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Abstract. Learning from multi-relational domains has gained increas-
ing attention over the past few years. Inductive logic programming (ILP)
systems, which often rely on hill-climbing heuristics in learning first-order
concepts, have been a dominating force in the area of multi-relational
concept learning. However, hill-climbing heuristics are susceptible to lo-
cal maxima and plateaus. In this paper, we show how we can exploit the
links between objects in multi-relational data to help a first-order rule
learning system direct the search by explicitly traversing these links to
find paths between variables of interest. Our contributions are twofold:
(i) we extend the pathfinding algorithm by Richards and Mooney [12] to
make use of mode declarations, which specify the mode of call (input or
output) for predicate variables, and (ii) we apply our extended path find-
ing algorithm to saturated bottom clauses, which anchor one end of the
search space, allowing us to make use of background knowledge used to
build the saturated clause to further direct search. Experimental results
on a medium-sized dataset show that path finding allows one to consider
interesting clauses that would not easily be found by Aleph.

1 Introduction

Over the past few years there has been a surge of interest in learning from multi-
relational domains. Applications have ranged from bioinformatics [9], to web
mining [2], and security [7]. Typically, learning from multi-relational domains
has involved learning rules about distinct entities so that they can be classified
into one category or another. However, there are also interesting applications
that are concerned with the problem of learning whether a number of entities are
connected. Examples of these include determining whether two proteins interact
in a cell, whether two identifiers are aliases, or whether a web page refers to
another web page; these are examples of link mining [6]. A number of approaches
for exploiting link structure have been proposed; most of these approaches are
graph based, including SUBDUE [3], and ANF [10].

Our focus is on first-order learning systems such as ILP. Most of the ap-
proaches in ILP rely on hill-climbing heuristics in order to avoid the combina-
torial explosion of hypotheses that can be generated in learning first-order con-
cepts. However, hill-climbing is susceptible to local maxima and local plateaus,
which is an important factor for large datasets where the branching factor per
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Fig. 1. Search space induced by a saturated clause. The literal at the root of the graph
represents the head of the saturated clause. All the other literals in the graph are
literals from the body of the saturated clause. Bold arcs indicate a possibly interesting
path linking X to Y. Dotted arcs indicate parts of the search space that will not lead
to determining connectivity of X and Y.

node can be very large [5, 4]. Ideally, saturation-based search and a good scor-
ing method should eventually lead us to interesting clauses, however, the search
space can grow so quickly that we risk never reaching an interesting path in a rea-
sonable amount of time (see Figure 1). This prompted us to consider alternative
ways, such as pathfinding [12], to constrain the search space.

Richards and Mooney [12] realized that the problem of learning first-order
concepts could be represented using graphs. Thus, using the intuition that if two
nodes interact there must exist an explanation of the interaction, they proposed
that the explanation should be a connected path linking the two nodes. However,
pathfinding was originally proposed in the context of the FOIL ILP system,
which does not rely on creating a saturated clause. A seminal work in directing
the search in ILP systems was the use of saturation [14], which generalizes literals
in the seed example to build a bottom clause [8], which anchors one end of the
search space. Hence, we propose to find paths in the saturated clause.

The original pathfinding algorithm assumes the background knowledge forms
an undirected graph. In contrast, the saturated clause is obtained by using mode

declarations: in a nutshell, a literal can only be added to a clause if the literal’s
input variables are known to be bound. Mode declarations thus embed direc-
tionality in the graph formed by literals. Our major insight is that a saturated
clause for a moded program can be described as a directed hypergraph, which
consists of nodes and hyperarcs that connect a nonempty set of nodes to one
target node. Given this, we show that path finding can be reduced to reachabil-
ity in the hypergraph, whereby each hyperpath will correspond to a hypothesis.
However, we may be interested in non-minimal paths and in the composition of
paths. We thus propose and evaluate an algorithm that can enumerate all such
hyperpaths according to some heuristic.

2 The Saturated Clause and Hypergraph

The similarities between the properties of a saturated clause and a hypergraph
provide a natural mapping from one to the other. A directed hypergraph H is



defined by a set of nodes N and a set of hyperarcs H . A hyperarc has a nonempty
set of source nodes S ⊆ N linked to a single target node i ∈ N [1].

A saturated clause can be mapped to a hypergraph in the following way.
First, as a saturated clause is formed by a set of literals, it is thus natural to
say that each literal Li is a node in the hypergraph. Second, we observe that
each literal or node Li may need several input arguments, and that each input
argument may be provided from a number of other literals or nodes. Thus, if a
node Li has a set of input variables, Ii, each hyperarc is given by a set of literals
generating Ii and Li. Specifically, a mapping can be generated as follows:

1. Each node corresponds to a literal, Li.
2. Each hyperarc with N ′ ⊆ N nodes is generated by a set V of i− 1 variables

V1, . . . , Vi−1 appearing in literals L1, . . . , Li−1. The mapping is such that
(i) every variable Vk ∈ Ii appears as an output variable of node Lk

(ii) every variable Vk appears as argument k in the input variables, Ii, of Li.

Intuitively, the definition says that nodes in L1, . . . , LN ′
−1 with output variables

that generates input variables for node LN ′ , will be connected by hyperarcs. Note
that if node LN ′ has a single input argument, the hyperarc will reduce to a single
arc. Note also that the same variable may appear as different input arguments,
or that the same literal may provide different output variables.

Figure 2a shows an example saturated clause and resulting hypergraph. The
literal at the root of the graph, a(X, Y ), is the head of the saturated clause.
Other literals in the graph appear in the body of the saturated clause. All lit-
erals of arity 2 have mode +,−, that is, input and output. Literal e(F, B, D),
has arity 3 and mode +, +,−. Arcs in the figure correspond to dependencies
induced by variables, thus there is an arc between c(X, W ) and d(W, F ) because
d(W, F ) requires input variable W . On the other hand, there is no arc between
c(X, B) and f(C, B) since variable B is an output variable in both cases. All of
the literals except e(F, B, D) has a single input variable, hence those hyperarcs
consists of a single arc. However, there are four hyperarcs for node e(F, B, D);
they are d(W, F ), c(X, B), g(A, F ) and f(C, B).

Before we present the path finding algorithm, we need to perform a simple
transformation. The graph for a saturated clause is generated from the seed
example, L0. If the seed example has M arguments, it generates M variables,
which we transform as follows:

1. Generate M new nodes L′

j, where j = 1, ..., M , such that each node will have
one of the variables in L0. Each such node will have an output variable Vj .

2. Replace the edge between L0 and some other node induced by the variable
Vj by an edge from the new node L′

j.

Figure 2b shows this transformation for the hypergraph in Figure 2a. Path
generation thus reduces to finding all hyperpaths that start from nodes L′

1
, . . . , L′

M .

3 Algorithm

In directed graphs, a path π is a sequence of edges e1, e2, . . . , ek and nodes
n1, n2, . . . , nk, such that ei = (ni−1, ni), 1 ≤ i ≤ k. The shortest hyperpath
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Fig. 2. (a) Hypergraph of our example saturated clause where a(X,Y ) is the head of
the clause and ’+’ indicates input variable, ’−’ indicates output variable: a(X,Y ) ←
c(X, W ), c(X, B), b(Y,Z), b(Y, A), d(W,F ), e(Z, C), g(A,F ), e(F, B, D), f(C, B). (b)
Transformation of hypergraph (a) splits the head literal into its component arguments,
which then serve as different sources for the path finding algorithm. The number
preceeding each literal indicates the label that will be used for that literal in Figure 3.

problem is the extension of the classic shortest path problem to hypergraphs.
The problem of finding shortest hyperpaths is well known [1, 11]. We do not
require optimal hyperpaths; rather, we want to be able to enumerate all possible
paths, and we want to do it in the most flexible way, so that we can experiment
with different search strategies and heuristics.

We present our path finding algorithm through the transformed hypergraph
shown in Figure 2b. First, we want to emphasize that our goal is to generate paths
in the ’path finding’ sense, which is slightly different from the graph theoretical
sense. More precisely, a hyperpath will lead from a node to a set of other nodes in
the hypergraph (i.e. a path is a set of hyperpaths), each starting from different
source nodes, such that the two hyperpaths have a variable in common. For
example, in Figure 2b, nodes {1, 4} form a hyperpath, and nodes {2, 5, 8, 11}
form another hyperpath. Since nodes 4 and 11 share variable B, {1, 2, 4, 5, 8, 11}
form a path. Our algorithm generates paths as combinations of hyperpaths.

Given hypergraph H, which includes information for input and output vari-
ables for each node or literal, source nodes and desired maxdepth (a function
of clause length), we describe an algorithm that returns a list of paths connect-
ing all input variables. Figure 3 illustrates our path finding algorithm on the
example hypergraph in Figure 2b. The numbered nodes in Figure 3 correspond
to the labels of literals in Figure 2b. The depth of the graph is indicated on
the left hand side. Current paths are expanded at each depth if the node to be
expanded has its input variables bound. Otherwise, they are crossed out (e.g.,
P (2, 2) and P (3, 3)). V ariableSet(s, d) represents the set of variables reachable
from s at depth d. They are used to find common variables between variable sets
of different sources at a particular depth. Hyperpaths found so far are indicated
by P (d, n), where d indicates the depth and n is the node index at that depth.
Paths found are denoted P (d, n1) − P (d, n2).

For each source and each depth, starting at depth 1, the algorithm proceeds:
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Fig. 3. Illustration of path finding algorithm using mode declarations. The numbered
nodes in the graphs are the labels of literals in Figure 3.

1. Expand paths from previous depth, d − 1, only if input variables for the
newly expanded node, n, exist in V ariableSet(s, d−1) of the previous depth
and are bound by parents reachable at the current depth (i.e., all n’s input
variables are bound by parent nodes which contain n’s input variables).

2. Place all variables reachable from s at current depth d in V ariableSet(s, d).
3. Check V ariableSet of each source at the current depth for an intersection of

variables; for each variable in the intersection create paths from permutations
of all nodes containing the variable, including those from previous depths.

Depth 0 corresponds to the initial configuration with our 2 source nodes, 1
and 2, which we represent as hyperpaths P (0, 1) and P (0, 2) respectively. The
variables of source nodes 1 and 2, X and Y are placed into their respective vari-
able sets (V ariableSet(1, 0) and V ariableSet(2, 0)). We begin at Depth 1. Node
1 has two hyperpaths of size 2; one to node 3 (shown by hyperpath P (1, 1)) and
the other to node 4 (P (1, 2)). Node 2 can reach nodes 5 and 6 giving hyperpaths
P (1, 3) and P (1, 4). At this depth we can reach variables W and B from X , and
variables Z and A from Y , indicated by V ariableSet(1, 1) and V ariableSet(2, 1).
Since we do not have an intersection of the variable sets, we cannot build a path.

Depth 2 corresponds to expanding the hyperpaths of nodes 3, 4, 5 and 6.
Hyperpath P (1, 1) can reach node 7 allowing X to reach variable F . Hyperpath



P (1, 2) tries to expand to node 10, but this hyperpath only contains variable B,
whereas node 10 requires both F and B as input, hence P (2, 2) is not expanded
(crossed out). Hyperpath P (1, 3) can be expanded with 8, and hyperpath P (1, 4)
can be extended with node 9. At this point we have hyperpaths from the first
argument reaching variables W, B, F , and from the second argument reaching
Z, A, C, F . Variable F can be reached with hyperpaths starting at the nodes
that define variables X and Y , so we have a path. We thus find that if we
combine hyperpaths P (2, 1) and P (2, 4) we have our first path: 1, 3, 7, 9, 6, 2
(P (d, n1) − P (d, n2)).

At Depth 3, hyperpath P (2, 1) can reach node 10 by merging with hy-
perpath P (1, 2). This creates the hyperpath P (3, 1) which reaches variables
X, W, F, B, D. Hyperpath P (2, 3) is expanded to include node 11 but hyperpath
P (2, 4) cannot be expanded to include node 10 as it does not contain variable
B required as an input variable for node 10. Hence P (3, 3) is omitted. Now we
have two new hyperpaths that can be combined between themselves and with
older hyperpaths to generate new paths. Hyperpath P (3, 1) reaches variables
X, W, F, B, D. We can build a new path by connecting P (3, 1) with hyperpath
P (3, 2), as they both share variable B. P (3, 2) can also be connected to P (2, 4),
as they both share F . Hyperpaths P (3, 2) and P (1, 2) share variable B, so we
can generate the new path P (3, 2) − P (1, 2). For hyperpaths that are already
a path, as they touch X and Y , we can further extend them by merging them
with other hyperpaths, obtaining non-minimal paths.

4 Experimental Evaluation

Paths found can be used in a number of ways. One way is to use Richards
and Mooney’s method to perform search by generating a number of paths, and
then refining them [12, 15]. Alternatively, one can consider the paths found as a
source of extra information that can be used to extend the background knowledge
(i.e., add paths as background knowledge). In this case, paths can be seen as
intensional definitions for new predicates in the background knowledge.

We used the UW-CSE dataset by Richardson and Domingos [13] for a first
study of path finding on a heavily relational dataset. The dataset concerns learn-
ing whether one entity is advised by other entity based on real data from the
University of Washington CS Department. The example distribution are skewed
as we have 113 positive examples versus 2711 negative examples. Following the
original authors, we divided the data into 5 folds, each one corresponding to a
different group in the CS Department. We perform learning in two ways for our
control and experiment. In the first approach, we used Aleph to generate a set
of clauses. In the second approach, we used path finding to find paths, which are
treated as clauses. Further, we allow Aleph to decorate paths with attributes by
trying to refine each literal on each path.

We were interested in maximizing performance in the precision recall space.
Thus, we extended Aleph to support scoring using the f-measure. The search
space for this experiment is relatively small, so we would expect standard Aleph



Folds Aleph Path Finding
# Clauses Avg Clause Length # Clauses Avg Clause Length

Theory 2 4.5 2 5
AI 3 3.7 2 5.5

Graphics 3 4 2 6
Languages 1 3 3 7
Systems 1 4 3 5.7

Table 1. Theory Comparison

Folds Aleph Path Finding
Recall Precision F1 measure Recall Precision F1 measure

Theory 38 27 32 81 11 19
AI 63 9 16 75 12 21

Graphics 85 46 60 95 20 33
Languages 22 100 36 33 100 50
Systems 87 8 15 82 9 16

Table 2. Test Set Performance (results given as percentage)

search to find most paths. The two systems do find different best clauses, as
shown in Table 1 which show both number of clauses and average clause length,
including the head literal. Although most of the clauses found by Aleph are paths,
the path finding implementation does find longer paths that are not considered
by Aleph and also performs better on the training set.

Table 2 summarizes performance on the test set. This dataset is particularly
hard as each fold is very different from the other [13], thus performance on the
training set may not carry to the testing set. Both approaches perform similarly
on the Systems fold. The AI fold is an example where both approaches learn
a common rule, but path finding further finds an extra clause which performs
very well on the training set, but badly on the test data. On the other hand,
for the Languages fold both approaches initially found the same clause, but
path finding goes on to find two other clauses, which in this case resulted in
better performance. We were surprised that for both Graphics and Systems,
path finding found good relatively small clauses that were not found by Aleph.

5 Conclusions and Future Work

We have presented a novel algorithm for path finding in moded programs. Our
approach takes advantage of mode information to reduce the number of possible
paths and generate only legal combinations of literals. Our algorithm is based on
the idea that the saturated clause can be represented as a hypergraph, and the
use of hyperpaths within the hypergraph to compose the final paths. Muggleton
used a similar intuition in seed based search, using a heuristic to classify clauses:
a clause’s score depends on coverage and the distance the literals have to each
entity [8]. In contrast, our approach is independent of scoring function.

Preliminary results on a medium sized dataset showed that path finding
allows one to consider a number of interesting clauses that would not easily be



considered by Aleph. On the other hand, path finding does seem to generate
longer clauses, which might be more vulnerable to overfitting. In future work we
plan to combine paths using the approach in Davis et al. [4] as well as apply this
algorithm to larger datasets, where path finding is necessary to direct search.
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