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A quantum master equation model for the interaction between a two-level system and whispering-gallery
modes �WGMs� of a microdisk cavity is presented, with specific attention paid to current experiments involv-
ing a semiconductor quantum dot �QD� embedded in a fiber-coupled AlxGa1−xAs microdisk cavity. In standard
single mode cavity QED, three important rates characterize the system: the QD-cavity coupling rate g, the
cavity decay rate �, and the QD dephasing rate ��. A more accurate model of the microdisk cavity includes
two additional features. The first is a second cavity mode that can couple to the QD, which for an ideal
microdisk corresponds to a traveling wave WGM propagating counter to the first WGM. The second feature is
a coupling between these two traveling wave WGMs, at a rate �, due to backscattering caused by surface
roughness that is present in fabricated devices. We consider the transmitted and reflected signals from the
cavity for different parameter regimes of �g ,� ,� ,���. A result of this analysis is that even in the presence of
negligible roughness-induced backscattering, a strongly coupled QD mediates coupling between the traveling
wave WGMs, resulting in an enhanced effective coherent coupling rate g=�2g0 corresponding to that of a
standing wave WGM with an electric field maximum at the position of the QD. In addition, analysis of the
second-order correlation function of the reflected signal from the cavity indicates that regions of strong photon
antibunching or bunching may be present depending upon the strength of coupling of the QD to each of the
cavity modes. Such intensity correlation information will likely be valuable in interpreting experimental mea-
surements of a strongly coupled QD to a bimodal WGM cavity.

DOI: 10.1103/PhysRevA.75.023814 PACS number�s�: 42.50.Pq, 42.60.Da

I. INTRODUCTION

Recent demonstrations of vacuum Rabi splitting in sys-
tems consisting of a semiconductor microcavity and a single
quantum dot �QD� �1–3� represent an important milestone in
investigations of cavity QED in solid-state materials. In these
experiments, the microcavity-QD system is incoherently
pumped with an excitation beam at an energy above the
bandgap of both the QD and surrounding semiconductor ma-
terial �usually GaAs or some form of its alloy AlxGa1−xAs�.
This pump light is absorbed and generates carriers in the
GaAs system that can eventually �through phonon and car-
rier scattering� fill the states of the QD; under weak enough
pumping conditions, only the lowest energy bound exciton
state of the QD is appreciably populated on average. Radia-
tive recombination of the exciton state and the resulting
spontaneous emission is then modified by the presence of a
resonant microcavity. When the cavity is of small enough
volume, the coupling �g� between the QD exciton and the
cavity can be large, and if the cavity decay rate � and QD
dephasing rate �� are smaller than g, the system is said to be
strongly coupled �4�, in that the QD exciton and cavity mode
are no longer truly separate entities but are instead bound
together. In the experiments described in Refs. �1–3�, the
evidence of this strong coupling has been presented in the
form of spontaneous emission measurements from the QD-
microcavity system, which display a double-peaked struc-
ture, rather than the single peak associated with either the
cavity mode or QD exciton alone. This vacuum Rabi split-

ting �5,6� is one signature of the strong coupling regime in
cavity QED.

Applications of strongly coupled QD-microcavity systems
to areas such as nonlinear optics and quantum information
science �7–11� will also require an ability to effectively
couple light into and out of the microcavity-QD device. That
is, rather than measuring the spontaneous emission of the
system alone, it is also important to have access to the cavi-
ty’s optical response �transmission or reflection�. This is true
if, for example, one wants to examine the effect of a coupled
QD-cavity system on the propagation of a subsequent beam
through the cavity �7,12�, or if one wants to use the phase of
the emerging transmitted signal within some type of logic
gate �13�. Indeed, in most cavity QED experiments involving
an atom coupled to a Fabry-Perot cavity, it is the cavity’s
transmitted or reflected signal that is typically observed
�14–17�.

Following demonstrations of coupling to silica-based
cavities such as microspheres �18,19� and microtoroids �20�,
we have recently shown that optical fiber tapers �18,21� are
an effective means to couple light into and out of
wavelength-scale semiconductor microcavities such as pho-
tonic crystals �22,23� and microdisks �24,25�. In addition, we
have shown that microdisk cavities are extremely promising
candidates for semiconductor cavity QED experiments, with
recent demonstrations of cavity quality factors �Q’s� in ex-
cess of 105 �25,26� for devices with a mode volume �Veff� of
�2−6�� /n�3. These Q values are significantly larger than
those utilized in Refs. �1–3�, and as a result, the devices that
we consider are poised to operate well within the strong cou-
pling regime, where multiple coherent interactions between
the QD and photon can occur. It is envisioned that initial*Electronic address: kartik@caltech.edu
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experiments in this fiber-coupled microcavity-QD system
will examine vacuum-Rabi splitting through measurements
of the transmission spectrum past the cavity; such measure-
ments will be directly analogous to recent measurements of
vacuum Rabi splitting from one-and-the-same atom in a
Fabry-Perot cavity �17�.

The goal of this paper is to provide a theoretical basis,
accompanied by numerical simulations, for the experiments
to be performed with single QDs in fiber-coupled microdisk
cavities. Of particular concern is the proper treatment of the
whispering-gallery modes �WGMs� in the cavities. More
specifically, the WGMs have a degeneracy of two as modes
with azimuthal number ±m have the same frequency, but
circulate around the disk in opposite directions. The WGMs
are typically excited through an external waveguide, and for
a nearly phase-matched system the forward propagating
mode through the waveguide excites only the copropagating
mode in the resonator �the clockwise �CW� traveling wave
WGM from here on out�. Imperfections in the resonator will
change this, as they cause backscattering that can couple the
CW and counterclockwise �CCW� propagating modes
�Fig. 1� �24,27–30�. If the loss rates in the system �due to
material absorption, scattering loss, etc.� are low enough, the
backscattering can lead to coherent coupling of the CW and
CCW modes, producing a pair of standing wave modes. A
similar theoretical model focused on cooled alkali atoms
coupled to dielectric whispering-gallery-mode microcavities
has been presented by Rosenblit et al. in Ref. �31�, and more
recently by Aoki et al. in Ref. �32�. In this work our interest

is to study this system in a parameter regime relevant to
experiments involving the interaction of a single self-
assembled semiconductor quantum dot with the microdisk
WGMs in the presence of roughness-induced backscattering
�33�, and to determine the spectral response of the system for
varying degrees of quantum-dot-cavity coupling �g0�, back-
scattering ���, and modal loss ��T�. We examine how the
phase and magnitude of the backscattering parameter affect
the coupling between one or both cavity modes and the QD,
and how the QD itself serves to couple the cavity modes
together resulting in an enhanced coherent coupling rate over
that of traveling wave WGMs.

The organization of this paper is as follows. In Sec. II, we
review the simple classical coupled mode theory for modal
coupling in microdisk cavities in absence of a QD. Section
III presents the quantum mechanical analysis of this system
in the presence of a QD. We review the quantum master
equation for this system and look at semiclassical approxi-
mations for specific choices of the backscattering parameter.
In Sec. IV, we present the results of numerical solutions of
the quantum master equation for parameters that are acces-
sible in current experiments. Finally, the intensity correla-
tions in the reflected cavity signal for various parameter re-
gimes are studied in Sec. V.

II. MODAL COUPLING OF TWO WHISPERING-

GALLERY MODES DUE TO SURFACE SCATTERING

The modal coupling between CW and CCW traveling
wave modes in a whispering-gallery-mode microcavity has
been observed experimentally and explained by many other
authors, including those of Refs. �24,27–29,34�. Here, we
present a simple analysis of this coupling. This analysis is
essentially an abridged version of that which appears in a
recent paper by Borselli et al. in Ref. �30�.

Maxwell’s wave equation for the vector electric field in a
microdisk structure is

�
2E − �0��0 + ���

�
2E

�t2 = 0, �1�

where �0 is the permeability of free space, �0 is the dielectric
function for the ideal �perfectly cylindrical� microdisk, and
�� is the dielectric perturbation that is the source of mode
coupling between the CW and CCW modes. Assuming a
harmonic time dependence, the complex field modes of the
ideal ���=0� microdisk structure can be written as
E j

0�r , t�=E j
0�r�exp�i	 jt�, where j is an index label including

the azimuthal number �m�, radial order �p�, vertical order
�v�, and vertical parity �odd or even for a cylinder with mir-
ror symmetry�. In the microdisk structures of interest the
vertical height of the dielectric cylinder is typically a half
wavelength in thickness, and only the lowest order vertical
mode is well localized to the microdisk. In this case the
vertical order and parity can be combined to define the fun-
damental vertically guided whispering-gallery modes of the
disk as transverse electric �TE�, with antinode of the in-plane
�
̂ , �̂� electric field components at the center height of the
disk, and transverse magnetic �TM�, with antinode of the

κe

Pi

aCCW
aCW
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FIG. 1. �Color online� Illustration of the system under investi-
gation. The microcavity–quantum-dot system is driven near reso-
nance by coupling light into and out of it using an optical fiber taper
waveguide, with a cavity-waveguide coupling rate �e ��e is a field
amplitude decay rate�. Imperfections in the microdisk cause a cou-
pling of the clockwise and counterclockwise whispering-gallery
modes, at a rate �. These two whispering-gallery modes have a
quantum-dot-cavity coupling rate g0 and intrinsic cavity decay rate
�i. The quantum dot, approximated as a two-level system, has a
radiative decay rate �	 and a total transverse decay rate ��.
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vertical �ẑ� electric field component at the center height of
the disk. In what follows we will continue to use the TE and
TM designation when discussing the WGMs, however, it
should be noted that due to the radial guiding of the modes in
the small microdisks of interest to this work the WGMs are
far from actually transverse electric or magnetic, and contain
significant longitudinal field components in the azimuthal di-
rection.

Solutions to Eq. �1� with ���0 �i.e., modes of the per-
turbed structure� are written as a sum of the unperturbed
mode basis

E�r,t� = e−i	0t

j

a j�t�E j
0�r� . �2�

Plugging into Eq. �1�, keeping only terms up to first order,
and utilizing mode orthogonality, we arrive at a set of
coupled mode equations

dak

dt
+ i�	kak�t� = i


j

� jka j�t� , �3�

� jk =
	0

2

� ���E j
0�r��* · Ek

0�r�dr

� �0�Ek
0�r��2dr

. �4�

Reference �30� presents a functional form for � in situa-
tions involving small surface roughness perturbation. Under
weak scattering conditions an assumption is made that only
each pair �common radial order, etc.� of localized, degenerate
CW and CCW WGMs with azimuthal mode number ±m are
coupled by the disk perturbation ��. The complex electric
fields of the CW and CCW WGMs are simply related �35�,
and can be written in a cylindrical �
 ,� ,z� coordinate system
as

ECW
0 �r� = �E


0�
,z�,iE�
0 �
,z�,Ez

0�
,z��eim�,

ECCW
0 �r� = �E


0�
,z�,− iE�
0 �
,z�,Ez

0�
,z��e−im�. �5�

In the case of high-Q resonant modes, with a small degree of
loss per round-trip, the CW and CCW WGMs are to a good
approximation complex conjugates of each other, which
when combined with Eq. �5� indicate that the WGMs can be
written with transverse �
̂ , ẑ� electric field components real

and longitudinal ��̂� components imaginary �35� �i.e.,
E


0 ,E�
0 ,Ez

0 all real functions�. The coupled mode equations
for these traveling wave modes then read

daCW

dt
= − i�	aCW�t� + i���eiaCCW�t� ,

daCCW

dt
= − i�	aCCW�t� + i���e−iaCW�t� , �6�

with �= �� �ei given by �in a basis with the transverse elec-
tric field components of the WGMs real�,

� =
	0

2

� � ��e+i2m�d����E

0�2 − �E�

0 �2 + �Ez
0�2�
d
dz

2�� �0��E

0�2 + �E�

0 �2 + �Ez
0�2�
d
dz

.

�7�

Equation �6� represents the time evolution of the two
mode amplitudes �aCW ,aCCW� of an isolated system, without
loss or coupling to an external waveguide. For the experi-
ments considered in our work, the waveguide coupler will be
an optical fiber taper through which light is traveling in the
forward propagating mode. Light coupled from the fiber
taper will selectively excite the clockwise WGM of the mi-
crodisk structure due to phase matching. Following the for-
malism of Ref. �36� this waveguide-resonator coupling can
be included through the addition of a term ks+ to Eq. �6�,
where k is a waveguide coupling coefficient and �s+�2 is the
input power in the external waveguide �the squared magni-
tude of the mode amplitudes �aCW,CCW�2 are normalized to
stored optical energy in the cavity�. Loss is introduced to the
coupled mode equations by use of the phenomenological
field amplitude decay rate �T, taken to be the same for both
the CW and CCW modes �though in general this does not
have to be the case�. This total field decay rate is broken into
a contribution from intrinsic microdisk absorption and scat-
tering loss ��i� and a contribution due to coupling to the
external waveguide ��e�, so that �T=�i+�e. Assuming loss-
less coupling and time reversal symmetry it can be shown
�36� that �k�2=2�e. The coupled mode equations then read

daCW

dt
= − ��T + i�	�aCW�t� + i���eiaCCW�t� + t�i�2�e�s+,

daCCW

dt
= − ��T + i�	�aCCW�t� + i���e−iaCW�t� . �8�

Here, the phase of the coupling coefficient was �arbitrarily�
chosen to be purely imaginary, corresponding to a single-
pass, waveguide transmission coefficient of +1 in the lossless
coupler case �36�. These two coupled equations can be re-
written as uncoupled equations in terms of the variables
aSW,1 and aSW,2, which represent the standing wave mode
amplitudes

aSW,1 =
1
�2

�aCW + eiaCCW�

aSW,2 =
1
�2

�aCW − eiaCCW� . �9�

As mentioned above, for an ideal microdisk the field distri-
butions of mode amplitudes aCW and aCCW have an azi-
muthal spatial dependence of e±im�, so that the field distribu-
tions of aSW,1 and aSW,2 correspond to �up to an overall phase
factor� standing waves �2 cos�m�− /2� and �2 sin�m�
− /2�, respectively, with the azimuthal orientation of the
standing waves being determined by the phase  of the back-
scattering parameter. Here, and in what follows, we take the
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origin of the azimuthal axis ��=0� to be centered at the QD.
The transmitted �PT� and reflected �PR� optical power in

the external waveguide can be determined in either the basis
of �aCW ,aCCW� or �aSW,1 ,aSW,2�; because of phase matching,
coupling between the external waveguide and WGM resona-
tor occur directly through �aCW ,aCCW� and it is most natural
to solve for these quantities in the traveling wave mode ba-
sis. With the phase of the coupling coefficient chosen as
purely imaginary the transmitted and reflected powers are
PT= �s++ �i�2�e�aCW�2 and PR= ��i�2�e�aCCW�2, respectively.
Steady state solutions for the normalized transmitted and re-
flected signals from the cavity for a number of different pa-
rameters are shown in Fig. 2. For ���T �Fig. 2�a��, we see
the formation of a distinct pair of resonances, located at
	�	0±�. These dips correspond to standing wave reso-
nances that result from a backscattering rate ��� that exceeds
all other losses in the system ��T� so that coherent coupling
between the CW and CCW modes can take place. As we see
in Figs. 2�b� and 2�c�, for ���T, the resonances begin to
overlap and are no longer distinguishable.

For cavity QED applications, one very important conse-
quence of the distinction between traveling wave and stand-
ing wave modes is in the effective volume of the mode �Veff�,
as the peak electric field strength per photon in the cavity
scales as 1 /�Veff. In particular, we recall the definition of Veff
as

Veff =
� ��E�r��2

max���E�r��2�
. �10�

Standing wave WGMs have approximately half the volume
of the traveling wave WGMs, so that the coupling rate g

between a single quantum dot and a single photon in a stand-
ing wave cavity mode is expected to be �2 times that when
the quantum dot is coupled to a traveling wave cavity mode.
This of course assumes the single QD is positioned at an
antinode of the standing wave mode; alternately, if it happens
to be positioned at a node, the coupling rate g will be zero.

These arguments again rely upon having a physical sys-
tem in which the backscattering coupling between CW and
CCW modes is sufficiently strong compared to all other loss
rates to allow for coherent modal coupling and formation of

standing waves. They have also neglected the effects that an
embedded QD may have, due to both an introduction of ad-
ditional loss and mode coupling into the system. In the case
of a strongly coupled QD we might expect that standing
wave modes can be maintained provided that the modal cou-
pling rate � exceeds not only �T but also the QD spontane-
ous emission rate �	 and nonradiative dephasing rate �p. To
verify our physical intuition and understand the system in
better detail, we consider a quantum master equation ap-
proach �37� to take into account the cavity-QD interaction.

III. QUANTUM MASTER EQUATION MODEL

We begin by considering the Hamiltonian for an empty
microdisk cavity �traveling wave WGM resonance frequency
	c� with field operators âCW and âCCW and mode coupling
parameter �, written in a frame rotating at the driving fre-
quency 	l �and for �=1�:

H0 = �	clâCW
† âCW + �	clâCCW

† âCCW − �âCW
† âCCW

− �*âCCW
† âCW + i�EâCW

† − E*âCW� , �11�

where �	cl=	c−	l. As in the coupled-mode equations of
the previous section, the CW propagating mode is driven by
a classical intracavity field E= i�2�ePin, where �e is the cav-
ity field decay rate into the waveguide and Pin is the input
power in the external waveguide. From this Hamiltonian, the
classical coupled-mode equations without dissipation can
easily be derived through an application of Ehrenfest’s theo-
rem.

Modeling the QD as a two-level system, we add the term
H1 to the Hamiltonian

H1 = �	al�̂+�̂− + ig0�âCW
† �̂− − âCW�̂+�

+ ig0�âCCW
† �̂− − âCCW�̂+� , �12�

where �	al=	a−	l, 	a is the transition frequency of the
exciton state of the QD, and g0 is the coherent coupling
strength between the QD exciton state and the traveling wave
WGMs. Note that g0 has been assumed real, and to have the
same phase for both CW and CCW WGMs in Eq. �12�. This
is consistent with a choice of the azimuthal origin lying at
the location of the QD and for a QD dipole polarization
transverse to the �̂ direction, where the electric field compo-
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FIG. 2. �Color online� Normalized transmitted �solid line� and reflected �dashed line� signal for standing wave whispering-gallery modes,
determined through steady state solution of the coupled mode equations given in Eq. �8�. �a� � /�T=8, �T /�i=3 �b� � /�T=1, �T /�i=3, and
�c� � /�T=1, �T /�i=20. Qi=3�105 in all cases.
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nents for both WGMs are equal and real at the position of the
QD �a WGM basis can also be chosen in which this is true
for dipole polarization parallel to �̂�. For a QD located away
from the azimuthal zero or with a mixed transverse and par-
allel dipole orientation, g0 will be complex, having a differ-
ent phase for the CW and CCW modes. In general, care must
be taken to calculate g0 and � consistently when studying
interference effects between QD dipole scattering and
roughness-induced scattering.

The equation of motion for the system’s density matrix 

can be found from the equation

d


dt
=

1

i
�H0 + H1,
� + L
 , �13�

where the term L
= �L1+L2+L3�
 allows for the inclusion of
decay through cavity loss �at a rate �T=	c /2Q�, quantum dot
spontaneous emission �at a rate �	�, and phase-destroying
collisional processes �at a rate �p�, which are of particular
importance for quantum dots, as unlike atoms, they are em-
bedded in a semiconductor matrix where electron-phonon
scattering is non-negligible. In the zero-temperature limit
�applicable to the experiments under consideration as they
will occur at cryogenic temperatures�, these loss terms are
given by �37,38�

L1
 = �T�2âCW
âCW
† − âCW

† âCW
 − 
âCW
† âCW�

+ �T�2âCCW
âCCW
† − âCCW

† âCCW
 − 
âCCW
† âCCW� ,

�14�

L2
 =
�	

2
�2�̂−
�̂+ − �̂+�̂−
 − 
�̂+�̂−� , �15�

L3
 =
�p

2
��̂z
�̂z − 
� . �16�

From the master equation, we can numerically calculate
the steady state density matrix 
SS and relevant operator ex-
pectation values such as �âCW

† âCW�SS, which will then allow
us to determine the transmission and reflection spectrum of
the coupled QD-cavity system using formulas that are analo-
gous to those used in the classical model of Sec. II. These
calculations are the subject of the following section. For
now, however, we consider what intuition may be gained by
further analytical study of the master equation. Using the
standing wave mode operators

âSW,1 =
1
�2

�âCW + eiâCCW�

âSW,2 =
1
�2

�âCW − eiâCCW� �17�

and writing �= �� �ei, we take operator expectation values to
arrive at

d

dt
�âSW,1� = − i��	cl − �����âSW,1�

+ g0
1 + ei

�2
��̂−� − �T�âSW,1� +

E

�2
,

d

dt
�âSW,2� = − i��	cl + �����âSW,2�

+ g0
1 − ei

�2
��̂−� − �T�âSW,2� +

E

�2
,

d

dt
��̂−� = − �i�	al + �����̂−� +

g0

�2

����̂zâSW,1��1 + e−i� + ��̂zâSW,2��1 − e−i��

d

dt
��̂z� = − �2g0���̂−âSW,1

† ��1 + ei� + ��̂−âSW,2
† ��1 − ei��

− �2g0���̂+âSW,1��1 + e−i� + ��̂+âSW,2��1 − e−i��

− �	�1 + ��̂z�� , �18�

where we have used ��̂+ , �̂−�= �̂z and ��=�	 /2+�p. In the
new standing wave mode basis both the empty-cavity fre-
quencies and the QD-cavity coupling strengths are seen to be
modified by the presence of strong backscattering. For the
low-frequency mode �	c− ���� corresponding to field
operator âSW,1, the effective coupling strength is gSW,1
=g0�1+ei� /�2, while for the high-frequency mode
�	c+ ���� corresponding to field operator âSW,2, the effective
coupling strength is gSW,2=g0�1−ei� /�2. These coupling
strengths are thus dependent on the phase  of the back-
scattering parameter � and can be as large as �2g0 or as
small as zero. This result is consistent with what one would
expect intuitively; the superposition of traveling wave modes
results in a pair of standing wave modes whose peak field
strength �per photon� is �2 times that of a traveling wave
mode. The two standing wave modes are phase shifted from
each other in the azimuthal direction by � /2, and as a result,
if the QD is positioned in the antinode of one mode �=0, so
that gSW,1=�2g0�, it is within a node of the other mode �so
that gSW,2=0�, and vice versa for the situation when =�. Of
course, for large cooperativity, C, between the traveling
wave cavity modes and the QD, the modes �âSW,1 , âSW,2�
may no longer be a good eigenbasis of the system. In order
to gain some insight into such situations before moving on to
numerical quantum master equation simulations, we consider
below steady state solutions to the semiclassical equations.

The semiclassical equations of motion, derived from the
above equations by assuming that expectation values of
products of operators equal the product of the expectation
values, can be solved in steady state to yield information
about the cavity response as a function of drive strength and
detunings, and are useful for understanding the linear and
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nonlinear spectroscopy of the system �9,11,39–41�. In the
case of a single cavity mode coupled to a two-level system
this leads to the standard optical bistability state equation
�OBSE�. We consider two examples from the microdisk
model described above with two cavity modes, one in which
the scattering by the QD and the roughness-induced back-
scattering are in phase and the coupling between the QD and
cavity mode are described by the simple intuitive picture
above, the other in which the two processes compete and the
system response is more complicated. We begin with the
simplest case in which =0 �the =� case is identical except
the roles of âSW,1 and âSW,2 are swapped�. Defining the pa-
rameters

ns =
���	

4g0
2 , C =

g0
2

2�T��

,

Y =
E

�2ns�T

,

X+ =
��âSW,1��=0

�ns

, X− =
��âSW,2��=0

�ns

, �19�

and solving Eq. �18� with =0 in steady state we arrive at the
following expressions relating the external drive �Y� to the
internal state of the cavity �X+ ,X−�:

X+ =
Y

1 +
4C

2�X+�2 + �	al

��

�2

+ 1

+ i��	cl − �

�T

−

4C�	al

��

�
2�X+�2 + �	al

��

�2

+ 1�
,

X− =
Y

1 + i�	cl + �

�T

� . �20�

Due to the common phase of the backscattering and the QD mode coupling in this case, the net effect of the backscattering on
the system response is simply to shift the resonance frequencies of the empty-cavity modes. As expected the QD couples to
one standing wave mode with a cooperativity twice that of a traveling wave mode, and is decoupled from the other.

In the general case both standing wave WGMs couple to the QD and obtaining an equation analogous to the OBSE for an
arbitrary  is somewhat algebraically tedious. As a simple example in which both modes are coupled to the QD we consider
=� /2, which yields in steady state

X+ =
Y

 1 + i�	cl/�T

1 + i�	cl/�T + ���/�T

��1 +
����/�T�2

1 + �	cl

�T

�2 +
4C

2X+
2 + �	al

��

�2

+ 1

+ i��	cl

�T �1 −
����/�T�2

1 + �	cl

�T

�2� −

4C�	al

��

�
2X+

2 + �	al

��

�2

+ 1��
,

X− =

Y −
���

�T

X+

1 + i
�	cl

�T

. �21�

In this case the backscattering and the QD mode coupling are
out of phase and in competition. The resulting system re-
sponse is governed by the detunings ��	al ,�	cl� and the
relative magnitude of the normalized roughness-induced
backscattering ���� /�T�2 and the cooperativity C.

Finally note that in order to connect to experiment an
input-output expression between the incoming optical signal

in the waveguide and the optical transmission �or reflection�
past the cavity into our collection fiber is desired. In
the formalism presented in Sec. II the transmission and
reflection are given in terms of the traveling wave mode
amplitudes. These amplitudes can easily be recovered
from even and odd parity superpositions of X+ and X−
�see Eq. �17��.
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IV. SOLUTIONS TO THE STEADY STATE QUANTUM

MASTER EQUATION IN THE WEAK DRIVING REGIME

The quantum master equation �QME� presented in the
previous section is solved numerically using the Quantum
Optics Toolbox �42,43�. We begin by considering steady
state solutions, and calculate the transmitted and reflected
optical signals from the cavity. As a starting point, we elimi-
nate the quantum dot from the problem by taking the cou-
pling rate g0=0. As expected, the resulting solutions �not
displayed here� are identical to those obtained using the clas-
sical coupled mode equations and presented in Fig. 2. Hav-
ing confirmed that the QME solution is consistent with the
classical solution in the empty cavity limit, we move on to
study interactions with the quantum dot. To connect these
simulations to ongoing experiments we choose physical pa-
rameters consistent with our fabricated devices �25,26�. In
these experiments the microdisk cavity is 255 nm thick, and
has a sidewall angle of 26° as shown in Fig. 3�a�. The modes
of these structures �Fig. 3�b�� can be numerically investi-
gated through finite-element eigenfrequency calculations us-
ing the Comsol FEMLAB software �26,44,45�, and informa-
tion about the effective modal volume Veff �as defined in Eq.
�9�� and radiation-limited quality factor Qrad can be obtained.
For the purposes of this work we focus on modes of trans-
verse electric �TE� polarization, where the electric field lies
predominantly within the plane of the disk, and we consider
first order radial modes �p=1� in the 1200 nm wavelength
band, the wavelength region of the ground state exciton tran-
sition in our QDs.

As discussed in Ref. �26�, finite-element method simula-
tions can be used to calculate Veff as a function of the aver-
age microdisk diameter Davg. From Veff, we can estimate the
QD-photon coupling strength. For a QD located at a position
of maximum electric field energy density and with exciton
dipole parallel to the local electric field of the cavity mode
g0=d ·Eph /� is given by �4,46�

g0 =
1

2�sp

� 3c�0
2�sp

2�n3Veff
, �22�

where �sp is the spontaneous emission lifetime of the QD
exciton. Consistent with what has been measured experimen-
tally for self-assembled InAs quantum dots �47�, we take

�sp=1 ns. Figure 4 shows a plot of g0 versus disk size for
traveling wave WGMs, and we see that g0 /2� can be as high
as 16 GHz for the range of diameters we consider. As dis-
cussed in Ref. �26�, the WGMs are well confined
�Qrad�105� for all but the smallest diameter disks
�Davg�1.5 �m�. We have confirmed this in experiments
�26,48�, with Q as high as 3.6�105 measured, so that cavity
decay rates �T /2� of approximately 1 GHz can reasonably
be expected. Such devices exhibited doublet splittings that
are on the order of ��=10–100 pm �see Fig. 3�c��, corre-
sponding to a backscattering rate �� � /2�=1–10 GHz. In
practical devices then, the roughness-induced backscattering
and the coherent QD-cavity mode coupling rates can be of
similar magnitude, and we thus expect the QME simulation
results to be particularly helpful in interpreting future experi-
mental data.

Unless otherwise specified, in all of the QME simulations
to follow we consider the weak driving limit. In this limit the
steady state response of the system behaves linearly, with the
internal cavity photon number �1 and QD saturation effects
negligible. For the QD and cavity parameters of the micro-
disk structures described below this corresponds to input
powers of about 10 pW.
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FIG. 3. �Color online� �a� Scanning electron microscope �SEM� image of a fabricated microdisk device. The disk thickness is
t=255 nm and the sidewall angle is �=26° from vertical. The measured average diameter for this device �i.e., the diameter at the center of
the slab� is 2.12 �m. �b� Finite-element-calculated �E�2 distribution for the TEp=1,m=11 WGM of a microdisk with a diameter of 2.12 �m at
the center of the slab. For this mode, ��1265.41 nm, Qrad�107, and for a traveling wave mode, Veff�5.6�� /n�3. �c� Typical measured
normalized optical transmission spectrum of the TEp=1,9 WGMs of a 2 �m diameter microdisk similar to that in the SEM image of �a�.
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FIG. 4. �Color online� Coherent coupling rate g0 /2� �with
�sp=1 ns� for traveling wave TEp=1,m whispering-gallery modes of
the microdisk structure described in Fig. 3 with varying disk diam-
eter. Calculations were performed using a fully vectorial finite-
element method, where for each microdisk diameter the azimuthal
number of the TEp=1,m WGM resonance was adjusted to place the
resonance frequency nearest �=1250 nm.
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A. ��g0� „�T ,��…

The first situation we study is one in which the back-
scattering rate � exceeds the coupling rate g0, which in turn
exceeds the cavity and QD decay rates �T and ��. We choose
� /2�=9.6 GHz �=0�, with g0 /2�=6 GHz, �T /2�

=1.2 GHz �corresponding to Q=105�, �e /2�=0.44 GHz
�corresponding to a transmission depth of 60% for the
empty-cavity standing wave modes�, and �sp=1 ns��	 /2�

�0.16 GHz�. The unperturbed cavity frequency �i.e.,
the resonance frequency of the traveling wave modes� is
fixed at 	c=0, and three different QD-cavity detunings,
�	ac=	a−	c= �0,� ,−�� are considered. For each value of
�	ac, we calculate the steady state transmission and reflec-
tion spectra �as a function of probe laser frequency to cavity
detuning, �	lc=	l−	c� from the cavity in three different
limits: �i� g0=0; here, there is no QD-cavity coupling,
and the response should be that of an empty cavity, �ii�
g0 /2�=6 GHz, �p /2�=0 GHz; here, we neglect all nonra-
diative dephasing, which becomes a good approximation as
the temperature of the QD is cooled below 10 K, and �iii�
g0 /2�=6 GHz, �p /2�=2.4 GHz; here, we allow for a sig-
nificant amount of nonradiative dephasing, corresponding to

a QD exciton linewidth of 10 �eV, which is consistent with
what has been observed experimentally at temperatures of
around 10–20K �47�.

The results of the steady-state quantum master equation
simulations are plotted in Fig. 5. The interpretation of these
results is as follows: as a result of the modal coupling due to
backscattering, which has formed standing wave modes
through a superposition of the initial traveling wave modes,
only the lower frequency mode of the doublet has any spatial
overlap with the QD �see Fig. 6 for location of the QD rela-
tive to the two standing wave modes as a function of �, and
thus, we should only expect the low frequency mode to ex-
hibit any frequency shifts or splittings. In Fig. 5�a�, with the
QD spectrally detuned equally from both empty-cavity
standing wave modes, we see asymmetric vacuum Rabi split-
ting due to coupling of the QD to the low frequency mode at
	c−�. In Fig. 5�b�, with the QD now on resonance with the
higher frequency mode, coupling still only occurs to the low
frequency mode detuned in this case by 2�. Finally in Fig.
5�c�, the QD is on resonance with the low frequency mode,
and is also spatially aligned with it, so that we see the famil-
iar symmetric vacuum Rabi splitting of this resonance. We
note that the frequency splitting, �R, is in this case 2�2g0
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FIG. 5. �Color online� Steady state QME solution for the normalized optical transmission �top curves� and reflection �bottom curves�
spectra for a QD coupled to a microdisk cavity under weak driving and for three different QD detunings: �a� �	ac=0, �b� �	ac=�, and �c�
�	ac=−�. Cavity and QD parameters for these simulations are �g0 ,� ,�T ,�e ,�	 ,�p� /2�= �6,9.6,1.2,0.44,0.16,2.4� GHz, with the phase of
the backscattering parameter set to =0. In these plots the additional black dotted line plots correspond to an empty cavity �g0=0� and the
red dashed line plots correspond to a QD with no nonradiative dephasing ��p /2�=0 GHz�.
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FIG. 6. �Color online� Standing wave modes
in a microdisk for different phases of � showing
how the low and high frequency modes are posi-
tioned with respect to a fixed QD. �a� ��0 �
=0�, �b� ��0 �=��, and �c� �= i��� �=� /2�.
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rather than 2g0; this is consistent with the mode volume of
the standing wave modes being one half that of the traveling
wave modes. For =� �Fig. 7� the results are the mirror
image of those in Fig. 5, where now the high frequency
mode is spatially aligned with the QD and exhibits frequency
shifts and vacuum Rabi splitting.

Finally, we consider an intermediate backscattering phase
=� /2. Here, we expect both modes to have an equal �but
nonoptimal� spatial alignment with the QD �Fig. 6�c��. The
results, displayed in Fig. 8, show that this is indeed the case.
In Fig. 8�a�, for example, we see a symmetric spectrum, con-
sistent with both modes being equally spatially coupled to
the QD and equally �and oppositely� spectrally detuned from
it. In Figs. 8�b� and 8�c�, we see that the spectra are no longer
symmetric, as the QD is on resonance with the high fre-
quency mode in Fig. 8�b�, and with the low frequency mode
in Fig. 8�c�. In each case we see Rabi splitting about the
mode on resonance with the QD and only a small shift for
the detuned mode. The Rabi splitting between the peaks is no
longer at the maximum value of 2�2g0, but at a value closer
to 2g0 due to the spatial misalignment of the QD with the
empty-cavity standing wave modes.

Before moving on to study different parameter regimes
for �g0 ,� ,� ,���, we examine the cavity’s transmission spec-
trum as a function of the spectral detuning of the QD ��	ac�.
In practice �1–3�, QD-cavity detuning is often achieved by
varying the sample temperature, which tunes at different
rates the transition frequency of the QD �due to its
temperature-dependent energy bandgap� and the cavity mode
�due to its temperature-dependent refractive index�. More re-
cently, gas condensation on the sample surface �49� has been
successfully used to tune the cavity mode frequency of a
surface-sensitive photonic crystal microcavity. Such a
method has recently been shown to be effective for the mi-
crodisks studied here owing to the field localization at the
top and bottom surface and at the disk periphery �50�. In Fig.
9 we plot the cavity transmission minima as a function of
�	ac for the parameter set studied above in Fig. 8, where the
QD is spatially coupled to both standing wave modes of the
microdisk. When the QD is far detuned from the standing
wave cavity modes, we see the response of an essentially
uncoupled system, with transmission dips at the bare QD and
cavity mode frequencies �±��. In the center of the plot, as
the QD is tuned through the bare-cavity resonances, a pair of
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FIG. 7. �Color online� Steady state QME solution for the normalized optical transmission �top curves� and reflection �bottom curves�
spectra of a QD coupled to a microdisk cavity under weak driving and for three different QD detunings: �a� �	ac=0, �b� �	ac=�, and �c�
�	ac=−�. These plots are calculated for identical parameters as in Fig. 5 with the exception that the phase of the backscattering parameter
� has been changed from =0 to =� �� /2�=−9.6 GHz�.
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FIG. 8. �Color online� Steady state QME solution for the normalized optical transmission �top curves� and reflection �bottom curves�
spectra of a QD coupled to a microdisk cavity under weak driving and for three different QD detunings: �a� �	ac=0, �b� �	ac=�, and �c�
�	ac=−�. These plots are calculated for identical parameters as those in Fig. 5 with the exception that the phase of the backscattering
parameter � has been changed from =0 to =� /2 �� /2�= i9.6 GHz�.
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anti-crossings are evident as the QD couples to each of the
standing wave modes of the microdisk.

B. g0��� „�T ,��…

Here we switch regimes to one in which the QD-cavity
coupling rate dominates all other rates in the system, includ-
ing the backscattering rate �. In particular, we choose
g0 /2�=12 GHz, with � /2�=4.8 GHz, �T /2�=1.2 GHz
��e /2�=0.44 GHz�, and �sp=1 ns ��	 /2��0.16 GHz�. The
qualitative behavior that we expect to see is similar to that of
the previous section as both g0 and � represent coherent
processes, so that their relative values are not as important as
their values in comparison to the dissipative rates in the sys-
tem. This is seen in Fig. 10�a�, where the QD is spectrally
located at −�, so that it is resonant with the low frequency
mode of the standing wave doublet. Predictably, the interac-
tion with the QD causes this resonance to split, with a split-
ting �R=2�2g0. The higher frequency mode remains unaf-
fected, as the choice of =0 causes it to be spatially
misaligned with the QD.
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transmission spectrum of a QD coupled to a microdisk cavity under
weak driving, as a function of QD-cavity detuning �	ac.
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FIG. 10. �Color online� Steady state QME solution to the normalized optical transmission �top curves� and reflection �bottom curves�
spectra of a QD coupled to a microdisk cavity with =0, and for �a� g0����T��� ��	ac=−� /2�, �g0 ,� ,�T ,�e ,�	 ,�p� /2�

= �12,4.8,1.2,0.44,0.16,2.4� GHz�, �b� �T�g0����� ��	ac=0, �g0 ,� ,�T ,�e ,�	 ,�p� /2�= �6,1.2,9.6,3.5,0.16,0.7� GHz�, �c�
�	 �g0����T ��	ac=−� /2�, �g0 ,� ,�T ,�e ,�	 ,�p� /2�= �6,1.2,0.6,0.22,9.4,0� GHz�, and �d� g0��T����� ��	ac=0,
�g0 ,� ,�T ,�e ,�	 ,�p� /2�= �12,1.2,6 ,2.2,0.16,0.7� GHz�. In these plots the additional black dotted line plots correspond to an empty cavity
�g0=0� and the red dashed line plots correspond to a QD with no nonradiative dephasing ��p /2�=0 GHz�.
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C. �T�g0�����

Now, we take the cavity loss rate �T /2�=9.6 GHz to ex-
ceed both g0 /2�=6 GHz and � /2�=1.2 GHz. In addition,
�e /2�=3.5 GHz, �	 /2�=0.16 GHz, and �p /2�=0 or
0.7 GHz, so that �T��e��� �good cavity limit�. In the ab-
sence of a QD we expect to see a single transmission dip
rather than a doublet for �T��. This is confirmed in simu-
lation by the black dotted line in Fig. 10�b�. With the addi-
tion of a QD, taken to be resonant with the center frequency
of the single cavity transmission dip, we expect to see
this single dip split into two, with the dips not being com-
pletely resolved due to decay of the cavity mode ��T�g�.
This is confirmed in Fig. 10�b�, where the splitting
�R /2�=14.8 GHz lies between the expected splitting for a
purely traveling wave cavity mode ��R=2g0� and the ex-
pected splitting for a purely standing wave cavity mode
��R=2�2g0�, and lies closer to the former due to the large
degree to which �T exceeds �.

D. �¸�g0����T

Here, the roles of �T and �	 are swapped in comparison to
the previous subsection, so that �	 /2�=9.6 GHz is the domi-
nant dissipative rate, exceeding each of �g0 ,� ,�T ,�e� /2�

= �6,1.2,0.6,0.22� GHz �bad cavity limit�. Unlike our previ-
ous example, in absence of a QD we do expect to see a pair
of standing wave modes form, as ���T. This is confirmed
in Fig. 10�c� �black dashed line�. Now, we introduce a QD
that is spectrally aligned with the low frequency mode at −�.
Because QD decay is so large in this case we expect that the
standing wave character of the modes is going to largely be
erased when coupled to the QD. To confirm this intuition, we
examine the calculated transmission spectrum in Fig. 10�c�.
The low frequency mode does indeed split, but the splitting
�R /2�=14.4 GHz is less than the expected splitting of
2�2g0 for standing wave modes, and lies much closer to the
2g0 splitting for traveling wave modes. The situation thus
mimics that of the previous example, although in this case
the relatively weak transmission contrast of the QD-coupled
resonances is a result of operation in the bad cavity limit.

E. g0��T�����

Finally, we consider a scenario in which the QD-cavity
coupling g0 /2�=12 GHz is the dominant rate in the system,
but where cavity decay �T /2�=6 GHz exceeds the back-
scattering rate � /2�=1.2 GHz. In absence of a QD we see a
single transmission resonance dip �Fig. 10�d�� as �T��. If a
QD is now spectrally aligned to the center of this transmis-
sion dip ��	ac=0� three resonances appear within the trans-
mission spectrum of Fig. 10�d�. This should be contrasted
with the transmission spectrum of Fig. 10�b� in which only
two resonant transmission dips were present. The central
resonance dip of Fig. 10�d� is at a detuned frequency of
1.2 GHz �=� /2��, and corresponds to the frequency of one
of the two standing wave modes that can form through an
appropriate combination of the traveling wave modes. As
this mode is spatially misaligned from the QD for =0, we
do not expect its frequency to have shifted due to interaction

with the QD. The other two transmission resonances corre-
spond to the splitting of the low frequency mode from its
empty-cavity position at −� /2�=−1.2 GHz. The splitting of
�R /2�=33.6 GHz is very close to the value of 2�2g0 ex-
pected for interaction with a standing wave mode.

The basic result that the above example demonstrates is
that the QD can effectively serve as a means to couple the
traveling wave microdisk modes, even in instances where the
backscatter parameter is small relative to other rates in the
system. As a final illustration of this, we consider the situa-
tion where the backscatter parameter is zero. In Fig. 11, the
empty-cavity single transmission resonance separates into
three resonance dips, one at the original zero detuning and
the other two split by 2�2g0. The interpretation of this result
is that the QD has effectively served to couple the two
counter-propagating traveling wave modes, creating a pair of
standing wave resonant modes, one which is decoupled and
has an electric field node at the position of the QD, and the
other which is strongly coupled to the QD at a field antinode.
In this case, and in other strong coupling cases where g0 is
the dominant system rate, the QD serves to set the position
of the effective standing wave cavity modes �as opposed to
backscattering phase � thus ensuring azimuthal alignment of
the QD with a field antinode of one of the standing wave
modes. Note that in the example of IV A �Fig. 5� in which
��g0, it is the phase of � �� which determines the position
of the standing wave field antinodes with respect to the QD.

V. INTENSITY CORRELATION FUNCTION

CALCULATIONS

Of additional interest is the behavior of the �normalized�
intensity correlation function g�2����, whose value can indi-
cate nonclassical characteristics of the cavity field �51�, and

-20 -10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

∆ωlc/2π (GHz)

ca
v

it
y

tr
a

n
sm

is
si

o
n

/r
e

fl
e

ct
io

n

FIG. 11. �Color online� Steady state QME solution for the nor-
malized optical transmission �top curves� and reflection �bottom
curves� spectra for a QD coupled to a microdisk cavity under weak
driving and with the roughness-induced backscattering rate
��� zero. g0��T����� ��	ac=0, �g0 ,� ,�T ,�e ,�	 ,�p� /2�

= �6,0 ,1.2,0.44,0.16,0.7� GHz�. The additional black dotted line
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plots correspond to a QD with no nonradiative dephasing
��p /2�=0 GHz�.
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is thus of essential importance in the characterization of QD-
cavity based devices such as single photon sources
�12,52–54�. Furthermore, intensity correlations of the cavity
field �and other higher-order correlations� are sensitive to the
energy levels of multi-photon states of the system, and thus
provide further information about the system beyond the
weak driving limit studied above. This is particularly impor-
tant in the case of WGM cavities, in which the presence of a
double-peaked spectrum typically associated with Rabi split-
ting cannot by itself be regarded as evidence for strong cou-
pling. Here we analyze the intensity correlations of a coupled
QD-cavity system, the cavity containing a pair of nearly de-
generate WGM modes as in the analysis of the previous sec-
tions.

A general definition for any �stationary� two-time inten-
sity correlation function in our system is �55,56�

ga,b
�2���� = lim

t→�

�â†�t�b̂†�t + ��b̂�t + ��â�t��

�â†�t�â�t���b̂†�t + ��b̂�t + ���
, �23�

where â and b̂ are the field annihilation operators for modes
a and b, which can be the cavity traveling wave modes �la-
beled CW/CCW� or standing wave modes �labeled
SW1 /SW2�. Here, it is assumed that steady-state has been
reached �i.e., t→��, so g

a,b
�2���� is the stationary two-time

correlation function, and is a function of the time delay �

only. We calculate g
a,b
�2���� by applying the quantum regres-

sion theorem �37� and numerically integrating the quantum
master equation �Eqs. �11�–�16�� �42,43�. In what follows,
we initially focus on calculating gCCW,CCW

�2� ���, the two-time
intensity auto-correlation function for the counterclockwise
WGM field operator âCCW. Due to phasematching, the re-
flected signal from the cavity is proportional to âCCW, allow-
ing such intensity correlations to be measured in practice.

We begin by considering the set of parameters studied in
the steady-state transmission and reflection spectrum of Fig.
5�c�, where =0 so that � is purely real and positive, and
where �	ac=−� so that the QD is tuned to resonance with
the empty cavity lower frequency standing wave mode
which it is spatially aligned with. gCCW,CCW

�2� ��� is calculated
in three instances, with each case corresponding to a probe
field frequency 	l tuned onto resonance with one of the three

resonance peaks in the coupled cavity-QD reflection spec-
trum of Fig. 5�c�. The results are shown in Fig. 12. For probe
frequencies 	l=−�±g0

�2 �Figs. 12�a� and 12�b��, photon
antibunching and sub-Poissonian statistics are predicted.
This antibunching is a result of the anharmonicity of the
Jaynes-Cummings system; once the system absorbs a photon
at −�±g0

�2, absorption of a second photon at the same fre-
quency is not resonant with the higher excited state of the
system �12�. The degree of antibunching is a function of the
specific system parameters chosen, and gCCW,CCW

�2� �0� ap-
proaches zero more closely as g0 further exceeds the rates �T

and ��. In this case, the difference in gCCW,CCW
�2� ��� for probe

frequencies 	l=−�±g0
�2 is a result of the asymmetry in the

spectrum of the system due to the presence of the nominally
uncoupled high-frequency standing wave mode �asymmetry
in the probe frequency detuning from the CCW traveling
wave mode’s natural frequency also plays a role here, and
has a persistent effect upon gCCW,CCW

�2� ��� even for increasing
mode-coupling �� ,g0� and decreasing dephasing ��T ,����.
For a probe frequency resonant with the third reflection peak
at 	l=� �Fig. 12�c��, gCCW,CCW

�2� ��� is essentially unity for all
times and the reflected light from the cavity is nearly Pois-
sonian due to the spatial misalignment, and resulting decou-
pling, of the QD from the high-frequency cavity mode light
field.

We next examine the parameter set explored in Fig. 8�a�,
where =� /2, so that both standing wave cavity modes are
spatially coupled to the QD. In addition, �	ac=0, so that the
modes are equally and oppositely detuned from the QD.
Once again, we calculate gCCW,CCW

�2� ��� for three cases, with
each case corresponding to 	l on resonance with one of the
three peaks in the reflection spectrum of Fig. 8�a�. The re-
sults, shown in Fig. 13, indicate mild antibunching for
	l /2�= ±12.8 GHz �the leftmost and rightmost peaks in the
reflection spectrum� and for �p=0. Higher levels of nonradi-
ative dephasing lead to a washing out of the antibunching,
though the field exhibits sub-Poissonian statistics on a time
scale of �1/ ��T+��� /2. For 	l=0 �Fig. 13�b��, the calcula-
tion predicts photon bunching. This occurs because the reso-
nance at zero detuning only appears when at least one photon
is in the cavity and is coupled to the QD, which then allows
for an additional photon at this frequency to be stored in the
cavity and reflected. The high-frequency oscillations in
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FIG. 12. �Color online� Normalized second order autocorrelation function �solid blue line� gCCW,CCW
�2� ��� for the counterclockwise

propagating cavity mode for the parameters �g0 ,� ,�T ,�e ,�	 ,�p� /2�= �6,9.6,1.2,0.44,0.16,2.4� GHz, �	ac=−�, and whose transmission/
reflection spectrum, originally shown in Fig. 5�c�, is redisplayed here in the plot insets. �a� 	l=−�−g0

�2, �b� 	l=−�+g0
�2, and �c�

	l=�. The additional red dashed line plots correspond to a QD with no nonradiative dephasing ��p /2�=0 GHz�.
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gCCW,CCW
�2� ���, and resulting narrow super-Poissonian central

peak about gCCW,CCW
�2� �0�, are a result of interference effects

created by beating between the two cavity modes that are
excited in this case �note that the central resonance peak in
the cavity-QD spectrum is predominantly atomic-like, and
excitation through the optical channel effectively excites the
two detuned peaks, which are primarily photonic in nature�.

Finally, we consider the parameter set explored in Fig. 11,
where �=0 so that only the QD couples the clockwise and
counterclockwise modes together. For the Rabi-split peaks
centered at 	l= ±g0

�2, we see strong antibunching, as to be
expected for a single QD coupled to a single cavity mode
excited on resonance with the Rabi-split peaks. At 	l=0,
there are just minor oscillations about g�2����=1 due to the
weak and transient coupling of the resonant cavity mode
with the QD. Comparison of this example with that of Fig.
13 illustrates well the added system information gained by
studying intensity correlations of the scattered light. Al-
though both systems look very similar when studying the
amplitude of light transmission and reflection intensity under
weak driving, the intensity correlations provide information
about the spatial position of the QD relative to each of the
standing wave cavity modes and the relative strength of g0 to
�.

Up to this point we have considered only the two-time
correlation function for the counterclockwise propagating
cavity mode. Correlation functions for the clockwise propa-

gating mode and standing wave cavity modes can be deter-
mined through formulas analogous to Eq. �23�, and can pro-
vide further insight into the appropriateness of the standing
wave mode picture. Figure 15 shows the results of two-time
intensity correlation calculations for the set of parameters
considered in Fig. 14, where now we have plotted the inten-
sity autocorrelation function for the standing wave modes.
The results are consistent with the standing wave mode pic-
ture of atom-cavity interaction: mode SW1 is spatially
aligned with the QD, and hence gSW1,SW1

�2� ��� shows signifi-
cant photon antibunching at the Rabi-split frequencies
	l= ±g0

�2 and off-resonance bunching �12� at 	l=0 �top
plots in Figs. 15�a�–15�c��, while standing wave mode SW2

is spatially misaligned from the QD and gSW2,SW2

�2� ��� is es-
sentially unity for all drive frequencies �bottom plots in Figs.
15�a�–15�c��.

In addition to the autocorrelation calculations presented
thus far, there are a number of other investigations of non-
classical behavior within this system that may be of interest.
For example, mixed-mode correlation functions can give in-
sight into entanglement between the two cavity modes and
the potential for generating non-classical states such as those
employed in studies of the Einstein-Podolsky-Rosen paradox
�55,57�. Squeezing, which has been studied in the context of
the Jaynes-Cummings system by a number of authors
�39,58–61�, is also a potential topic for further study. The
strong coupling of two cavity modes to a single QD, in the
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FIG. 13. �Color online� Normalized second order autocorrelation function �solid blue line� gCCW,CCW
�2� ��� for the counterclockwise

propagating cavity mode for the parameters �g0 ,� ,�T ,�e ,�	 ,�p� /2�= �6, i9.6,1.2,0.44,0.16,2.4� GHz, �	ac=0, and whose transmission/
reflection spectrum, originally shown in Fig. 8�a�, is redisplayed here in the plot insets. �a� 	l /2�=−12.8 GHz, �b� 	l /2�=0 GHz, and �c�
	l /2�=12.8 GHz. The additional red dashed line plots correspond to a QD with no nonradiative dephasing ��p /2�=0 GHz�.

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0
time delay (ns)

0

0.2

0.4

0.6

0.8

1.0

ωl ωl ωl

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0
time delay (ns)

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0
time delay (ns)

(b) (c)

g
(2

)
(τ

)

(a)

cc
w

,c
cw
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�2� ��� for the counterclockwise propagating
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presence of background-mediated intermodal coupling, may
yield important differences from previously studied systems.
Furthermore, generating squeezed light or other nonclassical
fields in a microchip-based geometry could be of technologi-
cal importance. In the Appendix, we present some prelimi-
nary calculations on the above topics which indicate the de-
gree to which such nonclassical behavior may be exhibited in
these devices. A more authoritative treatment of these topics
requires a systematic investigation of different parameter re-
gimes for �g0 ,� ,�T ,�e ,�	 ,�p�, driving field strength and fre-
quency, and excitation channel �coupling to the cavity mode
versus coupling to the QD directly�, and is beyond the scope
of this paper.

VI. SUMMARY

We have extended the standard quantum master equation
model for a two-level system coupled to the mode of an
electromagnetic cavity to better reflect the situation that oc-
curs in realistic semiconductor microdisk cavities. In this
model the quantum dot, still treated as a two-level system, is
coupled to two cavity modes corresponding to clockwise and
counterclockwise propagating whispering-gallery modes of
the disk. These two modes are in turn passively coupled to
each other through surface roughness, characterized by a
backscatter parameter �. We examine the steady state behav-
ior of the system for differing regimes of �, the QD-cavity
coupling rate g0, the cavity decay rate �T, and the quantum
dot dephasing rate ��. In particular, we consider conditions
for which standing wave cavity modes form, how the mag-
nitude of the different system rates and the phase of � deter-
mine the nodes and antinodes of the cavity modes with re-
spect to the quantum dot, and the resulting QD-cavity
coupling. It is anticipated that this analysis will be useful in
the interpretation of experimental spectra from a waveguide-
coupled whispering-gallery-mode microcavity strongly

coupled to a single two-level system such as the exciton state
of a self-assembled quantum dot.
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APPENDIX: NONCLASSICAL CORRELATIONS AND

SQUEEZING

1. Mixed-mode correlation function

We reconsider the parameter set of Fig. 14, where �=0,
so that only the QD is coupling the two cavity modes, and
calculate the mixed-mode correlation functions gCW,CCW

�2� ���
and gSW1,SW2

�2� ��� for the same set of parameters. We focus on
solutions for �=0, which can be obtained entirely from the
steady-state density matrix, and examine the behavior of
g

a,b
�2��0� as a function of driving frequency. The Cauchy-

Schwarz inequality

�ga,b
�2��2 � ga,a

�2�
� gb,b

�2� �A1�

is violated when nonclassical correlations exist between the
two modes a and b �55,56�. As we see in Fig. 16�a�, this
inequality is violated for the traveling wave modes at par-
ticular choices of 	l, so that nonclassical correlations be-
tween the two modes can occur in this system. On the other
hand, for the standing wave modes, no quantum correlations
exist, as mode SW2 is not coupled to the QD, so that
gSW1,SW2

�2� �0�=gSW2,SW2

�2� �0�=1 for all 	l. The transient �i.e.,
nonsteady-state� behavior of the mixed and single mode cor-
relation functions are shown in Fig. 16�b�. Here we plot
gCW,CCW

�2� �t�, gSW1,SW2

�2� �t�, gCW,CW
�2� �t�, gCCW,CCW

�2� �t�, gSW1,SW1

�2� �t�,
and gSW2,SW2

�2� �t� for 	l /2�=−6 GHz �where the Cauchy-
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Schwarz inequality is nearly maximally violated�, with the
t=0 initial state consisting of both cavity modes in the
vacuum state and the QD in its ground state. The calculations
indicate that steady-state behavior is achieved after
�1 ns, corresponding to the system’s average decay time
��1/ ��T+��� /2�, with violations of the Cauchy-Schwarz
inequality for the traveling wave modes occurring after only
�0.2 ns.

2. Squeezing

As has been observed by several other authors in studies
of single mode CQED �58,60�, squeezing in the field quadra-
tures can occur, however, with the amount of squeezing typi-
cally small ��20% � unless large intracavity photon numbers
��10� are achieved.1 The basic reason for this is that the
nonlinear interaction that generates squeezing in the Jaynes-
Cummings system is that of the electromagnetic field cou-
pling to a saturable oscillator �the QD�; this implies that the
intracavity field has to be strong enough for QD saturation
effects to be appreciable. For our system, situations where
only one of the standing wave modes is coupled to the QD
�as in Figs. 12 and 14, for example� essentially reduce to that
of the single mode cavity QED case, and we expect qualita-
tively similar behavior. A perhaps more interesting example
to study is that of Fig. 13, where both standing wave modes
are equally coupled to a QD. To achieve a reasonable intra-
cavity photon number, we increase the input driving field by
approximately three orders of magnitude over the weak drive

fields we have used up to this point, to a level of
�30 photons/ns, so that the average intracavity photon num-
ber �bottom of Fig. 17�b�� peaks at a value of �1. This
results in the transmission and reflection spectra shown at the
top of Fig. 17�a�. In comparison to the transmission/
reflection spectra calculated in the weak driving limit in Fig.
8�a�, we now begin to see asymmetries in the transmission
dips �reflection peaks� that are associated with multiphoton
transitions to excited states in the Jaynes-Cummings spec-
trum and QD saturation effects. In this calculation, we are
unable to numerically study higher drive strengths due to the
resulting large system size for these two-mode cavities. To
access higher driving fields using the same computational
resources, adopting a wavefunction-based approach �i.e., the
quantum Monte Carlo method� is one possibility.

We next consider fluctuations in the steady-state, internal
cavity field �squeezing in the external field, which can be
investigated through the spectrum of squeezing �62�, for ex-
ample, are not considered here but may be of future interest�.
First, we look at fluctuations in the photon number in mode i

by calculating the Mandel Q parameter �51�

Q�n̂i� =
Var�âi

†
âi� − �âi

†
âi�

�âi
†
âi�

, �A2�

where for some operator Ô, Var�Ô�= �Ô2�− �Ô�2. Figure
17�c� shows the calculated Q parameter as a function of driv-
ing field frequency for the CW/CCW traveling wave modes
�top� and SW1 /SW2 standing wave modes �bottom�. These
plots show Q�0 for certain driving frequencies, indicating
that sub-Poissonian photon number statistics can be
achieved, though the level of nonclassicality is small
��5% �. A calculation of Q�n̂CW��t� for 	l=0 �with both cav-
ity modes initially in the vacuum state and the QD in its
ground state� indicates that slightly higher levels of nonclas-
sicality �Q�−0.1� can be achieved before steady-state is
reached. Additional preliminary calculations using a quan-
tum Monte Carlo method to access higher drive strengths
have been performed, and show that Q can continue to de-

1It should be noted that Refs. �58,60� study the Jaynes-Cummings
system in absence of a driving field. Strong driving fields signifi-
cantly affect the structure of the Jaynes-Cummings systems, causing
drive-strength-dependent Stark shifts of the system eigenergies
�63�. We thus might expect strong driving fields to have an appre-
ciable affect on squeezing and photon statistics. In particulars, Als-
ing and co-workers �63� have shown that squeezed, displaced num-
ber states are eigenstates of the total Hamiltonian for the driven
Jaynes-Cummings model.

(a)

-15 -10 -5 0 5 10 15
0

10

20

30

40

50

60

70
(b)

ωl

0 0.5 1.0 1.5
0

10

20

30

40

time (ns)

g(2)
CW,CW

(t)

g(2)
CCW,CCW

(t)

g(2)
CW,CCW

(t)

g(2)
SW1,SW1

(t)
[g

(2
) (0

)]
2

a,
b

∆ωlc/2π (GHz)
-20 200

∆ωlc/2π (GHz)

g
(2

) (t
)

a,
b

g(2)
SW2,SW2

(t)

g(2)
SW1,SW2

(t)

FIG. 16. �Color online� Second order correlation functions for the parameters �g0 ,� ,�T ,�e ,�	 ,�p� /2�= �6,0 ,1.2,0.44,0.16,0.7� GHz,
�	ac=0, and whose transmission/reflection spectrum, originally shown in Fig. 11, is redisplayed here in the plot insets. �a�
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�2� �0��2 �solid blue line�, gCW,CW
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�2� �0��2 �dash-dotted green line�, and
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crease for larger driving fields. For drive strengths of
�300 photons/ns �corresponding to an average total intrac-
avity photon number �1 at 	l=0�, Q�n̂CW� can reach −0.35
in its transient �non-steady-state� behavior.

Similarly, one can examine fluctuations in the field
quadratures. For mode i, we define the quadrature operators

X̂i
1,2 by

X̂i
1 =

1

2
�âi + âi

†� ,

X̂i
2 =

− i

2
�âi − âi

†� . �A3�

The corresponding Q parameter for quadrature j of mode i is
then �56�

Qi
j =

Var�X̂i
j� − 0.25

0.25
. �A4�

From Fig. 17�d�, we see that small amounts of quadrature
squeezing in the CW/CW modes are apparent for the condi-
tions considered.
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