
Mode Estimation of Probabilistic Hybrid Systems

Brian C. Williams, Michael Hofbaur and Thomas Jones
Massachusetts Institute of Technology, Rm. 37-381
77 Massachusetts Ave., Cambridge, MA 02139 USA

E-mail: {williams,hofbaur,jonest}@mit.edu

Paper submitted to IJCAI-01

Abstract

Model-based diagnosis and mode estimation ca-
pabilities excel at diagnosing systems whose
symptoms are clearly distinguished from nor-
mal behavior. A strength of mode estimation
in particular is its ability to track a system’s
discrete dynamics as it moves between differ-
ent behavioral modes. However, often failures
bury their symptoms amongst the signal noise,
until their effects become catastrophic.
We introduce a hybrid mode estimation system
that extracts mode estimates from subtle symp-
toms. First we introduce a modeling formalism,
called probabilistic hybrid automata (PHA),
that merge hidden Markov models (HMM) with
continuous dynamical system models. Second,
we introduce hybrid estimation as a method for
tracking and diagnosing PHA, by unifying tra-
ditional continuous state observers with HMM
belief update. Finally, we introduce a novel,
any-time, any-space algorithm for computing
approximate hybrid estimates. This approach
pursues the most promising estimates, based on
a statistical measure of the probability that an
estimate will turn out likely.

1 Introduction
The year 2000 was kicked off with two missions to
Mars, following on the heals of the highly successful
Mars Pathfinder mission. Just before the first mission,
Mars Climate Orbiter, reached Mars orbital insertion,
the operations team identified contradictory attitude es-
timates, one suggesting that the vehicle was coming in
at an elevation too low to successfully achieve insertion.
Unfortunately time did not allow the team to resolve
this inconsistency or to plan a reliable course correction
before insertion. The Climate Orbiter proceeded until
it burned up in the Martian atmosphere. After exten-
sive investigation it was found that a table used by the
navigation system, which describes the small forces im-
pinging upon the space vehicle, was mistranslated into

the wrong units. This bug introduced a small, but indis-
cernible failure that over a lengthy time period produced
the loss of the orbiter.

The problem of misinterpreting a system’s dynamics
was punctuated later in the year when the Orbiter’s sib-
ling, Mars Polar Lander, vanished without a trace. After
months of analysis the failure investigation team con-
cluded that the vehicle most likely crashed into Mars
because it incorrectly shutdown its engine at 50 meters
above the surface. This failure, like the orbiter, resulted
from a misinterpretation of the vehicle’s dynamics, in
this case due to a faulty software monitor.

The above case study is a dramatic instance of a com-
mon problem – increasingly complex systems are be-
ing developed whose failure symptoms are nearly indis-
cernible up until a catastrophic result occurs. To tackle
this problems we must address two issues. First, these
failures are manifest through a coupling between a sys-
tem’s continuous dynamics and its evolution through dif-
ferent behavior modes. Hence to address this problem we
need hybrid monitoring and diagnosis capabilities that
are be able to track a system’s behavior along both its
continuous state changes and its discrete mode changes.
Second, failures may generate symptoms that are ini-
tially on the same scale as sensor and actuator noise. To
discover these symptoms statistical methods need to be
applied to separate the noise from the true dynamics.

Looking to the literature, deductive mode estimation
techniques [Williams and Nayak, 1996] have been suc-
cessfully demonstrated on space systems that have the
ability to track a system as it moves through a series
of discrete behavioral modes. Mode estimation achieves
this function through a combination of logical deduction
and belief update on a hidden Markov model. However,
these and related methods fall short in that they pre-
sumes that a failure always manifests a symptom that
can be easily distinguished from system noise.

We address this challenge by extending deductive
mode estimation capabilities so that they reason about
continuous dynamics using classical methods for state
estimation. This paper focuses on one piece of this prob-
lem: the interplay between discrete probabilistic mode
changes and continuous dynamics. After a motivating
example, we discuss traditional methods for separately



estimating discrete and continuous behaviors. We then
introduce a modeling formalism, called probabilistic hy-
brid automata (PHA), that merges hidden Markov mod-
els with continuous dynamical system models. Third, we
introduce a method called hybrid mode estimation that
tracks and diagnoses PHA, by creating a hybrid HMM
observer that uses the results of continuous state esti-
mates to estimate a system’s mode changes, and that
coordinates the actions of a set of continuous state ob-
servers. Finally, we introduce a novel, any-time, any-
space algorithm for computing approximate hybrid es-
timates, that pursues the most “promising” estimates,
based on a statistical measure of the probability that an
estimate will turn out likely.

2 Example: BIO-Plex
Our application is the BIO-Plex Test Complex at NASA
Johnson Space Center, a five chamber facility for eval-
uating biological and physiochemical life support tech-
nologies. It is an artificial biosphere-type closed envi-
ronment which provides all the air, water, and most of
the food (up to 90%) for a crew of four on a continu-
ous basis. Plants are grown in plant growth chambers,
where they provide food for the crew and convert the
exhaled CO2 into the required O2. In order to main-
tain a closed-loop system, it is necessary to control the
resource exchange between the plant growth chambers
and the crew chambers. For the scope of this paper we
restrict our evaluation to the sub-system dealing with
CO2 control in the plant growth chamber (PGC) shown
below:
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m6m1 m2

m5
m3 m4

τ12

τ52

τ42τ32

τ23

τ22

τ62

τ11
τ21

τ31

τ41
τ51

τ61

The operational modes execute according to the follow-
ing typical sequence: The control system maintains an
artificial 20/4 hour day / night (m1) schedule for the
plants to obtain optimal growth and gas conversion. Sev-
eral operational modes are possible during the day phase.
Most of the time is spent in a plant growth mode (m2)
where the CO2 concentration is kept at the level of 1200

ppm, which is optimal for plant growth and gas conver-
sion. A flow controller maintains a continuous flow of
CO2 from a storage tank to compensate for the CO2
used for photo-synthesis at m2. The high CO2 concen-
tration in plant growth mode is not suitable for humans,
so the gas concentration must be lowered to 500 ppm
in case crew members request to enter the chamber, for
example, for harvesting, re-planting or other service ac-
tivities. The transition to the lower set-point is achieved
by turning the CO2 injection off (m3). The system then
maintains a set-point at 500 ppm (m4) and releases the
door. At this stage, crew members are allowed to enter
the PGC (τ42). Safety precaution requires the system to
inhibit gas injection via the pulse-injection path while
crew members are in the PGC (m5). The gas concentra-
tion is raised to the growth optimal set-point using full
continuous and pulse injection (m6) as soon as the crew
exits the chamber and closes the door (τ52).

The safety precaution at mode m5 highlights the
hybrid mode estimation task. Mode m5 differs from
mode m4 only by a slight change in CO2 balance, due
to the CO2 exhaled by the crew in the PGC. This
small quantitative difference is subject to detection by
a hybrid mode estimation scheme. Besides tracking
operational modes of the system it is the task of a
hybrid mode estimation scheme to detect faults such
as stuck-open or clogged injection valves, or a sud-
denly opened door. To handle these failures we ex-
tend classical hybrid modeling schemes[Henzinger, 1996;
Branicky, 1995] by introducing probabilistic mode tran-
sitions.

3 Traditional Estimation
To model a hybrid system, we start by using a hidden
Markov model (HMM) to describe discrete stochastic
changes in the system. We then fold in the continuous
dynamics, by associating a set of continuous dynamical
equations with each HMM state. To avoid confusion
in terminology, we refer to the HMM state as the sys-
tem’s mode, and reserve the term state to refer to the
state of a probabilistic hybrid automaton. We develop a
hybrid estimation capability by generalizing from tradi-
tional methods for estimating HMM states and continu-
ous state-variables.

3.1 Estimating HMMs
For an HMM, estimation is framed as a problem of belief-
state update, that is, the problem of determining the
probability distribution b(k) over modes M at time-step
k. The probability of being in a mode mi at time-step k
is denoted b(k)[mi].

Definition 1 A Hidden Markov Model (HMM) can be
described by a tuple 〈 M,Yd, Ud, PΘ, PT , PO〉. M,
Yd and Ud denote finite sets of feasible modes mi, obser-
vations ydi and control values udi, respectively. The ini-
tial state function, PΘ[mi], denotes the probability that
mi is the initial mode. The mode transition function,



PT (mi|ud, mj), describes the probability of transition-
ing from mode mj,(k−1) to mi,(k) at time-step k, given
a discrete control action ud,(k−1). The observation func-
tion PO(yd|mi) describes the probability that a discrete
value yd,(k) is observed at k, given mi,(k).

Standard belief update for an HMM is an incremen-
tal process that determines the belief-state b(k) at the
current time-step, given the current observations yd,(k),
the belief-state b(k−1) and discrete control action ud,(k−1)
from the previous time-step. Belief update is a two step
process. First, it uses the previous belief-state and the
probabilistic transition function to predict the belief-
state, denoted b(•k)[mi]. Then it adjusts this prediction
to account for the current observations at time-step k,
resulting in the final belief-state b(k)[mi]:

b(•k)[mi] =
∑

mj∈M
PT (mi|ud,(k−1), mj)b(k−1)[mj ] (1)

b(k)[mi] =
b(•k)[mi]PO(yd,(k)|mi)∑

mj∈M b(•k)[mj ]PO(yd,(k)|mj)
, (2)

The space of possible trajectories of an HMM can
be visualized using a Trellis diagram, which enumer-
ates all possible modes at each time-step and all transi-
tions between modes at adjacent time-steps. Belief up-
date associates a probability to each mode in the graph.

....
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3.2 Estimating Continuous Variables
The state of a continuous dynamic system is traditionally
estimated using a state observer. In this paper we use
a discrete-time Kalman filter[Gelb, 1974] that captures
the continuous dynamics based on a discrete-time model
of the dynamic system.

Definition 2 A discrete-time model (DTM) can be de-
scribed by a tuple 〈xc,yc,uc,vc, fc,gc〉. xc, yc, uc,
vc denote the finite sets of independent state-variables
xci, observed variables yci, control variables uci and
exogenous input variables vci, respectively. The state
transition function fc specifies the evolution of the
state-variables xc,(k+1) = fc(xc,(k),uc,(k),vc,(k)) and the
output function gc determines the observed variables
yc,(k) = gc(xc,(k),vc,(k)).

We assume that fc and gc can be adequately approx-
imated by a set of linear time-invariant difference equa-
tions:

xc,(k+1) = Axc,(k) +Buc,(k) + vc1,(k) (3)
yc,(k) = Cxc,(k) + vc2,(k), (4)

where the exogenous inputs are partitioned into vc1,(k)
and vc2,(k) to denote input disturbance and mea-
surement noise, respectively. We assume that these
disturbances can be modeled as a random, uncorre-
lated sequence with zero-mean and Gaussian distri-
bution and specify them by the covariance matrices
E[vc1,(k)vc1,(k)

T ] =: Q and E[vc2,(k)vc2,(k)
T ] =: R.

The disturbances and imprecise knowledge about the
initial state xc,(0) make it necessary to estimate the state
by its mean x̂c,(k) and covariance matrix P(k). We use
a Kalman filter for this purpose, which updates its cur-
rent state, like an HMM observer, in two steps. The
first step uses the model to predict the state x̂c,(•k)
and its covariance P(•k), based on the previous estimate
〈x̂c,(k−1),P(k−1)〉, and the control input uc,(k−1):

x̂c,(•k) = Ax̂c,(k−1) +Buc,(k−1) (5)

P(•k) = AP(k−1)A
T +Q (6)

The second step calculates the Kalman filter gain K(k)
and refines the prediction based on the current measure-
ment yc,(k), and produces the estimate:

K(k) = P(•k)CT [CP(•k)CT +R]−1 (7)
x̂c,(k) = x̂c,(•k) +K(k)[y(k) −Cx̂c,(•k)] (8)

P(k) = [P(•k)
−1 +CTRC]−1. (9)

The output of the Kalman filter is a sequence of
mean/covariance pairs 〈x̂c,(k),Pi,(k)〉 for xc,(k).

4 Probabilistic Hybrid Automata
Given this background, our task is to develop a state ob-
server for probabilistic hybrid automata (PHA). A PHA
is a hidden Markov model, encoded as a set of modes
that exhibit a continuous dynamical behavior, expressed
by difference equations. More precisely:

Definition 3 A probabilistic hybrid automaton PHA
can be described as a tuple 〈M,xc,yc, U ,Fc, Gc, T 〉.

• The finite set M denotes the modes mi ∈ M of the
automaton.

• xc and yc denote the set of independent contin-
uous state-variables and output variables, respec-
tively. The set of input variables U = uc ∪ ud ∪ vc

is partitioned into continuous control variables uc,
continuous exogenous variables vc, and discrete con-
trol variables ud. Components of continuous vari-
ables range over �, whereas components of discrete
variables range over finite domains D.

• The sets Fc and Gc associate with each mode
mi ∈ M functions fci and gci that govern the
continuous dynamics exhibited at mode mi by
xc,(k+1) = fci(xc,(k),uc,(k),vc,(k)) and yc,(k) =
gci(xc,(k),vc,(k)).

• T specifies for each mode mi,(k) a set of transi-
tion functions Ti = {τi1, . . . , τin}. Each transi-
tion function τij has an associated guard condition



Cij(xc,(k),ud,(k)) and specifies the probability distri-
bution over target modes ml,(k+1) together with an
assignment for xc,(k+1).

The figure below shows a transition function for
a mode m1 with T1 = {τ11, τ12}. The transi-
tion function τ12 specifies a transition to mode m3
with probability p3 or to mode m4 with probabil-
ity p4, whenever its guard condition C12 is satisfied.

m1
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m4

τ11
τ12

p1

p2

p3

p4

C 11
C 12

The probabilistic transition function adds expressiveness
and provides an elegant way to model failure transitions.
Furthermore, allowing the mode transitions to be trig-
gered by the dynamic behavior, i.e. by a state-variable
reaching the domain-boundary for a mode, provides a
significant advantage to other hybrid systems diagnosis
schemes[McIlraith et al., 1999] which were restricted to
non-autonomous mode transitions.

The hybrid state X(k) of a probabilistic hybrid
automaton at time-step k is specified by the tuple
〈m(k),xc,(k)〉, where m(k) ∈ M specifies the mode of the
automaton and xc,(k) specifies the values of the state-
variables. We use the shorter notation mi,(k) to denote
m(k) = mi.

A probabilistic hybrid automaton is a model for a
plant with inputs uc, ud and vc, output yc and internal
hybrid state 〈m,xc〉. The behavior of the PHA, called
the trajectory, is represented by the sequence of hybrid
states t = {X(0),X(1), . . . ,X(k)}

5 Hybrid Estimation
To detect the onset of subtle failures, such as Mars Cli-
mate Orbiter’s conversion error in its small forces table,
it is essential that a monitoring and diagnosis system be
able to accurately extract the hybrid state of a system
from a signal that may be hidden among disturbances,
such as measurement noise. This is the role of a hybrid
observer. More precisely:

Hybrid Estimation Problem: Given a
probabilistic hybrid automaton PHA for a sys-
tem, a sequence of observations (y(0), . . . ,y(k)),
the history of control inputs (u(0), . . . ,u(k−1)),
and statistical measures of exogenous inputs v,
generate the most likely hybrid state at time-
step k.

A hybrid state estimate X̂(k) consists of a continuous
state estimate together with the associated mode. We
denote this by the tuple 〈mi, x̂c,(k),P(k)〉 where x̂c,(k)
specifies the mean and P(k) the covariance for the state-
variables xc,(k). The probability of being in a hybrid
state X is specified by the hybrid belief-state h(k)[X].
This allows us to denote the likelihood h(k)[X̂i] of esti-
mate X̂i,(k) = 〈mi, x̂ci,(k),Pi(k)〉.
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Figure 1: Information flow within the hybrid observer

The hybrid observer is composed of two components
(see Figure 1). The first generalizes from the Kalman fil-
ter, and is responsible for maintaining continuous state
variable estimates. The second generalizes from the
Markov observer, and is responsible for maintaining hy-
brid mode estimates. In the next two sections we specify
how the Kalman filter uses information from the Markov
observer to guide continuous state estimation, and how
the Markov observer uses results from the Kalman filter
to guide mode estimation.

5.1 Continuous State Estimation
Continuous state estimation is performed by a bank of
Kalman filters which track the set of trajectories under
consideration. The filter bank provides a state-variable
estimate 〈x̂i,(k), x̂i,(•k),Pi,(k),Pi,(•k)〉 for each trajectory
as input to mode estimation. Mode estimation controls
the state estimation by specifying X(k−1), the fringe of
the trajectories that the Kalman filters should track.
This allows us to dynamically invoke a Kalman filter
whenever a transition occurs and generalizes the concept
of multi-model estimation[Stengel, 1994]. [Rinner and
Kuipers, 1999] also dynamically adapt an observer bank,
but are used to support mixed qualitative/quantitative
estimation.

5.2 Mode Estimation
To extend HMM-style belief update to hybrid mode esti-
mation, we must account for two ways in which the con-
tinuous dynamics influences the system’s discrete modes.
First, mode transitions depend on changes in state vari-
ables, as well as discrete events injected via ud. More
generally, modes of continuous devices are often defined
to apply over a region of the device’s state space. A mode
transition occurs whenever the state variables reach this
region’s boundary. To account for this influence we mod-
ify PT to depend on continuous state-variables xc. Sec-
ond, the observed variables y include real-valued vari-
ables yc. These continuous observations offer important
evidence that can significantly shape the hybrid state
probabilities. For example, suppose a valve is presumed
closed, but a slow trickle is observed. If it is measured
for only a brief moment, it can be accounted for by noise,
but as the time increases it becomes more likely that the
valve is open. To account for this influence we modify
PO to depend on xc.

A major difference between hybrid mode estimation
and an HMM-style belief-state update is, however, that



hybrid mode estimation tracks a set of trajectories,
whereas standard belief-state update aggregates trajec-
tories. This difference is reflected in the first of the fol-
lowing two recursive functions which define hybrid mode
estimation:

h(•k)[X̂i] = PT (Clj |x̂cl,(k−1),ud,(k−1))τlj [mi]h(k)[X̂l]

h(k)[X̂i] =
h(•k)[X̂i]PO(y(k)|X̂i,(k))∑
j h(•k)[X̂j ]PO(y(k)|X̂j,(k))

Once again, h(•k)[X̂i] denotes an intermediate hybrid
belief-state, predicted from the previous belief-state us-
ing the transition probabilities. This operation deter-
mines for each X̂j,(k−1) the possible transitions, thus
specifying the set X(k−1) of candidate trajectories to be
tracked by the continuous state estimation. h(k)[X̂i] de-
notes the final hybrid belief-state, adjusted to account
for the current observations at time-step k.

The next two subsections complete the story by out-
lining techniques for calculating the hybrid probabilistic
transition function PT (Clj |x̂cl,(k−1),ud,(k−1)) and the hy-
brid probabilistic observation function PO(y(k)|X̂j,(k)).

Hybrid Transition Function
A transition τ includes a condition C, called a guard, that
must be satisfied, in order for the transition to be taken.
Given that the automaton is in mode ml, the probability
that it will take a transition to mi is the probability that
its guard is satisfied, that is, PT (Clj |x̂cl,(k−1),ud,(k−1)),
times the probability of transition τij [mi], given that the
guard Clj is satisfied.

For a probabilistic hybrid automata, the guard Clj is a
constraint over continuous variables xc and the discrete
control inputs ud. Clj is of the form [b− ≤ qclj(xc) ≤
b+] ∧ qdlj(uc), where qclj is a vector function, b− and
b+ denote two vectors, and qdlj is a propositional logic
formulae. Assuming independence of xc and ud allows
us to determine both constraints separately.

The probability P (Cclj) that the continuous constraint
b− ≤ qclj(xc) ≤ b+ is satisfied, can be expressed by the
volume integral over the multi-variate Gaussian distri-
bution of the state-variable estimate {x̂lc,Pl}:

P (Cclj) =
|Pl|−1/2

(2π)n/2

∫
Q

∫
e−

(x−x̂lc)T P−1
l

(x−x̂lc)

2 dx1 . . . dxn

where Q ⊂ �n denotes the domain specified by the con-
tinuous constraint b− ≤ qclj(xc) ≤ b+. Routines for
computing this cumulative distribution are provided by
a variety of statistical and numerical packages, such as
Splus or Matlab. An open research issue is to compute
the volume integral efficiently, through a combination of
restricting and approximating the form of q.

The discrete constraint qdlj(uc) has probability
P (Cdlj) = 1 or P (Cdlj) = 0, according to its truth value.
Independence of the continuous state and the discrete
input leads to

PT (Clj |x̂cl,(k−1),ud,(k−1)) = P (Cclj)P (Cdlj) (10)

Hybrid Observation Function
The Kalman filters provide us with an estimate of the
continuous state-variables x̂ci,(k). From this estimate it
is straightforward to calculate PO(y(k)|X̂i,(k)) using the
standard relation for a multi-variable Gaussian proba-
bility density function:

PO(∼) =
1

(2π)n/2|Si,(k)|1/2 e
−(rT

i,(k)S
−1
i,(k)ri,(k))/2

, (11)

where ri,(k) = y(k) − Cix̂ci,(•k) denotes the measure-
ment residual. The associated covariance matrix Si,(k) =
CiPi,(•k)CT

i + R accounts for the estimation error in
x̂i,(•k).

6 Tracking “Promising” Trajectories
Tracking all possible trajectories of a system is almost
always intractable because the number of trajectories be-
comes too large after only a few time steps. Hybrid be-
lief update adds an additional computational burden to
trajectory tracking, by introducing a Kalman filter for
each trajectory that calculates equations (5-9) at each
step. In order to ensure accurate numerical estimates,
these filters must operate in the real-time loop, at the
controller’s sampling rate. This rate is in contrast to
discrete mode estimation methods, such as Livingstone
[Williams and Nayak, 1996], that can adequately operate
at time scales of seconds.

We address this problem with an any-time, any-space
solution that dynamically adjusts the number of trajec-
tories tracked in order to fit within the processor’s com-
putational and memory limits. [de Kleer and Williams,
1989] successfully introduced a focusing approach for
model-based diagnosis that enumerates the modes of a
system down to a threshold based on a mode’s a priori
probability. This approach is successful because a small
subset of the set of possible modes of a system is typ-
ically sufficient to cover most of the probability space.
For hybrid estimation we adopt an analogous scheme
that enumerates a focussed subset of the possible trajec-
tories, based on what will fit within the available proces-
sor resources.

The key difference in our approach, however, is that
we select those trajectories for which we know with high
confidence that their probability will be high. This is
different from selecting the trajectories with high a pri-
ori probability. The distinction is due to the fact that
estimates are inherently uncertain, including probability
estimates, and that this uncertainty greatly impacts our
confidence in a probability estimate. However, an a pri-
ori probability specifies only an expected probability, it
does not include the influence of this uncertainty.

7 Computing High Confidence
Probabilities

Rather than ranking based on the expected probabil-
ity P (ti) = h(k)[X̂i] of the tracked trajectory ti =
〈. . . , X̂i,(k)〉, our solution is to rank based on the greatest



probability, s(k)[X̂i], for which we have high confidence.
First we introduce probability r, which quantifies our
term “high confidence”; for example, we might select
r = 97.5%. We then define s(k)[X̂i] as the highest prob-
ability for which P (ti) > s(k)[X̂i] with confidence r. In
other words, we know from this relation that the proba-
bility of trajectory ti is at least s(k)[X̂i], with confidence
r.

To compute s(k)[X̂i] we need the probability density
function (PDF) that describe the uncertainty in P (ti).
We follow the standard practice of approximating the
PDF by a Gaussian distribution with mean h(k)[X̂i] and
approximated variance σ2

hi
[ISO, 1995]. Assuming the

reasonable confidence r = 97.5% leads then to the simple
relationship s(k)[X̂i] = h(k)[X̂i] − 2σhi

:

r = 97.5%
2σ

ih
(k) [     ]bf

s(k)[ ] b(k)[ ] P[ ]

iX̂

iX̂ iX̂ it

Ranking and Tracing Trajectories
To decide which trajectories to track, we rank trajecto-
ries ti based on the high confidence probability, s(k)[X̂i],
rather than expected probability. The following figure il-
lustrates such a ranking for trajectories terminating on
5 modes. The ranking {t1, t2, t3, t4, t5} reflects the high
confidence in t1, which is ranked highest, despite the
fact that its hybrid belief state h(k)[X̂i] is lower than the
hybrid belief states for t2 and t3.
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Our focused hybrid state estimation system then se-
lects the first l trajectories to be tracked and updates
the corresponding belief-states only. The value of l de-
pends on the available computing resources. The sum
ς =

∑l
i=1 s(k)[X̂i] indicates the portion of the probabil-

ity space that is covered by our focused hybrid monitor-
ing technique with 97.5% confidence. As the confidence
in the estimates increases, for example due to a long
observation horizon, it is possible that a small set of
trajectories account for the majority of the probability
space.

Computing Distributions of Mode Probability
To complete the development of our ranking strategy
we need to compute the uncertainty in the belief state,
described by its variance σ2

hi
. Space limits preclude a

detailed explanation, but we summarize the results for

completeness. Variance is computed based on the func-
tional relationship h(k)[X̂i] = fi(· · · ,yc, · · ·) between the
uncertain measurements and the belief-state, as specified
in the hybrid belief state update equations. In particu-
lar:

σ2
hi

=
m∑

j=1

(
∂fi

∂ycj

)2

σ2
ycj

+2
m∑

j=1

m∑
l=i+1

∂fi

∂ycj

∂fi

∂ycl
σycj ,ycl

, (12)

{yc1, . . . , ycm} denotes the components of the measure-
ment vector yc. The associated variances and covari-
ances are σ2

ycj
and σ2

ycj ,ycl
, respectively, and are drawn

from the covariance matrix Si,(k).
The sensitivities ∂fi/∂ycj are computed according to:

∂fi

∂ycj
∝

∂POi

∂ycj

∑
j hjPOj − POi

∑
j hj

∂POj

∂ycj[∑
j hjPOj

]2 , (13)

where POi and hi are abbreviations of PO(y(k)|X̂i,(k))
and h(k)[X̂i] respectively. While this expression seems
complex, we can calculate it efficiently by exploiting the
intermediate results from the calculation of PO, accord-
ing to: [

∂POi

∂yc1
, . . . ,

∂POi

∂ycm

]
= POiS−1

i,(k)ri,(k). (14)

8 Example continued
We demonstrate hybrid mode estimation on two oper-
ational conditions: (1) detection of crew entry into the
PGC (m4 → m5) and (2) a lighting failure (m10) that
reduces the light intensity in the PGC by 20%. The dy-
namic behavior of the CO2 concentration (in ppm) at the
modes m4 and m5 is governed by (1 time-step represents
1 minute):

m4 : xc,(k+1) = xc,(k) + 11.8373[f(xc,(k)) + uc,(k)]
m5 : xc,(k+1) = xc,(k) + 11.8373[f(xc,(k)) + uc,(k) + hc]

f(xc,(k)) = −1.4461 · 10−2
[
72.0 − 78.89e−

xc,(k)
400

]
,

where the term hc accounts for the CO2 exhaled by the
crew members. The noisy measurement of the transient
behavior of the controlled CO2 concentration is given
in the left graph of the figure below. The crew enters
the PGC at time-step 900 and cause an adaption of the
gas injection. Hybrid mode estimation filters this noisy
measurement and detects the mode change at k = 903.
The light fault is then injected at time-step 1100 and
diagnosed 9 time-steps later at at k = 1109. The right
graph shows this discrimination among the modes m4,
m5 and m10 extracted from the measurement (numbers
on the vertical axis denote the mode numbers).
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9 Implementation and Discussion
The implementation of our hybrid mode estimation
scheme is written in Common LISP. The hybrid mode
estimator uses a PHA description and performs hybrid
mode estimation, as outlined above. Although designed
to operate online, we used the estimator to determine
the hybrid state of the PGC based on input data gath-
ered from simulating a subset of NASA JSC’s CONFIG
model for the BIO-Plex system.

In this paper we used Kalman filters, due to their
simplicity and computational efficiency. However, our
framework easily extends to other observer types that
provide mean and variance for the state-variables. Other
appropriate observers include extended Kalman filters
and nonlinear filtering methods.

Our larger objective is to extend PHAs to handle con-
current automata, as well as discrete constraints, thus
subsuming discrete, concurrent mode-estimation meth-
ods [Williams and Nayak, 1996]. This requires an exten-
sion of best first enumeration methods to high confidence
probabilities.
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