model checking. Not 

surprisingly, proving a property of the mode logic 

with PVS usually required more effort than with 

NuSMV. If our specification had included more 

integer or real variables, this situation would 

probably have been quite different. One surprise 

was that once completed, the PVS proofs often ran 

faster than the corresponding proof in NuSMV.  

One advantage of using PVS for the ex-

ploratory analysis is that it lists all the violations of 

the property as un-dismissed sub-goals of the proof 

tree. With adequate knowledge of the domain, the 

user can recognize an unprovable sub-goal at a 



higher level in the proof tree. This avoids the bur-

den of extracting stronger conditions as in NuSMV. 

Conversely, the user can proceed down the proof 

tree by proving parts of a sub-goal to get a more 

refined condition. An advantage of using PVS is 

that the user has finer control of the level of detail 

exposed in the sub-goals. 

We found both NuSMV and PVS useful in 

performing our analysis. Since the mode logic lends 

itself so well to model checking, the level of auto-

mation provided by NuSMV would often save us 

considerable time and effort. On the other hand, a 

skilled user of PVS could often gain insights while 

doing the proof that might be missed using 

NuSMV. We also encountered some properties that 

could not be specified in CTL or LTL but could be 

expressed in PVS. These are discussed later. 

Examples of Mode Confusion Patterns 
and their Analysis 

We analyzed our specification for several 

patterns that might indicate a potential source of 

mode confusion. In the following sub-sections, we 

will describe in detail the formalization and analysis 

of three major patterns. The analysis of the 

remaining patterns was similar to these and hence is 

described here only briefly.   

Transitions between Normal and Off-normal 
Modes 

Sarter and Woods [18] found that most 

difficulties related to mode confusion occur during 

off-normal, time critical situations such as aborted 

takeoff, disengagement from an automatic mode 

during approach, or loss of glide slope signal during 

final approach. In a complex specification, it may 

be difficult to determine all the scenarios under 

which an off-normal mode can be entered or exited. 

Formal analysis tools such as a model checker or 

theorem prover can be used to identify the 

conditions under which these modes can be entered 

or exited.  

The general strategy to identify all the ways a 

system can enter a mode is to first prove that the 

system will indeed enter the mode for all the known 

ways, and then try to prove that if none of these 

conditions exist, the system will not enter the mode. 

This will identify any unforeseen ways in which the 

mode can be entered, which are then added to the 

list of known ways. This process is repeated until 

all the ways to enter the mode are identified. The 

process is similar for finding all the ways a mode 

can be exited.  

A committee consisting of engineers, pilots, 

and specialists in human factors identified Roll, 

Pitch, and Overspeed modes as off-normal modes. 

The selection of Roll and Pitch as off-normal modes 

may be surprising, as these are the default modes of 

operation. However, in our example, they are never 

directly selected by the pilot. Instead, they are de-

fault modes that become active when the active 

mode is deselected, either by the pilot or by the 

system. For this reason, there are many ways to en-

ter these modes. 

We performed an analysis of the ways ROLL 

and Overspeed mode could be entered using both 

PVS and NuSMV. When analyzing for ROLL 

mode, we started with nineteen known ways of en-

tering ROLL mode. The first step was to verify that 

each of these nineteen conditions indeed caused 

entry into ROLL mode. This step frequently re-

vealed exceptions, forcing the conditions to be 

strengthened. For example, in PVS, the condition, 

that ROLL mode is entered when the FLC switch is 

pressed while the mode annunciations are turned off 

was originally stated as: 

ROLL_Selected_If_FLC_Switch_Pressed_While_Modes
_Off: LEMMA =  

verify((Is_This_Side_Active AND  

NOT PREV(Is_ROLL_Selected) AND  

NOT PREV(Mode_Annunciations_On) AND  

When_FLC_Switch_Pressed_Seen) IMPLIES  

ROLL == L(Selected)) 

The verification of this property lead to an unprov-

able sequent in PVS (and a counter-example in 

NuSMV) pointing out that HDG mode rather than 

ROLL mode would be selected if the pilot or copi-

lot pressed the HDG switch at the same time the 

FLC switch was pressed. Consequently, the condi-

tion was modified to state that ROLL mode would 

be entered if the modes are off and the FLC switch 

is pressed and no other lateral model is requested 
at the same time. After all the known ways in which 

ROLL mode can be entered were proven, these 

were encoded in a condition, 



ROLL_Selected_Known_Ways, and the following 

theorem was defined to verify that this was indeed 

an exhaustive list of conditions causing entry into 

ROLL mode: 

ROLL_Not_Selected: THEOREM  

verify(((NOT (PREV(ROLL)) == L(Selected)) AND  

NOT ROLL_Selected_Known_Ways) IMPLIES  

NOT (ROLL == L(Selected))) 

Attempting to prove this theorem lead to unprov-

able sub-goals, which in turn lead to the discovery 

of two additional ways of entering ROLL mode that 

had been overlooked. We finally ended up with an 

exhaustive list of twenty-one different ways of en-

tering ROLL mode. While none of these were sur-

prising in retrospect, it is notable that individuals 

familiar with the specification were unable to come 

up with an exhaustive list without formal analysis. 

Unintended Side Effects 
Unintended side effects occur when an action 

intended to have one effect has an additional effect 

not anticipated by the operators [9], [18]. These can 

include unanticipated mode changes or changes in 

the system state. Examples include changing a 

mode when a new target value is entered, clearing 

related data when new data are entered, or changing 

a mode for one controller when a mode in a differ-

ent controller is changed. Not all side effects are 

undesirable. Often, they provide convenient short-

cuts for the operator, such as turning the system on 

if it is off when selecting a system function, or 

clearing out data that is no longer valid. In some 

cases, the absence of the side effect may itself be a 

source of mode confusion if the operator anticipates 

the side effect as a natural consequence of the 

original operator action.  

An effective way of identifying unintended 

side effects, as well as several other potential 

sources of mode confusion, is to identify the 

response of the system to each operator input. Since 

we already have an RSML
-e
 specification of how 

the system responds to all its inputs, it is possible to 

prove that the new partial specification (i.e., the 

response of the system to a single operator input) is 

consistent with the full specification. Typically, this 

proof identifies several exceptions, which are the 

side effects that are not well understood. We conse-

quently revise the specification of the expected 

system response until we have captured the actual 

system response to the operator input. These speci-

fication fragments provide valuable insight into 

how the system behaves in a format that is often 

obscured by the full model. Reviewing these 

specification fragments with pilots and experts in 

human factors can lead to the identification of 

several potential sources of mode confusion. 

The first step in this process is to identify the 

possible operator inputs and to define the notion of 

the system state. The next step is to specify how the 

system state variables change in response to each 

operator input. For the purpose of this analysis, it is 

convenient to specify this change in state as a pri-

mary effect and several secondary effects. 

For example, PVS can be used to detect unin-

tended side effects by defining what the primary 

effect of each operator input should be, and then 

trying to prove that for every state, the effect of that 

input is only the primary effect. The exceptions to 

this proof are the side effects. The proof statement 

can then be strengthened to state the effect of the 

input is the primary effect and all of the side ef-

fects. In this way, the list of side effects can be 

enumerated.  

To keep the proofs manageable, we chose to 

do this by defining how each component of the 

system state responds to each operator input. For 

example, based on our experience with the FGS 

system, we postulated that the effect of pressing the 

FD switch on the first component of the system 

state, the autopilot (AP), was to not affect the AP 

state at all. This is stated in PVS as the lemma: 

FD_Switch_AP_Side_Effects : LEMMA       

verify((Is_This_Side_Active AND   

When_FD_Switch_Pressed_Seen)   

    IMPLIES (AP == PREV(AP))) 

which claims that if this side of the FGS is active 

and the FD switch is pressed and no higher priority 

event preempts the pressing of the FD switch, then 

the state of the AP is just its value in the previous 

state. This lemma is easily proven in PVS in a few 

seconds, confirming that pressing the FD switch has 

no side effects on the AP.  

The situation becomes more interesting as we 

proceed to the display of the lateral and vertical 

mode annunciations. The mode annunciations are 



turned on when either the onside or the offside FD 

are turned on and are turned off when both the on-

side and offside FDs are turned off. However, we 

wish to define this not in terms of the onside and 

offside FD, but in terms of the FD switch. After a 

few iterations defining the behavior of the RSML
-e
 

mode annunciations when the FD switch is pressed 

and trying to prove that behavior agrees with the 

model, we proved the following PVS lemma 

FD_Switch_Modes_Effects : LEMMA   

verify((Is_This_Side_Active AND  

   When_FD_Switch_Pressed_Seen) IMPLIES    

   IF PREV(Modes) == L(Off)   

THEN Modes == L(On)  

ELSE   

     IF (PREV(Onside_FD) == L(Off) OR  

         Overspeed_Condition OR  

 Is_AP_Engaged OR  

 Offside_FD == L(On))  

    THEN Modes == L(On)  

    ELSE Modes == L(Off)  

    ENDIF  

ENDIF) 

This lemma states that if this side of the FGS is 

active and the FD switch is pressed and no higher 

priority event preempts the FD switch, then if the 

mode annunciations were off in the previous state, 

they will be turned on. If the mode annunciations 

were on in the previous state, then if the onside FD 

was on in the previous state, or an Overspeed con-

dition exists, or the AP is engaged, or the offside 

FD is on, then the mode annunciations will remain 

on. Otherwise they will be turned off. As shown by 

this simple proof, pressing the FD switch has rather 

complicated side effects on the mode annunciations. 

The remaining question is whether these side ef-

fects are appropriate, a question best answered by 

experts in human factors and pilots. Depending on 

the audience’s comfort with mathematical logic, it 

may be necessary to present these results in a more 

intuitive format. 

This process is continued for each operator in-

put and each component of system state in order to 

generate a complete description of how the system 

state responds to each operator input. As shown by 

these examples, the response of the system to each 

input can be surprisingly complex. Even for some-

thing as simple as pressing the FD switch, the au-

thors of the full FGS specification found it difficult 

to predict how each component of the system state 

would change without using formal analysis. 

Indirect Mode Changes / Hidden Modes 
Indirect mode changes occur when the auto-

mation changes mode without an explicit instruc-

tion by the operator. Indirect mode changes are a 

natural consequence of delegating tasks to the 

automation and cannot be eliminated without losing 

the benefits of automation. At the same time, indi-

rect mode changes are obvious sources of mode 

confusion. Most indirect mode changes can be eas-

ily identified through inspection simply by review-

ing how the non-operator inputs are used. 

A mode is operationally relevant if the system 

responds differently to operator or sensor inputs 

while in that mode. Hidden modes are operationally 

relevant modes that are not annunciated. The entry 

of a hidden mode differs from an indirect mode 

change in that the operator receives no indication of 

the change in behavior. While this is technically the 

same thing as an un-annunciated indirect mode 
change, hidden modes seem to be so frequently in-

volved in incidents of mode confusion that we have 

chosen to identify them as a separate category. 

Finding hidden modes in a large, complex 

system appears to be an intrinsically hard problem. 

These modes are hidden precisely because they are 

buried in a sea of complex logic.  What is needed is 

a systematic way to search a large, complex 

specification for hidden modes of behavior. 

Fortunately, the same approach that was used to 

search for unintended side effects can be used to 

detect hidden modes. The basic idea is to determine 

the change in the system state for each operator in-

put, i.e., to differentiate the specification with re-

spect to each operator input.  This breaks a large, 

complex specification down into many small frag-

ments that can be easily reviewed. Hidden modes 

are identified by asking whether the pilot has suffi-

cient information to predict how each new state 

value will be changed in response to the operator 

input. Situations where the pilot does not have 

sufficient information indicate the presence of a 

hidden mode.  



For example, consider the FD_Switch_Mode_ 

Effects lemma described in the discussion of unin-

tended side effects. This lemma states that the new 

value of the mode annunciations are determined by 

values of the previous system state (i.e., 

PREV(Modes) and PREV(Onside_FD)),  and the 

current inputs (i.e., Overspeed_Condition, 

Is_AP_Engaged, and Offside_FD). The key ques-

tion is whether these values are available to the pi-

lot.  The status of the mode annunciations and the 

onside FD cues in the previous step are available on 

the Primary Flight Display (PFD).
1
 The current 

status of the autopilot (AP) is also displayed on the 

PFD. An overspeed condition is annunciated by 

both aural and visual alarms. However, the status of 

the offside FD is visible to the pilot only by looking 

at the copilot’s display (and vice-versa). If the 

offside FD is not adequately visible to the pilot, 

there is no way for the pilot to predict whether the 

mode annunciations will turn off when pressing the 

FD switch. This is a hidden mode.  

While this is probably not a significant source 

of mode confusion, it does illustrate a systematic 

process by which hidden modes can be detected. In 

effect, the exact same analysis done to identify un-

intended side effects can also be used to detect hid-

den modes.  

Operator Authority Limits / Ignored Operator 
Commands 

Operator authority limits restrict the control of 

the operators in order to prevent the system from 

entering a hazardous state. An obvious danger of 

operator authority limits is that they may prohibit 

maneuvers that are required in extreme situations. 

Another danger occurs when pilots are not aware 

that these limits are in effect. Mode confusion can 

also arise if the crew expects operator authority 

limits to be in effect when they are not. This is es-

pecially true if the operator authority limits are pre-

sent in most but not all modes. 

The operator authority limits of the most inter-

est are those related to continuous operator inputs, 

such as moving the throttles or the yoke. Unfortu-

nately, the operator inputs in the FGS model are all 

discreet inputs, such as pressing a mode switch or 

                                                      

1 We assume the pilot will recall the previous displayed values 

given the standard 1/20th of a second refresh rate. 

engaging the autopilot. Ignored Operator 
commands are a special case of operator authority 

limits directly relevant to such discreet inputs.  

Ignored operator commands commonly occur 

when a system ignores an operator command, not to 

prevent entry of a hazardous state, but because the 

command is meaningless in the current mode. Sim-

ply ignoring an operator command may or may not 

be appropriate. In some situations, the operator 

should receive an indication of why the command 

has been rejected so that they can correct their 

mental model. Also, without an indication that a 

command has been rejected, the operator may think 

the command has been accepted, leading to further 

confusion. In other situations, it may be clear both 

that the request has been ignored and why and pro-

viding the operator with more feedback is unneces-

sary. 

To detect all ignored operator commands so 

that each can be reviewed, one attempts to prove 

that every operator input causes some visible 

change in the system state. The exceptions to this 

proof are ignored operator commands. This analysis 

closely follows the unintended side effects and 

hidden modes and is not described here further. 

Interface Interpretation Errors 
Interface interpretation errors are those in 

which the system interprets user-entered values dif-

ferently than intended or maps multiple conditions 

onto the same output depending on the controller’s 

current mode [9], [18]. If the users misunderstand 

what mode the system is in, or have a poor mental 

model and do not understand how the current mode 

affects the inputs or the outputs, they are likely to 

enter the wrong values or become confused about 

what the system is telling them. 

Potential input interpretation errors can be de-

tected by looking at each operator input and deter-

mining if its effect on the system state is dependent 

on the current state of the system or other inputs. 

The analysis for this is very similar to that de-

scribed to detect unintended side effects and hidden 
modes.  

Lack of Appropriate Feedback 
An important source of mode confusion is lack 

of appropriate feedback about the system [9], [18], 



referred to by Billings as opacity [3]. Feedback 

about the current system state is obviously essen-

tial, but operators also need feedback about pending 

changes to allow them to anticipate system behavior 

[9], [18].  

An obvious source of mode confusion occurs 

when the operator is not provided with sufficient 

information to distinguish between two different 

configurations of system modes. To detect this, we 

need to define what it means for two arbitrary states 

to have the same modes and what it means for two 

states to have the same mode annunciations. As it is 

not possible to express properties about two 

arbitrary states in CTL, we found PVS better suited 

for searching for this potential source of mode 

confusion than NuSMV. 

Reviewing the list of FGS state variables, we 

determined that two states s1 and s2 have the same 

lateral modes if the following PVS predicate holds: 

same_lateral_modes(s1,s2): boolean = 

ROLL(s1) = ROLL(s2) AND  

      HDG(s1) = HDG(s2) AND  

NAV(s1) = NAV(s2) AND  

NAV_Selected(s1) = NAV_Selected(s2) AND  

LAPPR(s1) = LAPPR(s2) AND  

LAPPR_Selected(s1) =   
LAPPR_Selected(s2) AND  

LGA(s1) = LGA(s2) 

Similarly, states s1 and s2 have the same vertical 

modes if the following PVS predicate holds: 

same_vertical_modes(s1,s2): boolean =  

PITCH(s1) = PITCH(s2) AND  

VS(s1) = VS(s2) AND  

FLC(s1) = FLC(s2) AND  

ALT(s1) = ALT(s2) AND  

ALTSEL(s1) = ALTSEL(s2) AND  

ALTSEL_Selected(s1) = 
ALTSEL_Selected(s2) AND  

ALTSEL_Active(s1) =      
ALTSEL_Active(s2) AND 

  VAPPR(s1) = VAPPR(s2) AND  

VAPPR_Selected(s1) = 
 VAPPR_Selected(s2) AND  

VGA(s1) = VGA(s2) 

Finally, we define two states s1 and s2 to have the 

same modes if the following PVS predicate holds: 

same_modes(s1,s2): boolean =  

AP(s1) = AP(s2) AND  

Pilot_Flying(s1) = Pilot_Flying(s2) AND  

Onside_FD(s1) = Onside_FD(s2) AND  

Overspeed(s1) = Overspeed(s2) AND  

Modes(s1) = Modes(s2) AND  

same_lateral_modes(s1,s2) AND  

same_vertical_modes(s1,s2)  

In a similar manner, we define what it means for 

two states to have the same annunciations. To de-

tect a situation where two different mode configu-

rations have the same annunciations, we attempt to 

prove the following theorem: 

Distinct_Mode_Annunciations : THEOREM  

(NOT same_modes(s1,s2)) AND  

(Is_This_Side_Active(s1) = &(TRUE)) AND  

(Is_This_Side_Active(s2) = &(TRUE)) IMPLIES  

NOT same_annunciations(s1,s2) 

This theorem claims that if states s1 and s2 do not 

have the same modes, their mode annunciations 

must also be different. To simplify the proof, we 

consider only the case where this side of the FGS is 

active for each state. Since an inactive FGS sets its 

modes to those of the active side, this is sufficient 

to show that distinct mode configurations will have 

distinct mode annunciations. 

While this theorem can be proven directly in 

PVS for the FGS model, it is simpler and more effi-

cient to first prove a number of smaller lemmas re-

lated to each mode and then use these lemmas in the 

proof of the theorem. For example, to ensure that 

two states s1 and s2 with different Flight Director 

modes have different pilot displays, we prove the 

following lemma: 

Distinct_Onside_FD_Annunciations : LEMMA  

NOT (Onside_FD(s1) = Onside_FD(s2)) IMPLIES  

NOT(Onside_FD_On(s1) = Onside_FD_On(s2)) OR  

NOT (Is_This_Side_Active(s1)=  

     Is_This_Side_Active(s2)) 

stating that if the modes of the onside Flight Direc-

tor (Onside_FD) are different in the two states, than 

either the indicators sent to the PFD 

(Onside_FD_On) must be different or the FGS can-

not be active in both states. 



Similarly, to show that two states with differ-

ent ROLL modes have different displays, we prove 

the lemma: 

Distinct_ROLL_Annunciations : LEMMA  

((NOT (ROLL(s1) = ROLL(s2))) AND  

(Is_This_Side_Active(s1) = &(TRUE)) AND  

(Is_This_Side_Active(s2) = &(TRUE)))  

IMPLIES  

NOT (Is_ROLL_Active(s1) =  

        Is_ROLL_Active(s2)) OR  

NOT (Mode_Annunciations_On(s1) =  

        Mode_Annunciations_On(s2)) 

Here, it is necessary to verify that either the value 

sent to the PFD if ROLL mode is active 

(Is_ROLL_Active) or the value sent to the PFD to 

turn the mode annunciations on 

(Mode_Annunciations_On) are different in the two 

states. This is because Is_ROLL_Active is false if 

ROLL mode is cleared (i.e., not selected) or if the 

mode annunciations are turned off. 

The lemmas proven for each mode are then 

used to prove the overall theorem and show that any 

two states with different mode configurations must 

have different displays to the pilot in our model. 

Conclusion 
Mode awareness has been identified by several 

researchers, the FAA, and the aviation industry as 

an important safety concern. Despite this level of 

interest, finding ways to detect and mitigate poten-

tial sources of mode confusion remains as much an 

art as a science.  The basic premise behind our ap-

proach is that certain design features or patterns are 

more likely to cause mode confusion than others. 

This paper describes an approach in which require-

ments and design documents can be analyzed for 

potential sources of mode confusion through the use 

of automated analysis tools, such as model-checkers 

and theorem provers.  

In particular, we have shown how formal 

analysis methods can be used to identify several 

potential sources of mode confusion in a system 

specification. Even though our analysis was only 

partial, we were able to find hidden modes, ignored 

operator inputs, unintended side effects, lack of 

feedback regarding current modes, and surprises in 

how off-normal modes can be entered and exited in 

our example specification. If this analysis was 

applied to an actual system, these potential sources 

of mode confusion could be taken back to the 

engineers, pilots, and experts in human factors for 

closer review.  
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