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Abstract Partial differential equation (PDE) based methods have become some of the most

powerful tools for exploring the fundamental problems in signal processing, image pro-

cessing, computer vision, machine vision and artificial intelligence in the past two decades.

The advantages of PDE based approaches are that they can be made fully automatic, robust

for the analysis of images, videos and high dimensional data. A fundamental question is

whether one can use PDEs to perform all the basic tasks in the image processing. If one can

devise PDEs to perform full-scale mode decomposition for signals and images, the modes

thus generated would be very useful for secondary processing to meet the needs in vari-

ous types of signal and image processing. Despite of great progress in PDE based image

analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only

limited to PDE based low-pass filters, and their applications to noise removal, edge de-

tection, segmentation, etc. At present, it is not clear how to construct PDE based methods

for full-scale mode decomposition. The above-mentioned limitation of most current PDE

based image/signal processing methods is addressed in the proposed work, in which we in-

troduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety

of applications. The MoDEEs are constructed as an extension of a PDE based high-pass

filter (Wei and Jia in Europhys. Lett. 59(6):814–819, 2002) by using arbitrarily high order

PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett. 6(7):165–167,

1999). The use of arbitrarily high order PDEs is essential to the frequency localization in

the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a

controllable time-frequency localization and allow a perfect reconstruction of the original

function. Therefore, the MoDEE operation is also called a PDE transform. However, modes

generated from the present approach are in the spatial or time domain and can be easily

used for secondary processing. Various simplifications of the proposed MoDEEs, including
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a linearized version, and an algebraic version, are discussed for computational convenience.

The Fourier pseudospectral method, which is unconditionally stable for linearized high or-

der MoDEEs, is utilized in our computation. Validation is carried out to mode separation

of high frequency adjacent modes. Applications are considered to signal and image denois-

ing, image edge detection, feature extraction, enhancement etc. It is hoped that this work

enhances the understanding of high order PDEs and yields robust and useful tools for image

and signal analysis.

Keywords Mode decomposition · Evolution equations · High order PDE transform ·

Anisotropic diffusion · Total variation · High-pass filter · Partial differential equation

1 Introduction

Noise removal, image edge detection, distortion restoration, feature extraction, enhance-

ment, segmentation and pattern recognition are fundamental problems in signal processing,

image processing, computer vision, machine vision and artificial intelligence [13, 21, 61].

The understanding of these problems and the construction of efficient solutions are essen-

tial to optical sorting, automatic control, augmented reality, robotics, sonar, radar, remote

sensing, target tracking, surveillance, communication, navigation and a variety of imaging

technologies. The primary step toward a solution to these problems is the decomposition of

the original signal—image or general data—into various modes according to their frequency

distributions. Usually, the subsequent analysis or secondary processing on individual mode

components enables us to achieve our goal of processing. Therefore, mode decomposition

is a fundamental process in information processing and data analysis.

Fourier analysis [13, 41, 51, 61, 67] is one of the oldest techniques and remains one of

the most useful techniques for mode decomposition. However, Fourier analysis is subject

to a number of limitations. For example, the Fourier method is not suitable for analyzing

data of non-stationary nature. Moreover, Fourier analysis is not data adaptive, and it usually

lacks the desired information of spatial and temporal localization in many applications. Most

importantly, when the signal or image involves abundantly many modes, it becomes very

inefficient or even impossible for any non-automatic algorithm to separate individual modes

and perform secondary processing on them.

Wavelet transform is another powerful tool for mode decomposition [13, 19, 21, 28, 36,

45, 49, 61, 73]. Similar to the Fourier analysis, wavelet transform decomposes a signal or

image into frequency sub-bands which correspond to different temporal/spatial scales or

resolutions. In this sense, wavelets are often used as filter banks [45]. Because the number

of sub-bands is usually significantly smaller than that of the Fourier modes, it is much more

convenient to carry out the secondary processing on individual sub-band than on individual

Fourier mode. Additionally, via appropriate selection of wavelet functions and parameters,

wavelet transform is able to provide controlled time-frequency or spatial-temporal localiza-

tion. Moreover, wavelet analysis can be made fully adaptive and automatic for time varying

and non-stationary signal and data. For these reasons, wavelet analysis has become very

popular in many applied fields. However, wavelet transform is basically a linear analysis

and suffers from many limitations. The down sides include uniformly poor frequency reso-

lution, and sometimes counter-intuitive interpretation [32]. In fact, wavelet methods inherit

many shortcomings of the Fourier transform since some commonly used wavelets are based

on Fourier analysis.

In approximation theory, mode decomposition can be achieved by the projection onto an

orthogonal basis normalized in an appropriate norm. The aforementioned Fourier transform



J Sci Comput (2012) 50:495–518 497

can be seen as a form of polynomial projection with harmonic base functions, i.e., trigono-

metric polynomials. Wavelet bases are usually constructed by a variety of means, such as

spline functions and rational functions, in addition to many others. The technique of ratio-

nal functions is a generalization based on the ratios of polynomial functions. In the Hilbert

space analysis, a wide variety of polynomials can be used to construct suitable L2 bases,

depending on the geometric property of polynomials. The most commonly used polynomial

functions include Chebyshev, Hermite, Legendre and Lagrange [45]. Many classical bases

are unified in the sense of the Sturm-Liouville theory. In fact, for a well-defined weight

function and appropriate geometric domain, one can construct a polynomial basis which is

orthogonal with respect to the given weight.

More recently, empirical mode decomposition (EMD) [17, 32, 34, 56, 65] has been con-

structed. Unlike the previous orthogonal decomposition methods, EMD aims to decompose

signals and images of arbitrary dimensionality into multiple general hierarchical modes,

based on which a secondary processing can be performed. Wang and his coworkers intro-

duced iterative filtering decomposition (IFD) [42, 46, 47]. EMD and IFD modes are hier-

archical in a sense that they are not orthogonal to each other, although there is a perfect

reconstruction of the original signal and image from these modes. These modes are called

intrinsic mode functions (IMFs) [32, 34, 70]. Time series or signals are decomposed into a

sum of IMFs which have zero mean value and equal (or different by one) number of extrema

and zero crossings. Each IMF contains information of instantaneous frequency defined by

Hilbert-Huang transforms [20, 33]. Additionally, EMD and IFD are highly data adaptive and

applicable to non-uniform and non-stationary data [32, 34, 39, 43, 55, 64].

Mode decomposition enables one to collect, filter and extract detailed information and

knowledge corresponding to various individual modes. These modes could contain infor-

mation related to frequency distribution, noise distribution, feature allotting, morphology,

dynamics and transport of non-stationary signals, and images functions. Apart from ap-

plications to signal/image processing, data analysis, remote sensing, target tracking, and

surveillance, mode decomposition methods can also be applied to many other fields, such as

regression analysis [84], linear programming, machine learning [46, 47], and the solution of

partial differential equations [74]. Each of these subjects has its own mathematical founda-

tion and fruitful applications in science and engineering. However, a detailed elaboration of

these aspects is beyond the scope of the present work.

An elementary operation of signal and image processing is filtering, i.e., the preservation

of certain mode components and the elimination of others. Commonly used filters include

low-pass, high-pass, band-pass, band-stop and all-pass ones. Among them, low-pass filters

are widely used for denoising, whereas high-pass filters are commonly used for image edge

detection. A vast variety of filters, such as linear, nonlinear, active, passive, wavelet, Cheby-

shev, Gaussian, Kalman, Wiener and conjugate filters [27, 62, 63, 84], have been constructed

for various applications. The essence that underpins the filtering process is the ability and

efficiency of performing mode decomposition or frequency separation. In fact, one can do a

lot more than filtering if all mode components are available. For example, one can perform

secondary processing on each of the mode components before assembling them into desir-

able objects. One can also classify individual modes into certain categories, such as noise,

image edge, image segment and smooth image before carrying out the secondary processing.

Witkin introduced the diffusion equation for image denoising in 1983 [78]. The essential

idea behind Witkin’s method is that the evolution of an image under a diffusion operator is

formally equivalent to the standard Gaussian low-pass filter. Consequently, image denoising

can be formulated as an initial value problem of the diffusion equation. The solution to this

partial differential equation (PDE) at a later time is a modified smooth image. Nevertheless,
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the original diffusion equation was not very efficient in denoising—it not only removes the

noise but also smears the image edges, which leads to poor vision perception. This problem

was addressed by Perona and Malik with an anisotropic diffusion equation [52], in which

the constant diffusion coefficient is replaced by a function of image gradients. The essen-

tial idea is to make the diffusion coefficient small at the image edges which contribute to

large gradients. It was commonly believed that the nonlinear anisotropic diffusion equation

facilitates a potentially more effective PDE algorithm for noise removing, image restora-

tion, edge detection, and image enhancement. However, it was shown by further studies that

the anisotropic diffusion operator may break down when the gradient generated by noise is

comparable to image edges and features [11, 50]. One can of course apply a pre-convolution

with a smoothing function to the image to reduce grey scale oscillation and to alleviate the

instability, but the image quality will inevitably be degraded. One alternative solution in-

troduced by Wei [72] is to statistically discriminate noise from image edges by a measure

based on the local statistical variance of the image. Such a local statistical variance based

edge-stopping works well for image restoration. PDE based methods have attracted great

attention in the past two decades [4, 6, 10, 14, 26, 35, 38, 53, 59, 79].

Rudin, Osher and Fatemi [57] devised image processing as a total variation (TV) prob-

lem. The essential idea is that signals and images with extra and possibly spurious compo-

nents have a relatively large variation or gradient. As such, image processing can be for-

mulated as a problem of minimizing the total energy defined as a functional of the gradient

of the image, while preserving important image contents such as edges. The goal of the

total energy variation is to reconstruct an image with the best fidelity and the least noise.

However, this inverse problem is ill-posed in sense of Hadamard. Regularization procedures

are usually used in total variation analysis. The use of different norm measurements for the

fidelity term can affect the quality of image restoration. For example, L2 norm based least

square algorithms may produce smooth restoration which is inaccurate if the image consists

of detailed features such as edges. In contrast, L1 norm algorithms better preserve the edge

information in the restored images. The minimization is carried out with the calculus of

variations which gives the minimum of the energy functional as the solution of the Euler-

Lagrange equation [1, 14]. The TV concept provides a rigorous mathematical algorithm to

introduce nonlinear diffusion equations and has been employed as a regularization approach

for many applications where one needs to preserve discontinuous features [12].

To improve the efficiency of noise removing, Wei introduced the first family of arbitrar-

ily high order nonlinear PDEs for image denoising and restoration in 1999 [72]. Recently,

an arbitrarily high order geometric PDE was proposed by Bates et al. for the construction

of biomolecular surfaces [5]. Many fourth-order evolution equations were introduced in the

literature for image analysis [15, 24, 44, 66, 83]. These equations were proposed either as

a high-order generalization of the Perona-Malik equation [5, 72] or as an extension of the

TV formulation [15, 44, 66, 83]. The essential assumption in these high order equations is

that high-order diffusion operators are able to remove high frequency components more ef-

ficiently. Mathematical analysis of these high order equations in Sobolev space was carried

out by Bertozzi and Greer [7, 24, 25], which proved the existence and uniqueness of the solu-

tion to a case with H 1 initial data and a regularized operator. Similar analysis was performed

by Xu and Zhou [80]. Jin and Yang proved the existence of strong solution of Wei’s fourth-

order nonlinear operator [37]. Witelski and Bowen proposed alternating-direction implicit

(ADI) schemes for high order image processing PDEs [77].

Image processing PDEs of the Perona-Malik type and total variation type are mostly

designed to function as nonlinear low-pass filters. In 2002, Wei and Jia [75] introduced

coupled nonlinear PDEs to behave as high-pass filters. These coupled PDEs are used for
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image edge detection. The essential idea behind these PDE based high-pass filters is that

when two Perona-Malik type of PDEs evolve at dramatically different speeds, the difference

of their solutions gives rise to image edges. This follows from the fact that the difference

between an all-pass filter (i.e., identity operator) and a low-pass one is a high-pass filter [75].

The speeds of evolution in these equations are controlled by the appropriate selection of the

diffusion coefficients. These PDE-based edge detectors have been shown to work extremely

well for images with large amount of textures [62, 75].

Despite of great progress in PDE based image analysis in the past two decades, a funda-

mental question is whether one can use PDEs to perform all tasks in the image processing.

To certain extent, this is equivalent to ask whether one can devise PDEs to perform a full-

scale mode decomposition for signals and images. As discussed earlier, when all the mode

components are available, it is trivial to manipulate them for all image processing purposes.

The main difficulty at present is that it is still unclear how to formulate PDEs for mode de-

composition. The objective of the present work to construct a PDE based algorithm for mode

decomposition of signals, images and functions. All of the important building blocks for the

construction of the mode decomposition evolution equations (MoDEEs) were developed in

our earlier work, i.e., arbitrarily high order PDE filters [72] and PDE based high-pass filters

[75]. The increase in the order of the PDE leads to better frequency localization, which is

desirable for certain applications. Additionally, the MoDEEs need to regenerate the initial

value in order to systematically extract all IMFs, an algorithm previously used in our mode

decomposition via iterative filtering [42, 70], which is equivalent to the use of high order

PDE high-pass filters. The MoDEE yields band-frequency components (or modes) by re-

cursively extracting high frequency signals using high order PDEs. The proposed MoDEEs

behave like Fourier transform and wavelet transform—the intrinsic modes yielded by the

MoDEEs have a perfect reconstruction of the original function. The frequency localization

of the MoDEEs is controlled by the order of the PDEs. In addition, with other parame-

ters optimized, MoDEE algorithm is capable of attaining high accuracy besides adaptive

robustness. It is worthwhile to note that such optimization is important and useful tool for

general applications in mathematics and physical science [82]. In this sense, we also call

the operation of the MoDEEs a PDE transform. However, the proposed PDE transform is

capable of decomposing signals and images into various “functional” modes instead of pure

frequency modes like those in Fourier transform. By functional modes, we mean the compo-

nents which share similar band of frequencies or belong to same category, e.g., noise, edge

and trend. But unlike wavelet transform, the proposed PDE transform works like a series of

low-pass and/or high-pass filters in the spatial or time domain only. As such, the subsequent

secondary processing on each individual mode become robust and controllable, leading to

desirable processing effects.

The rest of the present paper is organized as follows. Section 2 is devoted to the theory

and algorithm of the proposed PDE transform or the MoDEEs. We start with a brief review

of high order image processing PDEs and PDE based high-pass filters. The MoDEEs are

constructed by an appropriate generalization of the PDE based high-pass filters [75]. A num-

ber of MoDEE systems are presented. The nth order MoDEE system involves the 2nth or-

der PDEs. Computational algorithms are proposed in Sect. 3. As the proposed MoDEEs are

coupled nonlinear PDEs involving high order derivatives, their solution is non trivial. We

propose many simplified MoDEE systems, including decoupled MoDEEs, linear MoDEEs

and algebraic MoDEEs to reduce computational complexity. The Fourier pseudospectral

method [62, 81] is employed to numerically solve the MoDEE systems. This approach is

exact for certain class of PDEs. Numerical tests and validations are presented in Sect. 4.

A benchmark test is to separate adjacent frequency modes in a function or signal. This test
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becomes difficult when the adjacent modes are of high frequencies. Other tests include im-

age edge detection, denoising and enhancement. We show that the proposed MoDEEs are

able to perform well on all these tests. In Sect. 5, applications of proposed PDE transform

are considered to the processing of a few medical images. We demonstrate the performance

of the proposed MoDEEs for image denoising, restoration and edge detection. This paper

ends with some concluding remarks.

2 Theory and Formulation

This section presents the theoretical formulation of PDE based mode decomposition meth-

ods. To establish notation and illustrate concepts, we briefly review high order PDE based

nonlinear low-pass filters introduced by Wei [72] and PDE based nonlinear high-pass filters

introduced by Wei and Jia [75]. The construction of mode decomposition evolution equa-

tions follows as a natural extension of PDE based nonlinear high-pass filters.

2.1 High Order PDE Based Low-Pass Filters

Motivated by a number of physical phenomena, such as pattern formation in alloys, glasses,

polymer, combustion and biological systems, Wei introduced some of the first family of high

order nonlinear PDEs for image processing in 1999 [72]

∂u(r, t)

∂t
=

∑

q

∇ · [dq(u(r), |∇u(r)|, t)∇∇2qu(r, t)]

+ e(u(r), |∇u(r, t)|, t), q = 0,1,2, . . . (1)

where u(r, t) is the image function. Here dq(u(r), |∇u(r)|, t) and e(u(r), |∇u(r)|, t) are

edge sensitive diffusion coefficients and enhancement operator respectively. Equation (1) is

a generalization of the Perona-Malik equation [52], where the latter is recovered at q = 0 and

e(u(r), |∇u(r)|, t) = 0. The hyperdiffusion coefficients dq(u(r), |∇u(r)|, t) were chosen as

dq(u(r), |∇u(r)|, t) = dq0 exp

[

−
|∇u|2

2σ 2
q

]

, (2)

where the values of constant dq0 depend on the noise level, and σ0 and σ1 were chosen as

the local statistical variance of u and ∇u

σ 2
q (r) = |∇qu − ∇qu|2 (q = 0,1). (3)

The notation X(r) denotes the local average of X(r) centered at position r. The sta-

tistical measure based on the variance is important for discriminating image edges from

noise. By using this measure, one can avoid the use of preprocessing, i.e., the convolution of

the noise image with a smooth mask. In general, both Neumann type or periodic boundary

conditions can be imposed. However, if arbitrarily high order PDEs are devised, periodic

boundary conditions are better choices, as are chosen for the application with Fourier pseu-

dospectral methods in this paper. The numerical application of (1) to image denoising and

restoration was demonstrated and the performance of this equation was compared with that

of the Perona-Malik equation [52] by Wei [72] and many other researchers [22, 23, 44].

The well-posedness of the generalized Perona-Malik equation was analyzed in terms of the
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existence and uniqueness of the solution [7, 24, 25, 37, 80]. It was argued that the mathe-

matical properties of the generalized Perona-Malik equation differ from those of other high

order PDEs [37]. The stability of (1) follows from appropriate choice of diffusion coeffi-

cients dq(u(r), |∇u(r)|, t), e.g., the sign of dq should be (−1)q . However, other choices of

the signs were also explored in forward-and-backward diffusion processes to achieve simul-

taneous image denoising and enhancement [22].

2.2 Nonlinear PDE Based High-Pass Filters

By 2000, there had been a large number of publications that explored PDE based image

processing approaches. However, most of the research was focused on the use of even-

order partial derivatives as a means to smooth images, i.e., as low-pass filters. These PDE

approaches were inefficient for image edge detection, particularly for images with a large

amount of texture. This is due to the fact that edge detection is a high-pass filtering operation,

while the diffusion process is inherently a low-pass filtering process. Wei and Jia addressed

this issue by introducing a pair of weakly coupled nonlinear evolution equations in 2002

[75]

∂

∂t
u(r, t) = F1(u,∇u,∇2u, . . .) + ǫu(v − u), (4)

∂

∂t
v(r, t) = F2(v,∇v,∇2v, . . .) + ǫv(u − v) (5)

where u(r, t) and v(r, t) are scalar fields with Neumann boundary conditions imposed, ǫu

and ǫv are coupling strengths. F1 and F2 are general nonlinear functions which can be chosen

as the Perona-Malik operator

Fj = ∇ · [dj (|∇uj |)∇uj ] (6)

with dj (|∇uj |) = dj0 exp[−|∇uj |
2/(2σ 2)], u1 = u and u2 = v. The initial values for both

scalar fields were chosen to be the same image of interest, i.e., u(r,0) = v(r,0) = I (r).

In the theory of nonlinear dynamics, (4) and (5) constitute a synchronization system. To

attain an appropriate image edge contrast, the original image must evolve under dramatically

different time scales, i.e., either d10 ≫ d20 or d20 ≫ d10. The coupling strengths ǫ1 and ǫ2

were set to be relatively small (i.e., ǫu
∼= ǫv ∼ 0) so that the rate of change of u or v was

dominated by the diffusion process. The coupling term plays the role of relative fidelity.

This becomes clear when d10 ∼ 0. The image edge was defined as the difference of two

dynamical systems

w(r, t) = u(r, t) − v(r, t). (7)

To ensure a normal performance of diffusion operator, one of the diffusion coefficients d10

or d20 must be of similar amplitude as that used in the Perona-Malik dynamics. If we choose

d20 to be a normal one, the requirement of d20 ≫ d10 implies that d10 ≈ 0. As such, w(r, t)

in (7) behaves like a band pass filter. In the extreme case, if we set d10 = 0, we have a PDE

based high-pass filter

w(r, t) = I (r) − v(r, t). (8)

This setting is often used in our practical applications [62, 63]. The PDE based high-pass

filters have been shown to be very robust and efficient. They provide superior results in

image edge detection compared to those obtained by using other existing approaches, such

as the Sobel, Prewitt, and Canny operators, and by anisotropic diffusion [75].



502 J Sci Comput (2012) 50:495–518

2.3 Mode Decomposition Evolution Equations (MoDEEs)

The high-pass PDE filter discussed above does not discriminate different high frequency

modes or components. The goal of the proposed project is to devise a PDE based system

for systematic separation of all the mode components, including high order modes. This

requires a generalization of the PDE based high-pass PDE filter. To this end, we first cast

(4) and (5) into a matrix form

∂

∂t

⎛

⎝

u

v

w

⎞

⎠ =

⎛

⎝

∇ · du(|∇u|)∇ − ǫu ǫu 0

ǫv ∇ · dv(|∇v|)∇ − ǫv 0

∇ · du(|∇u|)∇ − (ǫu + ǫv) −∇ · dv(|∇v|)∇ + (ǫu + ǫv) 0

⎞

⎠

⎛

⎝

u

v

w

⎞

⎠ ,

(9)

where all quantities are same as those defined in the last section. Considering the fact that

w ∼ u − v, we can arrive at a more compact form

∂

∂t

⎛

⎝

u

v

w

⎞

⎠ =

⎛

⎝

∇ · du(|∇u|)∇ 0 −ǫu

0 ∇ · dv(|∇v|)∇ ǫ1

∇ · du(|∇u|)∇ −∇ · dv(|∇v|)∇ −(ǫu + ǫ1)

⎞

⎠

⎛

⎝

u

v

w

⎞

⎠ . (10)

Since ǫu
∼= ǫv ∼ 0, for simplicity, we drop the coupling strengths (ǫu + ǫ1) in the evolution

equation of w

∂

∂t

⎛

⎝

u

v1

w1

⎞

⎠ =

⎛

⎝

∇ · du(|∇u|)∇ 0 −ǫu

0 ∇ · d1(|∇v1|)∇ ǫ1

∇ · du(|∇u|)∇ −∇ · d1(|∇v1|)∇ 0

⎞

⎠

⎛

⎝

u

v1

w1

⎞

⎠ , (11)

where we have relabled variables v and w as v1 and w1, respectively. Note that the PDE for

“edge” w in (11) is very different from the other two genuine PDEs for u and v. The solution

of w is easily obtained by integrating the corresponding PDE once only, provided that u and

v are given. Equation system (11) is hereafter referred to as the first MoDEE system.

For problems involving high frequency modes, we need to construct the high order MoD-

EEs. The matrix form (11) can be easily generalized to include fourth order derivatives

∂

∂t

⎛

⎝

u

v2

w2

⎞

⎠

=

⎛

⎝

∇ · du1(|∇u|)∇ + ∇ · du2(|∇u|)∇∇2 0 −ǫu

0 ∇ · d21(|∇v2|)∇ + ∇ · d22(|∇v2|)∇∇2 ǫ2

∇ · du1(|∇u|)∇ + ∇ · du2(|∇u|)∇∇2 −∇ · d21(|∇v2|)∇ − ∇ · d22(|∇v2|)∇∇2 0

⎞

⎠

×

⎛

⎝

u

v2

w2

⎞

⎠ , (12)

where differential equations of u and v2 employ the fourth order nonlinear low-pass filters

given in (1). Here w2 is more sensitive to high frequency components than w1 is. There-

fore, w2 contains the information related to the difference between high order modes. As

discussed earlier, it is computationally cheaper to solve edge functions w2 than to solve u

and v2. We have utilized the fourth order operator designed by Wei [72] in the above for-

mulation. The initial values of u and v2 are set to the original image or signal of interest.
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The initial value of w2 can be set to zero. Equation system (12) is hereafter referred to as

the second MoDEE system.

If the task is merely to detect image edges, one may just use the first MoDEE system or

the high-pass filter of Wei and Jia to obtain desirable results as demonstrated in our earlier

work [62, 75]. However, if one wants to separate high frequency modes, the second MoDEE

system is a better candidate than the first one.

For highly oscillatory signals, images and functions, in order to separate all the high

frequency modes, which is desirable in many applications, we need the MoDEEs containing

even higher order PDEs. To this end, we construct an nth order system

∂

∂t

⎛

⎝

u

vn

wn

⎞

⎠ =

⎛

⎜

⎝

∑n−1
j=0 ∇ · duj+1(|∇u|)∇∇2j 0 −ǫu

0
∑n−1

j=0 ∇ · dnj+1(|∇vn|)∇∇2j ǫn
∑n−1

j=0 ∇ · duj+1(|∇u|)∇∇2j −
∑n−1

j=0 ∇ · dnj+1(|∇vn|)∇∇2j 0

⎞

⎟

⎠

×

⎛

⎝

u

vn

wn

⎞

⎠ . (13)

Equation (13) can be solved to generate nth edge functions wn. Similar to the first MoDEE

system, the nth MoDEE system works when one sets duj+1 ∼ 0, j = 0, . . . , n − 1, ǫu ∼ 0,

and ǫn ∼ 0. Since all PDEs are designated as smoothing operators, all odd diffusion coeffi-

cients, such as du1, du3, . . . , dn1, dn3, . . . are to be positive and all even diffusion coefficients

are to be negative. In order to separate high order modes, it is practical to set all duj+1 = 0

and dnj+1 = 0, except for dun and dnn.

3 Simplified Models and Computational Algorithms

3.1 Linear MoDEEs

In general, we need to solve systems of coupled, nonlinear, high order PDEs as shown

in (13), which can be technically demanding. However, for many practical problems, we

can design simplified MoDEE models which also work well. Based on the physical under-

standing, various simplifications of the MoDEE systems are presented to reduce the com-

putational complexity. Numerical algorithms for solving the high order MoDEEs are also

discussed in the following paragraphs.

The first approximation is to set ǫj = 0 in the MoDEEs. This approximation leads to the

decoupling of all MoDEEs. The uncoupled MoDEEs are much easier to solve. The solutions

of decoupled PDEs are also easy to interpret, which makes the selection of mode parameters

easy.

Another useful approximation is to eliminate nonlinearity and positional dependence of

all the diffusion coefficients. The nonlinear models work better for most application as evi-

dent from our own experiments. However, for certain class of problems with smooth func-

tions, the nonlinear edge sensitive diffusion coefficients do not play the critical role. Signal

processing is a typical example. Therefore, the linear MoDEE systems are computationally

favored. As an example, we can obtain a linear form of the nth MoDEE system from (13):

∂

∂t

⎛

⎝

u

vn

wn

⎞

⎠ =

⎛

⎝

∑n

j=1 duj∇
2j 0 0

0
∑n

j=1 dnj∇
2j 0

∑n

j=1 duj∇
2j −

∑n

j=1 dnj∇
2j 0

⎞

⎠

⎛

⎝

u

vn

wn

⎞

⎠ . (14)
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The linear MoDEE systems can be easily solved with the Fourier pseudospectral methods

[63, 81].

3.2 Algebraic MoDEEs

To further simplify the MoDEE systems, we can make use of the algebraic relation given in

the original formulation of Wei and Jia [75]. The use of algebraic relations saves the com-

putational cost of integrating the edge equations. We first consider a set of linear equations

modified from (14)

∂

∂t

(

u

vn

)

=

(∑n

j=1 duj∇
2j 0

0
∑n

j=1 dnj∇
2j

)(

u

vn

)

. (15)

These linear equations offer copies of smoothed image functions. After solving (15) for

u and vn, we determine the mode functions by the simple form of Wei and Jia as that given

in (7)

wn(r, t) = u(r, t) − vn(r, t). (16)

By the appropriate selection of parameters, wn(r, t) delivers desirable mode functions. It

behaves as a band-pass filter.

Another simple choice is to determine the mode functions by the form given in (8)

wn(r, t) = I (r) − vn(r, t), (17)

where I (r) is an initial value. As such, we do not need to solve the PDE for u. It behaves

as a high-pass filter. We expect that wn in (17) performs similar to wn in (16) does when the

parameters are appropriately selected.

Obviously, there are still many other ways to construct mode vectors. Essentially, for a

given application, the selection of appropriate vn for the construction of j th order mode

component can be formulated as an optimization problem. It is beyond the scope of the

present work to discuss other alternative MoDEEs.

Similar to the IFD algorithm [42, 70], we extract the highest frequency component first,

then residual is used as the initial value for u and vn to extract the second highest frequency

component. We continue this procedure until all components or intrinsic mode functions are

separated. Note that this procedure is inherently nonlinear, even if the linear MoDEEs are

used. Unlike the IFD algorithm, no (internal) iteration is used—to extract an intrinsic mode,

we only solve the MoDEE once.

We also noted that one can extract the lowest intrinsic mode function first. Then the

residual is used as the initial value in the MoDEE to extract second lowest intrinsic mode

function. One continues this procedure until all the intrinsic modes are systematically sepa-

rated one by one.

Using the PDE transform algorithm discussed above, intrinsic mode functions are sys-

tematically extracted from residues, a perfect reconstruction is straightforward by summing

all the modes and final residue In, i.e.,

I =

n
∑

j=1

wj + In. (18)

In practical computations, either the periodic boundary condition or the Neumann bound-

ary condition can be used in all the proposed MoDEEs. When Fourier spectral methods is

used for integration in this paper, periodic boundary condition is applied.
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3.3 Numerical Methods for High-Order MoDEEs

The proposed MoDEEs involve many high order PDEs which have to be solved in an ap-

propriate manner to avoid the accumulation of numerical errors. Essentially, there are two

important issues in the solution of high order evolution PDEs. The first issue concerns the

accuracy of approximating high order derivatives. The rule of thumb here is that to ap-

proximate high order derivatives, high order numerical methods are required [68, 85]. High

order finite difference methods based on the Lagrange polynomials, Fourier pseudospectral

methods and local spectral methods are suitable approaches for approximating high order

derivatives. The second issue is the stability constraint in solving high order evolution PDEs.

When the explicit (forward) Euler type of time discretization is used to solve an nth order

evolution PDE, the step size �t of time is constrained by �t ∼ (�x)n, where �t is the spa-

tial grid spacing. Therefore, it is desirable to use alternative direction implicit (ADI) type

of implicit methods for the time discretization. ADI type of methods has been previously

developed by us to solve high order geometric flow equations [5, 18].

To solve the decoupled linear MoDEEs (15), we use the Fourier pseudospectral method.

Spectral methods have been a popular choice for the numerical solution of various wave

problems in recent years. As global methods, the Fourier spectral methods usually are much

more efficient than local methods (e.g., finite difference and finite element methods) for

certain classes of nonlinear problems. We applied Fourier pseudospectral method to the

solution of the Navier-Stokes equation and other PDEs [63, 81]. This approach is uncondi-

tionally stable and particularly efficient for solving the high oder MoDEEs proposed in (15).

A windowed Fourier pseudospectral method has been developed for hyperbolic conservation

laws, i.e., Euler equations [63].

4 Numerical Tests and Validations

4.1 Intrinsic Mode Decomposition

In this section, the MoDEE is applied to and validated on several benchmark testing cases

to demonstrate the flexibility, efficiency, and accuracy of the method. In this paper, we use

Fourier spectral methods to numerically integrate PDEs in one-step.

We first illustrate the efficiency and accuracy of the MoDEE Algorithm in Sect. 3.2 using

signal f (x) = sin(x) + sin(1.2x) + cos(2x) + sin(12x), as shown in Fig. 1. In the figure, x-

axis is in the domain of [0,2π ]. The total signal f (x) is shown in solid black curve, and the

two modes with close frequencies, sin(1.2x) and sin(x), are chosen to be plotted with red

dashed and blue dotted lines, respectively. The MoDEE decomposes the original signal into

four modes which agree very well with the analytical results, and no visible difference can

be observed when the 32nd order PDE is used in the MoDEE. Note that mode 3 of sin(1.2x)

and mode 4 of sin(x) are closely embedded in f (x) and are thus difficult to be separated

using many methods other than Fourier transform or wavelet methods. To investigate the

MoDEE method in detail, various high order PDEs are used to separate the same signal. In

Table 1, the MoDEE method illustrates its advances in separating out various modes clearly.

When the highest order of the PDE used in the MoDEE is increased from 8 to 32, the L2

error of various modes separated numerically decreases by orders of magnitude. The signal

here is perfect candidate for the application of the Fourier method, and the MoDEE gives

satisfactory decomposition accurately.

In Figs. 2 and 3, plots are shown to compare the effect of high order PDEs on mode

separation as illustrated as in Table 1. Mode 1 of sin(12x) is plotted in Fig. 2. Red circles in
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Fig. 1 Mode separation using the MoDEE method with the 32nd order PDE. Black curve shows the signal

f (x) = sin(x)+sin(1.2x)+cos(2x)+sin(12x). X-axis is in the unit of π , and the domain of [0,2π ] is shown

in the plot. Red dashed and blue dotted lines show the 3rd mode sin(1.2x) and 4th mode sin(x) respectively.

All the four modes, including the 3rd and 4th modes which are very close in frequencies, are separated using

the MoDEE method using the 32nd order PDE. Numerical results agree well with the exact values with no

visible difference. The L2 norm of the errors are smaller than 0.01

Table 1 Comparison of the

accuracy of mode decomposition

using various high order PDEs in

the MoDEE scheme

Highest order of the PDE Mode number L2 error

8 1 0.084879

2 0.073587

3 0.261249

4 0.209813

16 1 0.006547

2 0.006035

3 0.106525

4 0.091147

32 1 0.000020

2 0.000019

3 0.011317

4 0.010353

three panels show the result using the MoDEE method with different highest order of PDEs,

and black curves show the analytical results of sin(12x) as reference. The highest order of

PDEs as in ∇2n in (15) are 8, 16, and 32 respectively. For this mode, the use of up to the 16th

order PDE is enough for the convergence. Similar plots of the decomposition of the third

mode sin(1.2x) from the fourth one sin(x) are shown in Fig. 3. A higher order PDE of up to

32nd order is required for the separation of closely overlapping modes 3 and 4. The results

illustrate how important it is and when it is necessary to include very high order PDEs for

signal processing. In addition, it is shown that the MoDEE using very high order PDEs is

still very stable and does not diverge.

Lastly, we illustrate the spectral accuracy achieved by the MoDEE using signal com-

posed of two modes of cos(mπx) and cos((m− 1)πx), where m is the maximum frequency

supported by the mesh size (which is 0.05 in this example, and thus m = 20), i.e. two grid
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Fig. 2 Mode 1 of sin(12x) separated from signal in Fig. 1 using the MoDEE with various orders of PDEs.

Black curves in three panels show the exact results of mode 1 of sin(12x), and red circles show the MoDEE

results. The values of the highest order of PDEs used are 8, 16, and 32 respectively from the left to right panel

Fig. 3 Mode 3 of sin(1.2x) separated from signal in Fig. 1 using the MoDEE with various orders of PDEs.

Black curves in three panels show the exact results of mode 1 of sin(1.2x), and red circles show the MoDEE

results. The values of the highest order of PDEs used are 8, 16, and 32 respectively from the left to right panel

Fig. 4 Plots of f (x) = cos(mπx) + cos((m − 1)πx) where m = 20 corresponds to the maximum frequency

supported by the finite grid mesh size chosen here

points for each oscillation period. In Fig. 4, f (x) = cos(mπx) + cos((m − 1)πx) is de-

composed into two frequency modes, cos(mπx) and cos((m − 1)πx), using the MoDEE.

The comparison of numerical results are shown in Figs. 4(b) and 4(c) respectively. Black

curve shows the exact values, and red circles show the numerical results. Highly accurate

MoDEE decomposition is observed in the figures where the 32nd order PDE is employed in

the MoDEE algorithm as in Sect. 3.1.

4.2 Image Denoising, Edge Detection and Enhancement

Image processing is becoming increasingly important in many areas of research in physical,

mathematical and biological sciences [16, 29, 30, 40, 54]. In particular, edge detection is a
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Fig. 5 Grey scales of the original and noise-added Barbara image

key issue in pattern recognition, computer vision, target tracking and image processing [2, 3,

9, 48, 58, 60]. Closely related to edge detection is denoising. PDE methods provide powerful

tools image processing. The MoDEE is designed for both accurately decomposing modes

with different frequency (or “frequency-modes”) with spectral accuracy and effectively de-

composing modes with different functions (of “functional-modes”) for image enhancement

like edge detection, denoising, segmentation, etc.

The 512×512 grey-scale Barbara image as shown in Fig. 5(a) is used to test the MoDEE

algorithm. The same image has been extensively used in the literature due to its fine details

associated with multiple edges. In Fig. 5(b) random white Gaussian noise with signal to

noise ratio (SNR) of 9.8 dB was added to the original image. For a quantitative view of the

magnitude of SNR and effect of PDEs on the image enhancement, values of grey scale along

a randomly chosen horizontal line is plotted before and after image processing. In Fig. 5(a),

such a horizontal line is specified by a dark grey line crossing the forehead of the Barbara

image. In Fig. 5(b), the black curve shows the grey scale values along the chosen horizontal

line in the original Barbara image, and the red curve shows the values of the same horizontal
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Fig. 6 (Color online) Noise removal in the Barbara image using the MoDEE algorithm

line in the noise-added Barbara image Fig. 5(b). The added noises overlap closely with the

edges of the original image, such that any denoising would smear the fine details of edges.

The MoDEE algorithm in Sect. 3.1 is applied to denoise the image while preserving the

edge details as best as possible by taking difference between two PDEs with different dif-

fusion constant and inclusion of high order PDEs. In Fig. 6, values of grey scale along the

horizontal line Fig. 5(a) are plotted. Black solid curves show the original grey scale without

noise. Blue curves show the grey scale of the same horizontal line after image process-

ing using the MoDEE algorithm with evolution time �t = 10, du2 = 0.05 and dn2 = 0.4.
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Fig. 7 Edge detection and secondary processing using the MoDEE algorithm

Red curves show the grey scale using the same MoDEE algorithm with different value of

du2 = 0. It is clear from the image, especially in those intervals as magnified and shown in

Figs. 6(b), 6(c) and 6(d), that the blue curves capture more details of various image edges

with better accuracy than those red curves. The better accuracy illustrates the advantage of

employing the difference between two high-pass filters in image processing as is employed

in the MoDEE algorithms. For visual observation and comparison, denoised images using

the two aforementioned MoDEE equations and parameters are shown in Figs. 6(e) and 6(f).

SNR is improved from 16.9 dB in Fig. 6(e) to 17.4 dB in Fig. 6(e). Though the improvement

in SNR alone is not very significant, the visual enhancement is more significant due to the

improvement in capturing more fine edge details.

As given by (18), the MoDEE algorithm allows straightforward reconstruction of the

original image through various modes and residue. In terms of image processing, the

MoDEE algorithm automatically extracts noise, denoised image and image edges at the

same time. The denoised image is shown in Fig. 6(f), and the residual is therefore shown in

Fig. 7(a) which corresponds to the image edge. In addition, as aforementioned, the MoDEE

is a general scheme allowing feature extraction and secondary processing of the decomposed

functional modes. The residual in Fig. 7(a) which contains image edges can be further post-

processed by applying MoDEE algorithm once more. To achieve good performance, both

the residue and edge mode from previous MoDEE application are utilized in the second

MoDEE application. The reference-assisted “denoised” mode of the image in Fig. 7(a) is

shown in Fig. 7(b). Comparing the two figures, it can be observed that edges in Fig. 7(a) are

finer and sharper, representing good edge extraction. On the other hand, edges in Fig. 7(b)

have varying density and look more natural to human eyes with more physical features cap-

tured in detail, e.g. the shade on the elbow of the left hand of Barbara. The edges in Fig. 7(b)

can be seen as an edge “representation” rather than edge extraction, where stronger and

more meaningful edges are shown as denser lines while more subtle edges are shown as

finer lines. In many applications this representation may prove to be very useful.
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5 Applications

In the past two decades advances in medical imaging using magnetic resonance imaging

(MRI) or computed tomography (CT) technology have enabled both clinicians and re-

searchers to collect and analyze large collection of medical images. In this section, the

MoDEE algorithm is applied to various types of medical images.

5.1 Magnetic Resonance Images

MRI is built upon the physical theory of nuclear magnetic resonance (NMR): a nucleon

such as proton possesses spin which has value of multiples of 1/2, and those nuclei with

unpaired spins tend to align with the orientation of the externally applied magnetic field.

After alignment, high frequency pulses, usually in the range of radio frequency (RF) of

MHz, are emitted into a slice plane perpendicular to the external field to excite the aligned

spins. RF waves are then turned off such that excited nucleus undergo a relaxation process to

resume its original distribution. Different types of biological structures and tissues have dif-

ferent characteristic relaxation time which can be measured by MRI hardware and software

to construct associated spatial images. Using MRI technique, each pulse sequence exploits

some specific physical or chemical property of the protons of small, mobile molecules like

water and lipids. Therefore, one could depict structural and functional information from

living tissue at the sub-millimeter scale.

Though the medical imaging techniques have advanced tremendously in terms of spa-

tial resolution, acquisition speed, and signal-to-noise ratio, medical images thus created still

need to be carefully enhanced to account for factors like signal intensity inhomogeneities

(i.e. bias fields), noise, and other artifacts. Noise, as one example, in MRI enters the data

samples in k-space and competes with the NMR signal due to random fluctuations in the

receiving coil electronics and in the patient body. In the case of function MRI (fMRI) [8] for

brain mapping and diffusion tensor imaging (DTI) [69, 76] for studying neural fibers, the

amount of random thermal noise entering MRI data in the time domain in the acquisitions

limits the performance and usefulness of quantitative MRI diagnostics such as voxel-based

tissue classification, extraction of organ shape or tissue boundaries, estimation of physiolog-

ical parameters like tissue perfusion and contrast agent permeability from dynamic imaging

[31, 44]. Despite of much progress made in post-processing methods for noise reduction

and image enhancement, it remains a challenge to find robust and interacting ways for noise

removal, boundary preservation applicable to the different MRI acquisition techniques.

In Fig. 8, the MoDEE algorithm using PDE (9) is used to detect edges for blur medi-

cal images obtained using MRI. Figure 8(a) is obtained using cardiac magnetic resonance

imaging (cMRI) for a 21-year old woman referred for clinical management of idiopathic

dilated cardiomyopathy (the image is authored by the European society of cardiology). By

applying the MoDEE algorithm with evolution time �t = 10, du2 = 0.2 and dn2 = 0.52, one

obtains satisfactory results with enhanced edge detection in Fig. 8(b) which shows a dilated

left ventricle, without evidence of tissue abnormalities (e.g. scars, patchy fibrosis).

5.2 Magnetic Resonance Angiography Images

Magnetic resonance angiography (MRA) image stands for a group of important techniques

based on MRI to image blood vessels. MRA is often used to evaluate the arteries of the

neck and brain, the thoracic and abdominal aorta, the renal arteries and the legs to diag-

nose symptoms like stenosis (abnormal narrowing) and occlusion or aneurysms (vessel wall
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Fig. 8 Edge detection and registration using the MoDEE algorithm

Fig. 9 Edge representation in noised image using the MoDEE algorithm

dilatations, at risk of rupture), etc. An advantage of MRA compared to invasive catheter

angiography is the non-invasive character of the examination. In particular, compared to

computed tomography and angiography and catheter angiography, MRA does not expose

patient to any ionizing radiation. The greatest drawbacks of the method are its compara-

tively high cost and its somewhat limited spatial resolution. In addition, the length of time

the scans take can also be an issue, with computed tomography being far quicker. Therefore,

image processing technique is important for post-processing the images generated by MRA

to save cost, improve resolution and extract/highlight important features like fine details of

edges of arteries.

The image shown in Fig. 9(a) is downloaded from the website of Magnetic Resonance

and Image Analysis Research Centre, University of Liverpool. The image is used to show
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the vessels known as the circle of Willis in the brain. To test the ability of edge detection

and noise removal, original image is added with noise. For a realistic setting the total noise

added to the MRA image 9(a) is composed of two parts, η(x, y) = σ(x, y)+γ (x, y), where

σ(x, y) is white Gaussian noise with maximum amplitude 25 and zero mean, and γ (x, y) is

a periodically oscillating cosine noise given by

γ (x, y) = 40 cos

(

π

2
(x + y)

)

. (19)

The noisy image is shown in Fig. 9(b). To remove both noises closely embedded in the

original image, we apply the MoDEE algorithm in Sect. 3.1 including 20th order PDE with

du2 = 0.01 and dn2 = 0.47. The resulting enhanced image is shown in Fig. 9(c), in which

both types of noises have been reduced and edges are clearer for medical diagnosis.

5.3 X-ray Computed Tomography Images

Computed tomography (CT) is a technology of using X-rays to image biological and human

body. Compared to visible spectra imaging, X-rays have wavelengths between nanometer

and picometer scales, which are energetic enough to penetrate biological tissues. Denser

structures like the bones are more efficient at absorbing X-rays compared to softer tissues.

This leads to the noninvasive medical imaging. CT is a popular technique for reconstructing

the X-ray images with delicate hardware design as well as computer software. In CT scan-

ning, a localized X-ray source and corresponding detector are put opposite to each other

and rotate around the human body. The 2D slice image is then synthesized from the X-ray

signals around all the directions. In the last few decades, CT technique has been widely used

in medical imaging of soft tissues, hard bonds, blood vessels, etc.

In Figs. 10(a) and 10(c), two different CT abdomen images are shown corresponding

to different patient with slightly different shapes and edges of the organ in the abdomen.

The MoDEE algorithm using PDE (9) is applied to detect edges in these two original CT

images. The same set of MoDEE coefficients are used with du2 = 0.22 and dn2 = 0.5. In par-

ticular, Fig. 10(a) shows the CT image of abdomen of a 68-year old male, image authored

by Maclennan, Radiologist, Royal Alexandra Hospital, Paisley, United Kingdom. Edge en-

hanced image using the MoDEE algorithm is shown in Fig. 10(b) which shows with better

clarity (e.g. finer edges and tiny circles) the calcific density mass with flat upper margin in

neck of gallbladder. The flat margin suggests that whatever is causing the mass is layering

under the effect of gravity. Figure 10(c) shows a similar cross-sectional image of abdomen,

with image authored by Department of Health and Human Services, using computerized

axial tomography (CAT) scanning technique. The MoDEE captures the small differences

which are reflected in the final edge-extracted image Fig. 10(d). The shape of the tiny cir-

cles in the liver are clearly highlighted.

As a short conclusion, through the applications and images shown in this section, it is

illustrated that the MoDEE algorithm provides a robust and powerful tool for various im-

age processing and enhancement tasks of interest to both clinical and research scientists

equipped with various types of medical imaging techniques.

6 Concluding Remarks

Digital image processing, signal processing and video processing underpin a number of

modern technologies for optical sorting, automatic control, augmented reality, robotics,
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Fig. 10 Edge detection and registration using the MoDEE algorithm

sonar, radar, remote sensing, target tracking, communication, navigation and imaging. Mode

decomposition is an elementary operation in image and signal processing, and enables es-

sentially all the other processing tasks such as noise removal, image edge detection, dis-

tortion restoration, feature extraction, enhancement, segmentation, and pattern recognition.

Although there are many mode decomposition techniques such as empirical mode decompo-

sition (EMD) [32], iterative filtering decomposition [42, 70, 71] and wavelets, partial differ-

ential equation (PDE) approaches have not been discovered. A major obstacle is due to the

limited understanding of high order PDEs. High order PDEs have been conventionally con-

sidered as computational unstable as well as unnecessary in physical modeling and image

analysis. The present work constructs a PDE based framework for mode decomposition of

signals, images and functions. We show that it takes an in-depth understanding of the perfor-

mance and function of arbitrarily high order PDE based low-pass filters [72] and nonlinear

PDE based high-pass filters [75] to construct PDE based methods for mode decomposition

analysis. Inspired by our mode decomposition via iterative filtering [42, 70], we propose

a family of mode decomposition evolution equations (MoDEEs) in the present paper. The

construction of the MoDEEs is equivalent to the design of high order PDE based high-pass
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filters. The proposed MoDEEs yield band-frequency components (or modes) by recursively

extracting high frequency signals using high order PDEs. The MoDEEs behave like Fourier

transform and wavelet transform—the intrinsic modes generated from the MoDEEs have a

perfect reconstruction of the original function. In this sense, we also call the operation of the

MoDEEs a PDE transform. However, the proposed PDE transform is capable of decompos-

ing signals and images into various “functional” modes instead of pure frequency modes like

those in Fourier transform. By functional modes, we mean the components which share sim-

ilar band of frequencies or belong to same category, e.g., noise, edge and trend. But unlike

wavelet transform, the proposed PDE transform works like a series of low-pass and/or high-

pass filters in the spatial or time domain only. As such, the subsequent secondary processing

on each individual mode becomes robust and controllable, leading to desirable processing

effects. The Fourier pseudospectral method has been utilized in our numerical solution of

high order PDEs. This method is unconditionally stable and very efficient for the linearized

MoDEEs.

The present MoDEE approach is carefully validated on several benchmark testing cases

to demonstrate its ability, usefulness, and efficiency. We first consider the standard test of

mode separation of signals and functions. We have shown that the proposed MoDEEs are

able to effectively split high frequency adjacent modes. Such a result enables us to separate

noise from signals in many situation and perform many other secondary processing tasks.

The applications of the present MoDEEs are considered to image edge detection, feature ex-

traction, denoising and enhancement. The method is also applied to various types of medical

images obtained using MRI, MRA and CT.

The proposed MoDEEs can be extended in a number of ways. First, different forms of

MoDEEs can be constructed based on the proposed principles. This can be formulated as

a problem of variation for a given application. Additionally, the role of nonlinear PDEs

will be explored. Anisotropic diffusion type of schemes are expected to yield better results.

Moreover, computational methods for the nonlinear high order MoDEEs deserve a further

study. Stable scheme is crucial for the implementation of high order PDEs. Furthermore,

parameter optimization is an important issue in the MoDEE applications too. For example,

frequency localization achieved by increasing the highest order of the MoDEEs may be

desirable in certain applications, but may be undesirable when certain functional modes are

to be extracted. Finally, the MoDEE algorithm is in a best position, which has been partially

verified in this paper, due to its high accuracy and adaptive robustness, to be combined

with and optimized by other techniques and applications such as regression analysis, linear

programming and machine learning.
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