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Understanding the physics of glass formation remains one of the major unsolved

challenges of condensed matter science. As a material solidifies into a glass, it exhibits

a spectacular slowdown of the dynamics upon cooling or compression, but at the

same time undergoes only minute structural changes. Among the numerous theories

put forward to rationalize this complex behavior, Mode-Coupling Theory (MCT) stands

out as a unique framework that provides a fully first-principles-based description of glass

phenomenology. This review outlines the key physical ingredients of MCT, its predictions,

successes, and failures, as well as recent improvements of the theory. We also discuss

the extension and application of MCT to the emerging field of non-equilibrium active soft

matter.

Keywords: mode-coupling theory, glass transition, molecular hydrodynamics, liquid structure, amorphous solids,

supercooled liquids, colloids, active matter

1. INTRODUCTION TO THE PHYSICS OF GLASS FORMATION

Glasses are solid materials that lack any long-range structural order, representing a state of matter
that lies somewhere in between a crystalline solid and a disordered liquid. The most common
pathway toward a glassy state is by rapidly cooling a liquid to below its melting point–thus entering
the so-called supercooled regime–, until the liquid’s viscosity η simply becomes so large that it
stops flowing on any practical time scale [1–3]. The operational definition of the glass transition
temperature Tg is the point where the viscosity exceeds a value of 1012 Pa.s or the structural
relaxation time τ exceeds 100 s, but most glasses in our everyday lives have a viscosity that is
still orders of magnitude higher [4]. Aside from common applications such as window panes
and household items, amorphous solids can be found in, e.g., phase-change memory devices,
pharmaceutical compounds, optical fibers, and wearable electronics, and there is compelling
evidence that even living cells employ glass-like behavior to regulate intra- and intercellular
processes [5–11]. Curiously, most of the water in the universe is also believed to exist in the glassy
state [12].

Given the vast abundance and importance of glasses, it may come as a surprise that we still
understand very little about them. In fact, after decades of intense research, there is still no
consensus on which physical mechanisms underlie the process of glass formation. Unraveling the
nature of the glassy state ranks among the “most compelling puzzles and questions facing scientists
today” [13], and Nobel laureate Philip Anderson even called it “the deepest and most interesting
unsolved problem in solid-state theory” [14]. What makes the glass transition so notoriously
difficult to understand? At the heart of the problem lies the fact that a vitrifying material exhibits
a spectacular growth of viscosity (or relaxation time) upon cooling or compression, but at the
same time undergoes only minute structural changes. Thus, at the molecular level, the structure
of a glass is almost indistinguishable from that of a normal liquid (as probed by, e.g., the radial
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FIGURE 1 | Schematic picture of the structure of (A) a normal liquid, (B) an

amorphous solid, i.e., a glass, and (C) a crystalline solid. The first panel

highlights four (green) particles which are separated by a distance r from a

(red) reference particle. The right panels illustrate the corresponding radial

distribution functions g(r), which describe the probability of finding a particle a

distance r away from any reference particle, relative to the ideal-gas case. The

first peak in g(r) represents the first solvation shell at r ≈ 1d, where d is the

particle diameter. The dashed black lines indicate the ideal-gas result g(r) = 1.

distribution function or the static structure factor), yet their
viscosities differ by at least fifteen (!) orders of magnitude. This
is unlike any conventional thermodynamic phase transition,
such as the liquid-to-crystal transition, which is marked
by the appearance of long-range, periodic structural order
(Figure 1). Nonetheless, it is not unimaginable that some kind
of “amorphous order” emerges during vitrification, albeit in a far
less obvious way than in the crystallization example. A popular
hypothesis is that the subtle microstructural changes observed
in supercooled liquids might somehow contain a “hidden”
growing (and possibly diverging) length scale that accompanies
the transition from liquid to amorphous solid, and indeed a
large ongoing effort is devoted to identifying such a length scale
[15–17].

Another major unresolved piece of the glass puzzle is that not
all materials vitrify in the same manner. More specifically, the
viscosity growth as a function of inverse temperature can differ
significantly from one material to another. These differences are
captured in an empirical property called “fragility” [1, 18, 19],
which characterizes the slope of the viscosity with temperature
as a material approaches the glass transition (Figure 2). Materials

FIGURE 2 | Typical fragility plot, showing the logarithm of the viscosity as a

function of inverse temperature 1/T, normalized with respect to the glass

transition temperature Tg. A viscosity of 10−3 Pa.s corresponds to a normal

liquid, while a value of 1012 Pa.s defines a glassy solid. So-called strong glass

formers such as silica exhibit an Arrhenius-type growth of the viscosity upon

cooling, while fragile glass formers such as o-terphenyl show a much steeper

temperature dependence close to Tg. Many materials, including colloidal hard

spheres and confluent cells, fall in between these two extremes.

such as silica fall in the class of “strong” glass formers, exhibiting
an Arrhenius-type (exponential) viscosity growth upon cooling,
while “fragile” materials have a viscosity that increases faster
than an Arrhenius law. It is widely believed that a thorough
understanding of the mechanisms underlying fragility will be key
to achieving a universal description of the glass transition, but
no theory to date has been able to predict a material’s degree
of fragility from the sole knowledge of its microscopic structure
[20].

While the viscosity already gives an important clue about the
complex behavior of glass-forming materials, the most detailed
information is contained in themicroscopic relaxation dynamics,
and this will also be the focus of the remainder of this review. A
common probe of such dynamics is the time-dependent density-
density correlation function or so-called intermediate scattering
function, F(k, t), which probes correlations in particle density
fluctuations over a certain wavenumber k and over a time
interval t [21]. Simply put, F(k, t) measures to what extent the
instantaneousmolecular configuration of amaterial will resemble
the new configuration a time t later; the wavenumber k designates
the inverse length scale over which this resemblance is measured.
By choosing k as approximately one inverse particle diameter,
F(k, t) will thus probe the relaxation dynamics at the molecular
level, while the limit k → 0 describes the macroscopic dynamics.
We note that the characteristic relaxation time τ associated with
F(k, t) is also a measure for the viscosity (with the shear modulus
as the proportionality factor [4]), and hence F(k, t) also provides
a means to quantify e.g. the fragility.

The behavior of F(k, t) upon cooling thus reveals how the
microscopic relaxation dynamics changes during the vitrification
process [22, 23] (Figure 3). In a normal high-temperature liquid,
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FIGURE 3 | Schematic picture of the structure and dynamics in a normal liquid, supercooled liquid, and glass. (A,B) depict a typical trajectory of a particle in the

normal liquid phase and glassy phase, respectively. In the glassy state, particles become trapped in a cage formed by their neighbors. The dashed red line indicates

the typical size of a cage, with a radius of approximately one particle diameter d. (C) Shows the static structure factors S(k) for a glass-forming system of hard spheres

for several packing fractions φ, calculated using the Percus-Yevick approximation. The main peak position of S(k) corresponds to a wavenumber of approximately one

inverse particle diameter, k ≈ 2π/d. Within MCT, the glass transition for this system takes place at φc = 0.516 [24]. (D) Shows typical intermediate scattering

functions F (k, t) as a function of time for k ≈ 2π/d. As the temperature is decreased or the packing fraction is increased, the system becomes more glassy and F (k, t)

decays more slowly.

F(k, t) will decay to zero in a rapid and simple exponential
fashion, since the particles can move around easily and therefore
quickly lose track of their initial positions. At temperatures in
the supercooled regime, however, F(k, t) shows a more complex
multi-step relaxation pattern (also see Figure 7): at intermediate
times (the so-called β-relaxation regime), a plateau develops
during which F(k, t) remains constant, indicating the transient
freezing of particles; only at sufficiently long times will the
correlation function fully decay to zero. Notably, this final
decorrelation process (so-called α-relaxation) is not a simple
exponential decay, as in a normal liquid, but rather a more
slowly decaying, “stretched” exponential behavior of the form
exp(−t/τ )β , with 0 < β < 1. As the temperature decreases
toward the glass transition temperature, the plateau in F(k, t) will
extend to increasingly long times, until it finally exceeds the entire
time window of observation. Thus, at the glass transition, F(k, t)
fails to decorrelate on any practical time scale–implying that
particles always stay reasonably close to their initial positions–,
marking the onset of solidity. The final value of the intermediate
scattering function, f (k) = limt→∞ F(k, t), is known as the
non-ergodicity parameter [25], and is often used as the order
parameter for the glass transition: f (k) = 0 corresponds to the
liquid state, and f (k) > 0 indicates a solid (Figure 3D).

There are several other aspects in the dynamics of supercooled
liquids that differ markedly from those seen in ordinary liquids,
including the emergence of dynamic heterogeneity [26–29]
and the breakdown of the Stokes-Einstein relation [30, 31].
Dynamic heterogeneity refers to the fact that structural relaxation
does not take place uniformly throughout the entire material–
as in a normal liquid–, but rather in clusters of collectively
rearranging particles, while the rest of the supercooled liquid
remains temporarily frozen (Figure 4). The appearance of
such mobile domains will vary both in space and in time,
thus giving rise to non-trivial spatiotemporal fluctuations that
become more pronounced as the glass transition is approached.
Dynamic heterogeneity cannot be seen in F(k, t) itself, but
rather in the fluctuations of F(k, t) among different particle
trajectories [32, 33]. These fluctuations are encoded in the so-
called dynamic susceptibility χ4(t), whose peak height is a
measure for the size of the cooperatively rearranging regions.
As a material is supercooled, a growing χ4(t) thus indicates a
growing dynamic length scale associated with vitrification, but
a true divergence of this length scale–as expected for typical
critical phenomena–has not yet been observed [17]. A related
puzzling phenomenon concerns the Stokes-Einstein equation,
which states that the viscosity (or relaxation time), diffusion
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FIGURE 4 | Illustration of dynamic heterogeneity in supercooled liquids. The

red-colored particles represent mobile particles that have moved further than a

certain distance 1r during a time interval 1t, while blue-colored particles

represent particles that have moved less than this distance in the same time

interval. In the normal liquid phase (A), particle motion occurs rather

homogeneously across the entire sample. Conversely, in a supercooled liquid

(B), particle motion occurs heterogeneously in clusters of collectively moving

particles, and the appearance of such mobile clusters fluctuates both in space

and in time. The figure is based on Weeks et al. [26].

constant D, and temperature of a liquid are related as Dη/T =

constant. This ratio holds generally for normal liquids, but in the
supercooled regime the viscosity increase tends to be stronger
than the diffusion-constant decrease. This breakdown of Stokes-
Einstein behavior is widely believed to be a manifestation of
dynamic heterogeneity, but the fundamental origins of both
phenomena remain poorly understood.

Finally, we mention another hallmark of glassy dynamics that
is rather general for out-of-equilibrium systems, namely aging
[2, 20, 23, 34, 35]. Aging implies that the behavior of a material
depends explicitly on its age, i.e., the structural and dynamical
properties may slowly change as time progresses. These changes
are commonly a manifestation of the material’s gradual approach
to an equilibrium state. In the supercooled phase, such aging
effects are usually observed after a (small) temperature quench,
but vanish after a sufficiently long equilibration time. Indeed,
“properly equilibrated” supercooled liquids that are cooled
sufficiently slowly (such that there is ample time for the material
to undergo full structural relaxation at a given temperature)
behave as ordinary equilibrium liquids in the sense that, e.g.,
ergodicity and the fluctuation-dissipation theorem hold. Within
the glass state, however, ergodicity is broken and the relaxation
time to reach equilibrium exceeds–by definition–any practical
time scale. Hence, a glass can be regarded as a supercooled liquid
that has fallen out of equilibrium, and its properties depend
explicitly on its history. There is a large body of literature
devoted to aging effects in glasses (see e.g. Ref. [2] and references
therein), but here we only briefly mention that physical aging
within the glassy state is generally associated with the material’s
tendency to reach a lower-energy state that–eventually–will
correspond to a deeply supercooled (quasi-equilibrium) liquid
phase at a temperature below the original Tg . Whether the
equilibrium supercooled liquid branch terminates at a low but
finite temperature, the so-called Kauzmann temperature TK

(TK < Tg), remains a matter of debate.

In this review, we focus on one of several theories that seeks
to describe the above complex phenomenology of glass-forming
materials, namely Mode-Coupling Theory (MCT) [36, 37]. This
theory was first put forward by Götze and coworkers in the
1980s [24, 38], and is one of the few frameworks of glassy
dynamics that is based entirely on first principles, starting from
the exact microscopic picture of a correlated liquid. A somewhat
related and more recent theory, the Self-Consistent Generalized
Langevin Equation (SCGLE) approximation [39], will also briefly
be discussed. We outline the key physical ingredients and sketch
of the MCT derivation, its predictions, successes, and failures, as
well as recent improvements and extensions of the theory. Part of
this work is based on the review by Reichman and Charbonneau
[22], which also contains a full derivation of the MCT equations,
and the review by Szamel [40]; For a detailed discussion of
the original theory, including an extensive treatment of the
involved mathematics, we refer to the seminal work of Götze
[36]. For an overview of the many other existing theories
of glass formation, such as free volume theory, Adam-Gibbs
theory, Random First Order Transition (RFOT) theory, dynamic
facilitation and kinetically constrained models, energy landscape
approaches, and geometric frustration, see e.g. Refs. [2, 15, 20,
41–43]. A discussion of these alternative theories falls outside
the scope of the present work; here we only mention that, of all
the other existing frameworks, RFOT theory is directly related
to MCT at high temperatures, but is further augmented with
thermodynamic, Adam-Gibbs-like concepts at low temperatures.

2. DERIVATION OF THE MCT EQUATIONS

2.1. Preliminaries
As already noted in the introduction, MCT provides a purely
first-principles route toward the description of glassy behavior,
making it a unique theory that does not rely on any
phenomenological assumptions. Explicitly, MCT aims to predict
the full microscopic relaxation dynamics of a glass-forming
material–as a function of time, wavenumber, temperature, and
density–, using only knowledge of static, time-independent
properties as input. Aside from constants such as the system’s
temperature and density, the main theory input is the average
microscopic structure of the material. The simplest experimental
measure of the latter is the static structure factor S(k), which
can be obtained directly from scattering experiments. This
structure function is related to the radial distribution function
g(r) (Figure 1) through a Fourier transform [21, 44], and thus
probes–in Fourier space–the likelihood of finding a particle at
a certain distance r ∼ 2π/k away from any other particle
(Figure 3D). Formally S(k) is also equivalent to F(k, t = 0).
It must be noted that MCT also admits more intricate three-
particle correlation functions as additional structural input, but–
with the exception of network-forming fluids [45, 46]–the sole
knowledge of S(k) generally suffices. Importantly, it is through
these structural metrics that MCT knows about the chemical
composition of the material under study. That is, the theory is
able to distinguish between, say, a glass-forming fluid of silica
or Lennard-Jones particles only through their differences in
(wavevector-dependent) structure.
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FIGURE 5 | Sketch of the MCT equations. The theory seeks to predict the full

dynamics of the intermediate scattering function F (k, t) for all possible

wavevectors k and all times t. The exact F (k, t) dynamics is governed by a

memory function that, within standard MCT, is approximated as a product of

two intermediate scattering functions that probe density correlations at

different wavevectors q and k− q. The couplings among the different

wavevectors {k,q,k− q} are determined by the so-called vertices, which

depend explicitly on the static structure factor. Hence, the static structure

factor must be given as input to the theory, and dynamical information is given

as output.

In the standard formulation of MCT, the theory seeks
to predict the full dynamics of the intermediate scattering
function F(k, t) of a given material, starting with the exact
equation of motion for F(k, t). Below we sketch the derivation
of this equation, followed by a discussion of the various MCT
approximations made to solve it. Briefly, the derivation will
amount to an exact integro-differential equation for F(k, t)
(Equation 10) that is governed by an even more complicated
time-dependent correlation (“memory”) function. MCT makes
the ad hoc assumption that the latter memory function can be
approximated as a product of F(k, t) functions, thus yielding a
closed, self-consistent equation (see Figure 5). As described in
section 2.3, the final MCT equation (Equation 12) is reminiscent
of a damped harmonic oscillator, but with a time-dependent
damping term that ultimately produces the dramatic dynamic
slowdown in supercooled liquids.

Let us first define our variables of interest, namely the
collective density modes,

ρ(r, t) =

N
∑

j

δ(r− rj(t)), (1)

ρ(k, t) =

∫

dreikrρ(r, t)

=

N
∑

j

eikrj(t),

where N denotes the total number of particles and rj(t) is the
position of particle j at time t. The real-space density ρ(r, t) thus
simply measures where all particles are located at a given point
in time, and ρ(k, t) is the corresponding Fourier transform for
wavevector k. The intermediate scattering function F(k, t) probes
the time-dependent correlations between these collective density

modes,

F(k, t) =
1

N
〈ρ(−k, 0)ρ(k, t)〉, (2)

where the brackets denote a canonical ensemble average. At time
t = 0, this correlation function reduces to the static structure
factor,

S(k) =
1

N
〈ρ(−k, 0)ρ(k, 0)〉 ≡ F(k, 0), (3)

which thus contains information on the static density
distribution of the material, i.e., the average microscopic
structure. Note that in an isotropic material, such as a powder
or a “simple” fluid, both S(k) and F(k, t) depend only on the
magnitude of the wavector, k = |k|, but in e.g. the presence
of an external field the full wavevector dependence should be
considered [47].

2.2. Mori-Zwanzig Projection Formalism
In order to obtain an exact equation of motion for F(k, t), we
make use of the so-called Mori-Zwanzig projection formalism
[48, 49]. The basic idea behind this formalism is to divide the
entire universe into two mutually orthogonal subspaces: one
containing the variables of interest, and one simply containing
“everything else.” The goal is to describe how the dynamics
of the relevant variables evolves over time, in the presence of
all other “non-interesting” variables. Physically, this idea relies
on a separation of time scales in the dynamics, whereby the
fast variables are integrated out. Here we will focus mainly on
molecular glass-forming fluids, in which case the variables of
interest are the collective density modes of Equation (1) and their
associated current modes

j(k, t) ≡ ρ̇(k, t) = i

N
∑

l=1

(k · ṙl)e
ikrl(t), (4)

where the dots denote time derivatives. Note that in general
there is no simple recipe for deciding which variables are
“relevant”; typically we focus on quasi-conserved or “slow”
variables that show some non-trivial time-dependence (unlike
strictly conserved variables that are constant), but which do not
fluctuate too fast either, so as not to be confused with noise.
From Equation (4), it is easy to see that in the limit k → 0,
corresponding to very large length scales, the current ρ̇(k, t)
will vanish and consequently the macroscopic density is strictly
conserved. On smaller length scales, however, i.e., k > 0, the local
density will fluctuate as particles move around, and it is these
fluctuations–and their time-dependent correlations–that we seek
to probe in F(k, t) and predict with MCT.

For convenience we will organize the variables ρ(k, t) and
j(k, t) into a two-component vector A, which thus spans our
subspace of interest:

A(t) ≡

[

A1(t)
A2(t)

]

=

[

ρ(k, t)
j(k, t)

]

. (5)

Importantly, in this notation, time-dependent correlation
functions may now be identified simply as scalar
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products between such vector elements, e.g., F(k, t) =

(1/N)〈A1(0)|A1(t)〉 = (1/N)〈A∗
1(0)A1(t)〉, where we have

used the standard bra-ket notation with the asterisk representing
the complex conjugate. We define the full matrix of all possible
scalar products as C(t), with matrix elements

Cαβ (t) ≡ 〈Aα(0)|Aβ (t)〉. (6)

Note that the first matrix element C11(t) equals NF(k, t), and
C21(t) = (N/i)(dF(k, t)/dt). Furthermore, in analogy to ordinary
projections in vector space, we can now use these scalar products
to define a projection operator PA as

PA =
∑

α,β

|Aα〉[C(0)
−1]αβ〈Aβ | (7)

where the sums run over all possible matrix elements. The
projection of some vector X onto A is then given by PAX.
Such a projection essentially extracts all the “slow” or “relevant”
character (defined through A) from an arbitrary variable X,
leaving the remaining part ofX orthogonal toA. It is easy to show
that P2

A = PA and PAA = A, i.e., the projection of A onto itself
returns A. This projection formalism, introduced by Zwanzig
and Mori, thus establishes a link between dynamic variables
and standard vector algebra. Without any loss of generality, it
will enable us to separate the full dynamical behavior of our
system into two contributions: i) the dynamics evolving in the
“slow” subspace spanned by A(0), and ii) the dynamics due to all
remaining “fast” variables, obtained simply by projecting out all
the slow A-character from the full dynamics.

Let us now look explicitly at the time-dependent dynamics
of a glass-forming supercooled liquid. For classical fluids that
obeys Newton’s equation of motion, the time evolution of A(t)
can always be formally written as

A(t) = eiLtA(0), (8)

where L is the so-called Liouvillian operator. The definition of L
can be found in (e.g., [22]), but here we will not be concerned
with its explicit form; it suffices to know that this operator
governs the full dynamics of our variables of interest. Note
that for colloidal glass-forming systems undergoing Brownian
rather than Newtonian motion, a similar equation applies when
considering only the density modes in A and replacing the
Liouvillian by the so-called Smoluchowski operator [50].

While Equation (8) is formally exact, it does not necessarily
yield any new physical insight into the complex time-dependent
dynamics of supercooled liquids. Instead, we can rewrite this
equation through a somewhat lengthy derivation (involving the
insertion of the unit matrix operator 1 = PA + 1 − PA and
separating the time-evolution operator exp (iLt) into a “slow”
component and its orthogonal part) in the following form
[22]:

dA(t)

dt
= i� · A(t)−

∫ t

0
dsK(s) · A(t − s)+ f (t). (9)

For the matrix of correlation functions C(t) we similarly
find

dC(t)

dt
= i� · C(t)−

∫ t

0
dsK(s) · C(t − s). (10)

Here, � is the so-called frequency matrix (the name will
become apparent later on), which captures the part of the
time derivative of A that remains in the slow subspace as
time evolves, K(s) is a time-dependent memory function, and
f (t) is the “fast” fluctuating force, which is defined as f (t) =

ei(1−PA)Lti(1 − PA)LA(0). That is, f (t) is obtained by first
removing all the “slow” character from the time derivative
of A using the complementary projection operator (1 − PA),
and is subsequently propagated in time in the “fast” subspace
orthogonal to A. The memory function K(t) is given by the time-
autocorrelation function of this fluctuating force; physically,
K(t) represents a dissipative term that ultimately breaks the
conservation of A. In other words, K(t) and f (t) embody how
our slow variable A–which at time t = 0 lives strictly in the
slow subspace–will gradually evolve under the influence of the
rest of the universe, e.g. in the presence of “fast” variables such
as thermal noise. Note that in arriving at Equation (10), we
have used that 〈A(0)|f (t)〉 = 0 by construction. Importantly,
Equations (9) and (10), which are known as the generalized
Langevin equation and memory equation, respectively, are both
exact.

2.3. Mode-Coupling Theory
Approximations
By Equation (10), the difficulty of predicting the full time-
dependent dynamics of F(k, t) is now deferred to the the question
of how the memory function K(t) evolves with time. In general,
there is no rigorous solution for this equation, and hence
approximations must be made. The main idea behind MCT is
to approximate K(t) in “the simplest non-trivial way” using a
two-step approach:

1. Approximate the memory function as a four-point

density correlation function. First, using the density modes as
the main physical variables of interest, the fluctuating force f (t)
is projected onto a new basis of products of two density modes,
ρ(k1, t)ρ(k2, t), where k1 and k2 run over all possible wavevectors
relevant to our system. Physically, this projection is motivated
by the fact that for particles interacting through an arbitrary
pair potential, such products of densities emerge naturally in
the expression for the fluctuating force [22]. This may seem
rather counterintuitive at first, since the fluctuating force is a
fast variable while density modes are slow by definition, but it
can be shown by Fourier transformation that, for an n-body
interaction potential, f (t) always contains products of n density
modes [41]. In the standard MCT formulation, it is assumed
that the pair densities dominate the fluctuating force entirely, but
higher-order generalizations with projections onto an n-density-
mode basis have also been considered [51, 52]. Mathematically,
the projection onto pair densities also corresponds to the first
non-vanishing component in density space, i.e., “the simplest
non-vanishing term,” since a projection onto a single density
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mode would always give zero by construction [36]. Overall, this
approximation brings the memory function K(t), which is the
time-correlation function of f (t), into the form of a four-point

density correlation function:

K(t) ∼
∑

k1 ,k2 ,k3 ,k4

〈ρ∗(k1, 0)ρ
∗(k2, 0)e

i[1−PA]Ltρ(k3, 0)ρ(k4, 0)〉,

(11)

with the time-propagation operator exp [i(1− PA)Lt] acting in
the fast subspace.

2. Factorize four-point correlation functions into two-

point correlation functions. Second, the (unknown) four-point
correlation functions in K(t) are further simplified by factorizing
them into a product of two two-point correlation functions
〈ρ∗(k1, 0)ρ(k1, t)〉 and 〈ρ∗(k2, 0)ρ(k2, t)〉. At the same time, the
operator exp [i[1− PA]Lt] is replaced by the normal operator
exp [iLt], since the single density modes ρ(k1, t) and ρ(k2, t),
which start out in the slow subspace, would otherwise give a zero
contribution. It is important to note that this factorization is an
ad hoc approximation that is not necessarily motivated by any
physical insight; rather, it merely serves to produce a “simple”
memory function that is not trivially zero. Nonetheless, it can
be shown that the factorization is exact for so-called Gaussian
variables [53], but density modes in general do not behave as
such.

After the second approximation is made, we may then
realize that the factorized two-point density correlation functions
〈ρ∗(ki, 0)ρ(ki, t)〉 are, in fact, equal to NF(ki, t) by virtue
of Equation (2). Thus, our full equation of motion for the
intermediate scattering function F(k, t) is now governed by a
memory function containing precisely the same function, but for
many different wavenumbers. After explicitly working out all the
expressions for the frequency matrix � and the (approximate)
memory function K(t), and concentrating on the lower left
corner of the correlation matrix C21(t) in Equation (10), we
finally arrive at the full MCT equation [22]:

d2F(k, t)

dt2
+

kBTk
2

mS(k)
F(k, t)+

∫ t

0
dsKMCT(k, s)

dF(k, t − s)

dt
= 0,

(12)
with the memory function given by

KMCT(k, t) =
ρkBT

16π3m

∫

dq|Vq,k−q|
2F(q, t)F(|k− q|, t). (13)

Here, kB is the Boltzmann constant, m is the particle mass, ρ is
the bulk density, and the factors

Vq,k−q = k−1[(k · q)c(q)+ k · (k− q)c(|k− q|)] (14)

are referred to as vertices, with c(k) = ρ−1[1− 1/S(k)] denoting
the direct correlation function [21]. These vertices represent
the strength of the coupling between different density modes at
wavevectors q and k− q. In arriving at this equation, we have also
assumed that S(k) contains all the relevant microscopic structural
information (using the so-called convolution approximation [22,

23, 54]), but in general the vertices may also contain higher-order,
triplet-density correlations [45, 55]. Equation (12) is a closed, self-
consistent equation, and is subject to the boundary conditions
F(k, 0)/S(k) = 1 and Ḟ(k, 0) = 0.

Let us briefly compare this MCT result with the equation
of motion for a one-dimensional damped harmonic oscillator:
ẍ+ ω2x+ 2ζωẋ = 0, where ω is the frequency of the undamped
oscillator and ζ is the damping coefficient. It can be seen that the
MCT equation is rather similar, with x(t) ∼ F(k, t) and �21 =

kBTk
2/[mS(k)] playing the role of ω2. Hence, the � matrix is

referred to as the frequency matrix. The damping coefficient,
on the other hand, appears in the MCT equation in the form
of the memory function KMCT(t) (note the first derivative of
F(k, t) in the integrand). Consequently, we may interpret the
memory function as a generalized, time-dependent damping,
which will ultimately cause the dynamical slowdown in F(k, t)
[23].

To make the comparison with a damped harmonic oscillator
more explicit, let us first drop all wavevector dependence in the
MCT equations and write x(t) = F(k, t) and �21 = ω2, so
that the MCT equation of motion becomes ẍ(t) + ω2x(t) +
∫ t
0 KMCT(s)ẋ(t − s)ds = 0. Such simplified, k-independent
MCT equations are known as schematic MCT models [24,
38]. We may now write the schematic memory function as
KMCT(t) = ax2(t), with a denoting a damping factor that
represents the effective strength of the vertices at a given
temperature. Note that if the memory function would be a
simple delta-function aδ(t), the schematic MCT equation would
reduce to a damped harmonic oscillator with a = 2ζω. The
fact that the true (schematic) MCT memory function contains
the non-linear product x2(t) instead of a simple delta-function,
however, has important consequences for the dynamics and gives
rise to a strong feedback effect that is absent in an ordinary
damped oscillator. Figure 6 shows the solutions x(t) for a one-
dimensional damped harmonic oscillator and for the schematic
MCTmodel as a function of time for different damping factors a.
It may be seen that, as the damping a is increased, the harmonic
oscillator undergoes only a moderate change in the dynamics,
while the MCT solution develops a plateau and exhibits an
orders-of-magnitude dynamical slowdown. At a critical damping
value of ac = 4, the schematic MCT model predicts an
ergodicity-breaking transition such that the function x(t) fails
to decay to zero on any time scale–i.e., a glass has formed.
Increasing the damping further (a > 4) brings the system
more deeply in the glass phase. The full wavevector-dependent
MCT equation predicts a similar scenario, in which the memory
function constitutes a non-linear dynamical feedbackmechanism
(with the damping strength implicitly controlled by small
changes in the static structure factor as the temperature is
decreased), though of course the explicit coupling of density
modes at different wavevectors leads to richer (and more
complicated) behavior than that predicted by schematic MCT
(see section 3). Despite the simplicity of schematic MCT
models, it is now well established that many predictions
of schematic MCT–which can often be derived analytically
(see [38])–are also preserved in the full wavevector-dependent
version, and hence schematic MCT approaches remain widely
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FIGURE 6 | Solutions x(t) for a damped harmonic oscillator,

ẍ(t)+ ω2x(t)+ aẋ(t) = 0 (dashed lines), and for a schematic MCT equation,

ẍ(t)+ ω2x(t)+ a
∫ t
0 x

2(t− s)ẋ(s)ds = 0 (solid lines), with ω2 = 1 and a = 2ζω.

Note the logarithmic scale for the time axis. As the damping a is increased, the

MCT solution exhibits a highly non-linear slowdown and becomes non-ergodic

for damping values a ≥ 4, signaling the formation of a glass. For the damped

harmonic oscillator, the solutions for a = 3.99 and a = 4 are indistinguishable

on the scale of this figure.

used to gain better insight into the phenomenology of glassy
materials.

While analytic solutions of the full wavevector-dependent
MCT equation generally do not exist, it is always possible to
solve the equation numerically, namely by iteratively making an
ansatz for F(k, t) for all k, subsequently constructing the memory
function, and updating F(k, t) until convergence is reached. See
Fuchs et al. [56] and Flenner and Szamel ([57], appendix) for a
detailed discussion of the numerical algorithm to solve the MCT
equations. We also note that for systems undergoing Brownian
instead of Newtonian dynamics, in which case the Liouvillian
should be replaced by the Smoluchowski operator, MCT yields an
identical equation (with kBT/m being replaced by the diffusion
constant D) [58]; however, the origin of this similarity is subtle
and rather non-trivial. Moreover, it has also been shown that
this equation applies reasonably well to glass-forming polymer
chains [59], suggesting that MCT captures at least some degree of
universal dynamical behavior. Finally, we note that MCT-based
equations have also been formulated for, e.g., the self-part of
the intermediate scattering function Fs(k, t) = 〈e−ikrj(0)eikrj(t)〉
(i.e., the density correlation function for a single particle j) [24],
the shear relaxation function [60], the dynamics under shear
flow [61] and in confinement [62–64], microrheology studies
[65, 66], fluids composed of anisotropic particles [67], and multi-
component glass-forming systems [57, 60, 68]. In case of the
latter, the MCT equations can be derived in a similar manner as
above, except that the density modes (and their corresponding
currents) are replaced by their partial analogs ρxi (k, t), where xi
labels a particle species. For an M-component system, the MCT
equations (Equations 12, 13) will then amount to an M × M

matrix equation that explicitly couples the partial intermediate
scattering functions and partial structure factors for all species.
These MCT extensions and variations, however, will not further
be discussed in this review.

As a final note, we mention that an alternative and more
recent first-principles-based theory has been formulated that
is somewhat related to MCT, namely the Self-Consistent
Generalized Langevin Equation approximation [39]. This SCGLE
theory also starts from the exact generalized Langevin equation
(Equation 9), but employs different and somewhat simpler
approximations to obtain a self-consistent equation for the
dynamics. Instead of projecting the fluctuating force onto pair
density modes, the main assumptions of SCGLE theory are
a Vineyard-like approximate relation between the memory
function of F(k, t) and the memory function of the self part
Fs(k, t), and a Gaussian-like approximation for the memory
function of Fs(k, t) that relates its dynamics to the Brownian
motion of individual particles [39]. Overall, SCGLE theory also
amounts to a closed, self-consistent dynamical equation that
requires only simple static properties as input. An important
advantage is that the SCGLE theory can be readily extended
to account for non-equilibrium aging effects, such that the
dynamics depends explicitly on the waiting time or age of
the material [69–72]. This is to be contrasted with standard
MCT, which in its standard form applies only to stationary
(quasi-)equilibrium systems and consequently cannot make any
predictions of aging phenomena; the extension of MCT to non-
equilibrium aging systems is technically rather involved [73]. The
SCGLE equations have also been extended to multi-component
systems [74, 75] and to non-spherical particles [76, 77], and are
generally somewhat simpler to use than the MCT equations. For
a more detailed discussion of SCGLE theory [see [39, 72]] and
references therein.

3. MODE-COUPLING THEORY
PREDICTIONS

The microscopic MCT equation, Equation (12), can be solved
for any glass-forming material at a given bulk density ρ and
temperature T once the corresponding static structure factor
S(k) = S(k; ρ,T) is known. Thus, MCT predicts the full
microscopic dynamics given only time-independent information
as input. In order to describe the entire vitrification process
from liquid to glass, one typically measures S(k) for a series
of temperatures or densities, and performs a separate MCT
calculation for every relevant temperature and density. In this
section, we summarize the main successes and failures of such
MCT predictions.

3.1. Successes
Despite the various approximations made in MCT, the theory
gives a remarkable set of accuracte predictions. Firstly, MCT
is indeed capable of predicting a glass transition, which is
non-trivial considering that the static structure factor S(k)–the
main theory input–changes only very weakly upon vitrification
(Figure 3C). As mentioned earlier, the relaxation time of the
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predicted F(k, t) is used as an indicator for the glassiness: at
the glass transition, the relaxation time diverges and F(k, t) fails
to decay to zero on any time scale. The corresponding non-
ergodicity parameter f (k) is also often in good quantitative
agreement with the results of computer simulations and
experiments (see, e.g., [68, 78]).

Mathematically, MCT’s ability to predict a glass follows from
the non-linearity of the equation (by virtue of the product of
two F(k, t) functions in the memory function), which renders
the theory very sensitive to any small change in structural input.
This non-linearity leads to a feedback mechanism that ultimately
drives the dramatic dynamical slowdown: upon cooling, S(k)
will become slightly larger at certain wavevectors, causing
the vertices to increase as well. Consequently, the memory
function will become larger and produce a stronger damping
for F(k, t). The resulting slower intermediate scattering function
will further strengthen the memory function, slowing down the
dynamics even more. This non-linear feedback effect explains
at least qualititatively why the relaxation dynamics can change
so dramatically upon only small changes in the structure and
temperature [23].

A related success of MCT is its prediction of the cage
effect as a microscopic mechanism for vitrification (Figures 3,
7). Caging refers to the fact that, in a supercooled liquid,
particles become (transiently) trapped in local cages formed
by their neighboring particles, which in turn are trapped in
their respective cages, preventing them from moving around
as in a normal liquid. This is the molecular origin of the β-
relaxation regime, which is manifested as a plateau in F(k, t).
As long as the material is on the supercooled-liquid side of
the transition, the particles will eventually manage to escape
their cages, but at and below the glass transition, the cage effect
keeps them trapped indefinitely. The only motion in the glassy
state then corresponds to a vibrational or rattling motion of
the particles within their confining cages. More mathematically,
the cage effect emerges from MCT by considering that the
most prominent change in S(k) upon supercooling occurs at the
main peak at wavenumber k0, corresponding to length scales of
approximately one particle diameter. As a consequence, the first
intermediate scattering function that falls out of equilibrium at
the glass transition is F(k0, t), which in turn drives the freezing
on all other wavevectors. Notably, within MCT, the dominant
structural length scale governing vitrification thus remains on
the order of only one particle diameter, in stark contrast with
conventional critical phenomena that are usually accompanied
by diverging, macroscopic length scales. However, as will be
described in section 4.3, recent work suggests that a diverging
length scale also emerges within an extended (“inhomogeneous”)
version of MCT that is related to the dynamic susceptibility χ4(t).

Regardless of the molecular details of the material, which are
contained in S(k), MCT also makes several general predictions
for the relaxation dynamics [22, 23, 36, 38]. Firstly, MCT predicts
that close to the glass transition temperature Tc, the relaxation
time F(k, t) will always diverge as a power law, τ ∼ (T −

Tc)−γ . Such a functional form is often in good agreement with
experiments and simulations in the mildly supercooled regime
(using γ as a fit parameter), but generally breaks down closer to

the experimental glass transition [see [79]].We will return to this
point in the next subsection. Furthermore, MCT predicts that the
onset and decay of the β-relaxation regime, i.e., the plateau in
F(k, t) at intermediate times, are described by power laws of the
form F(k, t) ∼ f + At−a and f − Btb, respectively, where f is the
(constant) plateau height (Figure 7). Sufficiently close to Tc, the
MCT exponents a and b are related as Ŵ(1 − a)2/Ŵ(1 − 2a) =

Ŵ(1 + b)2/Ŵ(1 + 2b), where Ŵ denotes the Gamma function.
This is an entirely non-trivial and remarkable prediction that is
fully consistent with experiments and simulations. For the α-
relaxation regime, i.e., the final decay of F(k, t) on the liquid side
of the transition, MCT predicts a stretched exponential of the
form exp(−t/τ )β , with 0 < β ≤ 1 (Figure 7). This is again
in excellent agreement with experimental and simulation data,
and physically arises from the coupling of multiple density-mode
relaxation channels over different length scales, each relaxing
on its own time scale. Another success of MCT that has been
verified experimentally is its prediction of a time-temperature
superposition principle, such that F(k, t) = F̂(k, t/τ (T)), where
F̂ is a master function and τ (T) is the α-relaxation time.

Among the other celebrated results of MCT, we mention
here its qualitative prediction of complex reentrant effects in
sticky hard spheres (particles with a hard repulsive core and
short-ranged attractions) [80] and ultrasoft repulsive particles
[81], which exhibit glass-fluid-glass and fluid-glass-fluid phases
upon a monotonic increase in attraction stength and density,
respectively. In the case of sticky hard spheres, MCT has also
provided a qualitative explanation for the existence of the two
distinct glass phases in terms of different dominant length scales
[80]. Furthermore, the schematic version of MCT [24, 38], which
is obtained by ignoring all wavevector dependence in Equation
(12), is rigorously exact for certain classes of spin-glass models
with queched disorder (so-called p-spin spherical spin glasses),

FIGURE 7 | Typical MCT prediction for F (k, t) of a supercooled liquid as a

function of time, for a wavenumber k = k0 that corresponds to the first peak of

the static structure factor. At very short times, particles undergo ballistic

motion. At intermediate times, particles become transiently trapped in cages

(β-relaxation) and F (k, t) correspondingly remains approximately constant. Only

at sufficiently long times will particles break free and full relaxation takes place

(α-relaxation).
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pointing toward a possible deep connection between systems
with quenched and self-generated disorder. For a more extensive
overview of MCT results, we refer the reader to Kob [23], and
especially Götze [36].

3.2. Failures
Even though MCT successfully predicts a glass transition,
its most notable failure is that the predicted glass transition
temperature Tc occurs at much higher temperatures than the
true experimental value Tg . Thus, the static structure factor for
which MCT predicts a glassy state corresponds in reality to only
a mildy supercooled liquid. In practice, the MCT predictions
are often rescaled such that Tc coincides with Tg [68], but even
with such a relative comparison, MCT generally fails to accurate
describe the dynamics in the deeply supercooled regime. This
discrepancy is attributed to MCT’s lack of ergodicity-restoring
relaxation mechanisms that keep the experimental system in the
liquid phase well below Tc (Figure 8). Such mechanisms are
generally referred to as activated dynamics, and are commonly
identified with particles “hopping” out of their local cages to resist
freezing [82]. MCT fails to account for such hopping motion and
thus strongly overestimates the degree of caging–a feature that is
believed to arise from its so-called mean-field nature. In practice,
the predicted MCT transition at Tc is therefore interpreted as a
crossover point where the dynamics changes into an activated
form [83]. In section 4, we will return to this point and
address recent efforts to incorporate activated dynamics directly
into the theory. We note that activated dynamics may also be
incorporated via, e.g., the Random First Order Transition theory,
which is a spin-glass-inspired framework that merges MCT with
thermodynamics-based concepts [84, 85]. A description of RFOT

FIGURE 8 | Typical MCT prediction (purple curve) and simulation result (blue

curve) for the dynamical slowdown of a glass-forming material as a function of

the control parameter. MCT generally predicts that the viscosity or relaxation

time grows as a power law and diverges at the glass transition temperature Tc
or critical packing fraction φc. In reality, a material tends to remain in the

supercooled-liquid phase at temperatures well below Tc (or packing fractions

above φc), which is attributed to so-called activated or hopping dynamics

missing in standard MCT. The figure is based on Charbonneau et al. [82].

falls outside the scope of the present work, but we refer the
interested reader to [e.g., [43, 83, 86]] for a recent overview.

As mentioner earlier, MCT’s prediction of a power-law
divergence of the relaxation time also breaks down in
most experimental and simulated glass-forming systems. More
generally, the fact that MCT always yields a power law, regardless
of the molecular composition of the material, also implies that
MCT has essentially no notion of the concept of fragility. At
best, an MCT power law may correctly describe the relaxation
dynamics of fragile glass formers, but strong glass formers
exhibit a fundamentally different, Arrhenius-type growth of the
relaxation time. Indeed, an accurate (first-principles) prediction
of the fragility of a material on the sole basis of its microscopic
structure remains a major open challenge in the field [20].
Nonetheless, we note that MCT can predict other properties of
strong glass formers rather accurately, such as the wavevector-
dependent non-ergodicity parameter in the glassy phase [45].

MCT is also generally unable to account for the breakdown
of the Stokes-Einstein relation in the deeply supercooled regime.
This is again attributed to the inherent mean-field character
of the theory and the absence of activated hopping dynamics
[82]. Moreover, in its standard formulation, MCT does not offer
an explanation for the emergence of dynamic heterogeneity,
since MCT only predicts a single F(k, t) for a given wavevector,
density, and temperature, and hence does not give access to
correlations in the fluctuations of F(k, t). However, as discussed
in section 4.3, an extension of the theory does allow for the
calculation of a quantity related to the dynamic susceptibility
χ4(t) and a corresponding growing (and ultimately diverging)
correlation length scale. Furthermore, despite its mean-field
character, it was recently shown that MCT does not become
exact in the mean-field limit of infinite dimensions for a
system composed of hard spheres [87–89], making it difficult to
rationalize the set of standard-MCT approximations in a simple
physical manner. Moreover, MCT assumes that the material is in
(quasi-)equilibrium, and consequently fails to account for non-
equilibrium aging and protocol-dependent history effects. The
afore-mentioned SCGLE theory does allow for explicit aging
predictions [72], and hence it constitutes an attractive alternative
to MCT in this regard. Finally, since MCT (like SCGLE) is a
purely dynamical theory, it cannot make any statements about
thermodynamic properties such as the entropy. The latter is
believed to also play an important role in the process of glass
formation, and in particular may point toward an underlying
thermodynamic transition that in practice is masked by the
dynamic transition. Nonetheless, it is possible that MCT is
implicitly aware of at least some changes in thermodynamic
properties through changes in the static structure factor [90, 91].

4. GOING BEYOND STANDARD
MODE-COUPLING THEORY

Since standard MCT is not exact, as exemplified by the
drawbacks and failures discussed in the previous section,
various attempts have been made in the last few decades to
improve the theory’s predictive power for glassy dynamics.
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Below we will summarize the most notable efforts to remedy
at least some of MCT’s problems, including the formulation
of “Extended” MCT (EMCT) and “Generalized” MCT (GMCT)
to incorporate activated dynamics mechanisms, the potential
of GMCT to account for fragility and dynamic heterogeneity,
and the formulation of “Inhomogeneous” MCT (IMCT)
to predict dynamic susceptibilities. Finally, we also briefly
discuss recent generalizations of MCT to a new class of soft
condensed-matter systems referred to as active matter. Such
active materials are composed of particles that can undergo
autonomous motion through the consumption of energy, and
are now emerging as a new paradigm to understand collective
behavior seen in many living systems. The recent realization
that active particles can also vitrify into a glassy state has
spurred the formulation of various MCT frameworks for
active matter, the development of which will be reviewed in
section 4.4.

4.1. “Extended” Mode-Coupling Theory:
Incorporating Couplings to Currents
The first attempts to remove the spurious MCT transition at
Tc were proposed by Das and Mazenko in 1986 [92] and by
Götze and Sjögren in 1987 [93], only a few years after the
original formulation of standardMCT [24, 38]. Das andMazenko
employed a field-theoretic description, commonly referred to as
fluctuating nonlinear hydrodynamics, while Götze and Sjögren
used a projection-based formalism to improve the theory in the
temperature regime near and below Tc. Both approaches amount
to a perturbative treatment of nonlinear couplings to certain
current modes that are neglected in the standard formulation
of MCT, and which cut off the sharp MCT transition such that
the strict divergence of the relaxation time at Tc is removed.
This “rounding off” of the MCT transition was interpreted as a
mechanism for activated or hopping dynamics that would keep
the material ergodic, i.e., in the supercooled liquid phase, below
Tc. The 2004 review by Das [37] provides an extensive overview
of this line of EMCT research.

However, more recent theoretical studies have argued on
general physical grounds that the invoked couplings to currents
in EMCT cannot provide a satisfactory explanation of activated
dynamics, since these couplings should always become negligible
close to a glass transition [94]. Moreover, Andreanov et al.
[95] suggested that the fluctuating nonlinear hydrodynamics
approach employs an incorrect treatment of time-reversal
symmetry. Another argument that casts doubt on the general
applicability of EMCT is the fact that experimental and
numerical simulation studies have unambiguously established
that materials obeying Newtonian and Brownian (stochastic)
dynamics exhibit the same deviations from standard-MCT
behavior, despite their differences in microscopic dynamical
details. This suggests that the physical mechanisms governing
activated behavior below Tc have a universal origin in both
molecular (Newtonian) fluids and colloidal (Brownian) systems.
Since the current modes introduced in EMCT cannot be
properly defined in Brownian systems [40], the proposed EMCT
mechanism may thus only apply to materials undergoing

Newtonian dynamics. Hence, it appears likely that EMCT
cannot offer a rigorous, universal remedy for the lack of
ergodicity-restoring activated dynamics within the standard
MCT framework.

4.2. “Generalized” Mode-Coupling Theory:
Toward an Exact Equation for the Memory
Function
An alternative route to rigorously improve MCT was put
forward by Szamel in 2003 [96]. This approach, referred to
as Generalized MCT or GMCT, seeks to systematically avoid
the second main approximation of standard MCT, i.e., the
uncontrolled factorization of the four-point density correlations
appearing in the memory function. To this end, a new and
formally exact equation of motion is developed for the four-
point correlation functions themselves (again by applying the
Mori-Zwanzig projection formalism of section 2.2, this time
using the basis of pair densities ρ(k1, t)ρ(k2, t) as the “relevant”
variables). The new equation is governed by another memory
function that, to leading order, is controlled by six-point density
correlation functions, which in turn are dominated by eight-
point correlations, etc. Hence, by repeatedly developing a new
equation of motion for the new memory function, a hierarchy
of coupled equations emerges, in which the uncontrolled
factorization approximation may be applied at an arbitrary level
to close the set of equations. This GMCT scheme thus allows, in
principle, for a systematic delay of the closure approximation and,
notably, remains based entirely on first principles (see Figure 9).

Szamel [96] and Wu and Cao [98] showed that GMCT
hierarchies factorized at the level of six- and eight-point
correlation functions, respectively, indeed bring the predicted
glass transition density systematically closer to the empirical
value for a system of colloidal hard spheres. More recent work
[97] also established that the full time-dependent microscopic
dynamics for a quasi-hard-sphere glass former is systematically
improved by GMCT. In fact, fit-parameter-free third-order
GMCT calculations could achieve full quantitative agreement
for F(k, t) up to the moderately supercooled regime, at densities
where standard MCT would already predict a spurious glass
transition [97]. Furthermore, within a simplified schematic
(wavevector-independent) GMCT model, Mayer et al. [99]
showed analytically that the sharp MCT glass transition can be
completely removed when avoiding the closure approximation
altogether, i.e., when applying infinite-order GMCT. Even
though all GMCT studies to date still rely on several
approximations–including the neglect of “projected” dynamics
in the memory functions (section 2.3) and the factorization of
all static correlation functions into products of S(k)’s–, the good
agreement so far with computer simulations and experiments,
as well as the apparent convergent behavior of the hierarchy
[100], suggest that GMCT offers a promising first-principles path
toward systematic MCT improvement. In particular, it appears
that higher-order GMCT captures at least some aspects of
activated dynamics to keep the material ergodic at temperatures
below Tc, consistent with empirical observations. Importantly,
we note that GMCT is applicable to both Newtonian and
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FIGURE 9 | (A) Graphical illustration of the GMCT hierarchy. GMCT seeks to

systematically avoid the uncontrolled MCT factorization approximation by

developing a new, and formally exact, equation of motion for the unknown

memory function. This equation in turn is governed by a new memory function,

which is controlled by another memory function, etc. Standard MCT

corresponds to the lowest-order (self-consistent) closure of this hierarchy.

(B) Microscopic GMCT predictions for F (k, t) [97] compared to numerical data

obtained from computer simulations [68] for a system of quasi-hard spheres at

packing fraction φ = 0.570 and wavenumber kd = 7.4. These results indicate

that the GMCT hierarchy apparently converges and that the theory becomes

more quantitatively accurate as the closure level is increased. The figure is

adapted from Janssen and Reichman [97] with permission.

Brownian systems, and therefore also holds the potential to offer
a more universal picture of glassy dynamics.

In addition to accounting for some kind of ergodicity-
restoring processes below Tc, GMCT might also provide a
suitable framework to describe fragility. The work of Mayer
et al. [99] revealed that, within their particular schematic
model, infinite-order GMCT predicts an exponential growth
of the relaxation time, fundamentally distinct from the fragile
power-law behavior of standard MCT. In later studies, we
demonstrated that other schematic GMCT models may also
give rise to other functional forms of relaxation-time growth,
ranging from fragile super-Arrhenius to strong (sub-)Arrhenius
behavior, depending on the choice of schematic parameters [101].
Although these simplified GMCT models inherently lack any
wavevector dependence, and therefore cannot make detailed
predictions for any structural glass former with a realistic
S(k), they suggest that higher-order GMCT has at least the
mathematical flexibility to account for different fragilities. This is

notably different from standard MCT, which is mathematically
only capable of predicting power-law growth close to the
transition. It remains to be tested whether the fully microscopic
(wavevector-dependent) version of GMCT will indeed be able
to account for different degrees of fragility, given solely the
static structure factors S(k) (and possibly higher-order static
correlation functions) of strong and fragile materials as input. It
might be tempting to assume that, with increasing closure level,
the GMCT predictions should become more accurate, but let us
reiterate that the current formulation of GMCT still relies on
several approximations, and it is still unclear how the remaining
assumptions ultimately affect the dynamics.

Finally, we note that by construction, higher-order GMCT also
makes microscopic predictions for the (approximate) dynamics
of unfactorized four-point density correlations [97]. Although
these functions are not exactly equivalent to the dynamic
susceptibility χ4(t), they should nonetheless be able to provide
insight into dynamic heterogeneities, since they essentially
describe particle correlations over two points in time and at least
two points in space. Hence, GMCT may also offer a suitable
starting point to study dynamic heterogeneity, as well as the
breakdown of the Stokes-Einstein relation in supercooled liquids,
from a strictly first-principles perspective. We expect this avenue
of research to be explored in the coming years.

4.3. “Inhomogeneous” Mode-Coupling
Theory: A Measure for Dynamic
Heterogeneity
As noted earlier, standard MCT seeks to describe the “average”
F(k, t) for a given set of wavevectors and system parameters,
but does not give immediate access to the fluctuations of
F(k, t) that are encoded in the dynamic susceptibility χ4(t) [33].
Hence, standard MCT cannot make direct predictions about
dynamically heterogeneous behavior, which is generally revealed
as a growing peak in χ4(t). There is, however, an indirect way
to extract a dynamic susceptibility from MCT by incorporating
an external field into the theory–a framework referred to as
Inhomogeneous MCT or IMCT. The idea of IMCT is to measure
the dynamic response of the intermediate scattering function
F(k, t) to changes in the external field; this response amounts
to a three-point dynamic density correlation function χ3(t).
The IMCT study of Biroli et al. [47] argues that the induced
fluctuations by the external field are intimately related to the
spontaneous fluctuations described by χ4(t), and hence the
susceptibility χ3(t) should behave in a similar manner as the
four-point function χ4(t).

Biroli et al. found that χ3(t) grows upon approaching the
dynamical MCT transition, and in fact diverges at the critical
temperature Tc. Furthermore, a correlation length ξ could
be defined–a measure, perhaps, for the size of cooperatively
rearranging particles in the supercooled regime–, that grows as
ξ ∼ |T − Tc|

−ν with a critical exponent of ν = 1/4. Notably,
IMCT also predicts that this length scale governs both the α- and
β-relaxation regimes. This suggests that the traditional picture
of caging in the β-regime, commonly interpreted as the rattling
of particles in local cages formed by their nearest neighbors (see
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3.1), is actually more subtle; rather, IMCT implies that these
cages become more and more collective as the MCT transition is
approached. However, it should be noted that the predictions of
IMCT are not generally in quantitative agreement with empirical
results. For example, numerical simulations for a model glass
former composed of Lennard-Jones particles indicate a growth
of ξ (extracted from the numerical χ4(t)) with a fitted exponent
of ν ≈ 0.5, and suggest that the length scale predicted by IMCT
does not necessarily describe the true size of the correlated spatial
domains relevant in real glass-forming materials [102]. On the
other hand, simulations for another model glass former (the so-
called Gaussian core model, which is believed to behave more as a
mean-field system) have revealed that the predicted IMCT scaling
of χ3(t) is in good quantitative agreement with the numerical
χ4(t) [103], implying that IMCT constitutes at least in some
sense a suitable mean-field framework for glassy dynamics. The
question to what extent, and under which conditions, IMCT
can offer an accurate description of dynamic heterogeneity,
and how the IMCT predictions relate to, e.g., the four-point
dynamic correlations emerging from GMCT, still remains to be
established.

4.4. Mode-Coupling Theories for Active
Matter
We end this review with a very recent development in the
field, namely the study of active matter. Active materials consist
of particles that can convert energy into autonomous motion,
rendering them out of thermodynamic equilibrium at the single-
particle level [104]. Such particle activity can lead to rich
self-organizing behavior, as exemplified in nature by, e.g., the
collective motion of living cells and the flocking of birds. During
the last decade, numerous synthetic active systems have also
become available [105], spurring the development of theoretical
approaches to describe the emergent behavior in these non-
equilibrium materials. In particular, it was found that dense
active matter can also exhibit properties of supercooled liquids
and vitrifying colloidal suspensions [6, 8, 10, 11, 106–114],
including slow structural relaxation, dynamic heterogeneity,
varying degrees of fragility, and the ultimate formation of a
kinetically arrested, amorphous solid state.

Here we briefly discuss recent extensions of standard MCT
to describe the glassy dynamics in active materials. Since
many synthetic active particles are composed of colloids
undergoing active Brownian motion, all active versions of
MCT to date are based on the Smoluchowski formalism for
Brownian systems, rather than the Newtonian description for
molecular fluids discussed in section 2. We note, however, that
continuum descriptions of active matter, such as those for active
liquid crystals, are usually derived from Newtonian-based fluid
mechanics [104].

The first MCT approach to active glasses was presented by
Farage and Brader in 2014 [115]. In this work, they considered
so-called active Brownian particles (ABPs) that move with a
constant self-propulsion speed in a random direction, subject
to translational and rotational Brownian motion. The authors
assumed that a single, non-interacting ABP behaves effectively as

a passive colloid, but with a higher effective diffusion constant.
This approximation was subsequently used to derive an effective
Smoluchowski operator for the collective dynamics of a dense
ensemble of active particles. In essence, this effective-diffusion
approach amounts to the removal of explicit rotational degrees of
freedom. The resulting MCT approach yields a modified version
of Equation (12), in which both the frequency term and the
memory function acquire an activity-dependent prefactor. The
main outcome of this MCT study is that the addition of particle
activity can soften (i.e., decrease the non-ergodicity parameter)
and eventually melt a passive glass, and shift the glass transition
toward higher densities. These findings are also in qualitative
agreement with computer simulations of a similar active material
composed of self-propelling Brownian hard particles [107, 108].
The MCT approach of Farage and Brader was later also extended
by Ding et al. [116] to mixtures of active and passive particles.

A different and more extensive active-matter study was
performed by Szamel et al. [110, 117]. Here, the authors
modeled active particles by an Ornstein-Uhlenbeck stochastic
process, characterized by an effective temperature that quantifies
the strength of the active forces, and a persistence time that
describes the duration of persistent self-propelled motion. In
this model, particle motion is thus described as a persistent
random walk. Within their framework, the self-propulsion is first
integrated out before applying the projection-operator method
and MCT-like approximation; this approach essentially assumes
that particle positions evolve on a time scale much larger than
the time scale needed for reorientation of the activity direction,
somewhat akin to the effective-diffusion assumption of Farage
and Brader [115]. An important difference between the active
MCT of Szamel et al. and previous MCT studies is that not
only the static structure factor–i.e., static correlations between
particle positions–should be given as input to the theory, but
also static correlations between particle velocities. Contrary to
the behavior of ABPs, it was found that the incorporation of
activity can both enhance and suppress glass formation: for
small persistence times, the active fluid relaxes faster than a
passive system at the same effective temperature, but for large
persistent times the active material becomes more glass-like
compared to the passive reference system. This non-monotonic
dependence of the relaxation time was observed both in the
MCT analysis and in computer simulations, and was attributed to
the competition between increasing velocity correlations (which
speed up the dynamics) and increasing structural correlations
(which slow down the dynamics) [110]. For sufficiently large
persistence times, it was found that the fitted MCT glass
transition temperature increases monotonically with increasing
persistence time, suggesting that–at least within this active-
matter model–vitrification occurs more easily as the material
becomes more active. An MCT-based scaling analysis for this
type of active-matter system was later performed by Nandi and
Gov [118].

Feng and Hou [119] subsequently studied a quasi-equilibrium
thermal version of the active Ornstein-Uhlenbeck model of
Szamel and co-workers, which additionally accounts for thermal
translational noise. Their MCT derivation differs from the
approach taken by Szamel [117], however: it is valid only
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for sufficiently small persistence times (since it relies on a
perturbative expansion), and does not require explicit velocity
correlation functions to be given as input. Rather, their active-
MCT dynamics is governed by an averaged diffusion constant
D̄ and a non-trivial steady-state structure function S2(k), which
both depend on the effective temperature and density of the
system, as well as on the persistence time of the active particles.
The coefficient D̄ and S2(k) should both be given as additional
input to the theory in order to predict F(k, t). It was found that
the critical density at which the glass transition takes place shifts
to larger values with increasing magnitude of the self-propulsion
force or effective temperature, and that the critical effective glass
temperature increases with the persistence time. In the limit
of a vanishing persistence time, the theory naturally yields the
expected result for a simple passive Brownian system [119].

Very recently, Liluashvili, et al. [120] formulated the first
MCT for ABPs in which both the translational and rotational
degrees of freedom are treated on an equal footing. That is,
rather than seeking to reduce the active material to a near-
equilibrium system, the rotational degrees of freedom governing
the reorientation of the active forces are now explicitly coupled to
the translational motion. This approach thus avoids the effective-
diffusion assumption (which in principle may be valid only at low
densities and sufficiently long times), and the resulting dynamics
now also depends non-trivially on the rotational diffusion
constant. The only required material-dependent input for this
active MCT is the passive-equilibrium static structure factor. An
important outcome of this study is the three-dimensional fluid-
glass phase diagram for hard ABPs as a function of packing
fraction, self-propulsion speed, and rotational diffusion constant.
It was shown that this surface cannot be collapsed onto a single
line in the two-dimensional plane, highlighting the importance
of treating the rotational degrees of freedom explicitly. Indeed,
depending on the density of the active material, separate regimes
could be identified that are dominated either by translational or
reorientational motion. As in the study of Farage and Brader
[115], and in agreement with computer simulations [107, 108], it
was also found that activity generally makes hard-sphere systems
more fluid-like and consequently shifts the glass transition to
higher packing fractions. Notably, this active fluidization effect
grows monotonously with increasing persistence time or inverse
rotational diffusion constant, in contrast with the findings of
Szamel and co-workers [110]. This difference is attributed to the
absence of thermal Brownian noise in the model of Szamel et al.;
in the limit of infinitely large persistence (vanishing rotational
diffusion), active particles can block themselves and produce a
glassy state, while the finite thermal diffusive motion in ABPs will
make such blocking ineffective [120].

Finally, we mention another class of non-equilibrium
materials that is closely related to active fluids, namely driven
granular matter. Such systems can be realized experimentally by
placing granular particles on, e.g., an air-fluidized or vibrating
bed. Kranz, Sperl, and Zippelius [121–123] developed an MCT
for driven granular spheres, focusing on the role of energy
dissipation (due to inelastic particle collisions) on the dynamics.
In their work, the “activity” is modeled by a driving amplitude
that gives rise to random particle kicks and that implicitly

sets an effective kinetic temperature; a coefficient of restitution
ǫ is introduced to account for dissipative particle collisions.
The resulting MCT equations are similar to Equation (12),
except for an explicit ǫ-dependent prefactor in the frequency
term and memory function. It was found that the critical
glass transition systematically shifts to higher densities as the
dissipation increases (decreasing ǫ). Furthermore, the increasing
dissipation was found to have three noticeable effects in the non-
ergodicity parameter at and above the glass transition density: i)
correlations at small wave numbers are enhanced, ii) oscillations
reflecting the local structure become less pronounced, and iii)
the localization length (measured by the inverse of the width of
the non-ergodicity-parameter peak) decreases. The last finding
is a consequence of the glass transition taking place at a higher
density.

5. CONCLUSIONS AND OUTLOOK

This review has sought to provide a brief overview of the
main phenomenology of glassy dynamics, and of its theoretical
description using Mode-Coupling Theory–arguably the most
successful theory of the glass transition that is based entirely
on first principles. We have focused mainly on the behavior
of the density correlation function F(k, t) as a probe of the
microscopic dynamics associated with vitrification. In the normal
liquid phase, this correlation function rapidly decays to zero,
but at the glass transition it fails to decay on any practical
time scale, marking the onset of rigidity and providing an
order parameter for the transition. Upon approaching the
glass transition temperature, several complex features become
visible in the dynamics, such as a transient plateau and
stretched exponential behavior in F(k, t), a breakdown of
the Stokes-Einstein relation, and the emergence of dynamical
heterogeneity–the latter being associated with increasingly large
fluctuations in F(k, t). Remarkably, during the process of
glass formation, the microscopic structure of the material, as
probed by e.g., the radial distribution function g(r) or static
structure factor S(k), undergoes only very minor changes,
yet the viscosity and dynamic relaxation time increase by
many orders of magnitude. It is this seemingly paradoxical
discrepancy between structure and dynamics that makes the
glass transition a notoriously difficult problem in theoretical
physics.

MCT offers a first-principles-based framework to account for
at least some aspects of glassy dynamics. Its starting point is the
exact equation of motion for F(k, t); through a series of (partly
uncontrolled) approximations, MCT subsequently provides a
self-consistent equation for F(k, t) that can be solved numerically
using only the static structure factor as input. As such, the
theory makes a set of detailed predictions for the full microscopic
relaxation dynamics of a glass-forming material as a function of
time, wavevector, temperature, and density, on the sole basis of
simple structural information. Among its notable successes is the
qualitative prediction of a glass transition, a physically intuitive
picture for glass formation in terms of the cage effect, and the
correct prediction of several highly non-trivial scaling behaviors
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in F(k, t). However, MCT is generally not quantitatively accurate,
and cannot account properly for the concept of fragility, the
violation of the Stokes-Einstein relation, and the emergence of
dynamic heterogeneity.

The shortcomings of MCT might be remedied using (first-
principles-based) extensions of the theory, such as Generalized
MCT and Inhomogeneous MCT. The first studies in this
direction show that GMCT can indeed offer a more quantitative
description of the F(k, t) dynamics and can potentially describe
fragility, while IMCT offers a framework to qualitatively account
for dynamic heterogeneity. However, GMCT still relies on
several approximations such as the neglect of certain wavevector-
dependent density correlations, and IMCT provides–just like
standard MCT–only a mean-field description of glassy dynamics.
Hence, more work will be needed to establish how successful
these theoretical approaches are in ultimately achieving a fully
correct first-principles description of glassy dynamics.

A more recent addition to the palette of Mode-Coupling
theories involves the study of non-equilibrium active matter.
In the last few years, several MCT frameworks have been
developed to describe glassy dynamics in active materials that
are composed of self-propelled particles. Not only can these
theories offer new insight into the behavior of dense assemblies
of synthetic active colloids, but they might also shed new
light on glassy and jamming phenomena in living cell tissues.
Similar to how standard MCT has shaped our understanding
of passive glass-forming materials over the last few decades,

it can be expected that active MCT will also contribute to
our understanding of disordered active and living materials
from a statistical-physics-based and purely first-principles
perspective.

In conclusion, despite the fact that Mode-Coupling
Theory is not exact, it does provide a suitable–and in some
cases remarkably accurate–foundation for the study of
glassy dynamics in amorphous materials. The theory also
offers ample opportunity for new research aimed toward
a complete and ultimately rigorously exact description of
the glass transition, as well as for the study of emergent
new classes of materials such as active matter. We expect
future work to be directed toward these exciting avenues of
research.
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