
Progress In Electromagnetics Research B, Vol. 19, 151–176, 2010

MODE EXPANSION IN TIME DOMAIN FOR CONICAL
LINES WITH ANGULAR MEDIUM INHOMOGENEITY

A. Y. Butrym and B. A. Kochetov

Department of Theoretical Radio Physics
Karazin Kharkov National University
4, Svobody sq., Kharkov 61077, Ukraine

Abstract—A new modification of the method of Mode Expansion in
Time Domain is proposed for studying transient signals propagation
in conical lines (including multi-connected ones) with inhomogeneous
and time-dependent medium. The method is based on expanding the
fields in spherical coordinate system into series of angular dependent
modes with mode amplitudes being governed by a system of coupled
evolutionary equations. The medium parameters (permittivity and
permeability) are taken in a factorized form as a product of angular
dependent factor and a factor that depends on time and radial
coordinate. The introduced method can be applied to analysis of
propagation and radiation in conical-like antennas with dielectric
filling.

1. INTRODUCTION

Recently, a great interest has grown in studying transient electromag-
netic phenomena with ultrawideband and ultra-short impulse signals.
Due to very large frequency band of such signals using Frequency Do-
main (FD) methods becomes ineffective. That is why a number of
Time Domain (TD) methods for solving transient problems emerge.
Some of them are based on shifting known from FD methods into TD.
Among them is the mode expansion concept. In regular structures the
fields can be presented as a sum of independent modes [1]. This pre-
sentation can be directly transferred to the time domain as long as the
modes are frequency independent, which is the case for homogeneous
media only. In the case of transverse inhomogeneous but longitudi-
nally regular structures the modes defined in FD become frequency
dependent and thus cannot be directly converted into TD formulation.

Corresponding author: A. Y. Butrym (abutrym@yandex.ru).



152 Butrym and Kochetov

In this case the transition between FD and TD is not straightforward,
and the consideration should be made completely in the TD.

The most well-known and universal method in TD that can be
applied to the considered inhomogeneous regular structures is the
method of Finite-Differences in Time-Domain (FDTD) [2–4]. Since
FDTD is a completely numerical method any physical analysis of
obtained results is rather complicated. Also, FDTD requires a lot
of computational resources especially in case of 3D problems. That
is why a more sophisticated method that can make use of structure
regularity would be beneficial.

As a more sophisticated alternative the methods based on mode
decomposition can be used. For the first time TD method was
proposed by Kisunko in [5] for studying transient fields in homogeneous
multi-connected waveguides with Perfect Electric Conductor (PEC)
walls. The main idea of the method consists in presenting the sought
fields in a waveguide as expansion over independent uncoupled modes
with mode amplitudes being governed by some evolutionary equations
describing evolution of the waveforms with propagation. Later,
Tretyakov has formalized and advanced this approach as Mode Basis
Method (MBM) or Evolutionary Approach to Electromagnetics [6].
In [7], the MBM was formulated for analysis of transient oscillations
in a cavity with homogeneous time-dependent medium. Then in
[8], the MBM was formulated for transient fields in a waveguide
filled with longitudinally inhomogeneous and time-dependent medium
(ε = ε(z, t), µ = µ(z, t)). Such TD methods were used for studying
transient oscillations in cavities filled with various media [9–15]. Mode
expansion in TD for studying transient problems for cylindrical single-
and multi-connected waveguides has also been used in [16–21].

If one moves the side walls of a cylindrical waveguide far away
then it is possible to consider such a waveguide as free space. At that
the discrete spectrum turns into a continuous one, and the fields are
presented as integrals over Bessel modes. In such a way an impulse
wavebeams in the free space or in time-dependent layered medium can
be considered [22–25].

The mode expansion in time domain method has been applied
to guiding wave problems in several possible geometries by Borisov,
namely for cylindrical, conical, and sectorial waveguides [26–29]. A
similar technique for spherical coordinate system in the free space,
radial inhomogeneous medium, and conical lines has been used later
by Shlivinski and Heyman [30]. The MBM in spherical coordinate
system for time-dependent radial inhomogeneous medium (ε = ε(r, t)
and µ = µ(r, t)) was considered in [31, 32].

Further generalization should be aimed at considering both time-
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radial and angular inhomogeneity along with PEC conical lines. Such a
problem in cylindrical waveguides has been studied by authors in [20].
Due to transverse inhomogeneity the modes are coupled in a waveguide,
but in spite of that the mode decomposition converges very rapidly in
this case [21]. In this paper we are going to apply a similar technique
to the most general problem in spherical coordinates described above,
i.e., with medium inhomogeneity of kind ε(~r, t) = ε‖(r, t)ε⊥(θ, ϕ) and
µ(~r, t) = µ‖(r, t)µ⊥(θ, ϕ). The proposed technique has been first
reported in [33].

The method of mode expansion in time domain in spherical
coordinates was applied to study impulse wave radiation by a bi-
conical antenna in [34]. The method proposed in this paper gives
the possibility to apply, similar to [34] technique, to analysis of
transient radiation of a more general class of ultrawideband antennas
like dielectric-filled TEM-horns, which will be the subject of further
publications.

2. MODE BASIS IN SPHERICAL COORDINATE
SYSTEM

2.1. Problem Statement

The problem geometry is shown in Fig. 1. We consider regular conical
lines consisted of several or none PEC cones with a common apex. The
cones cut multiple-connected domains on a sphere. The domains are
bounded by the contours L1, L2, . . .. The space in between the PEC
cones is filled with medium described by constitutive relations that
can be inhomogeneous, non-stationary and nonlinear. The waveforms

Figure 1. The problem geometry.
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of transient electromagnetic fields excited by some specified electric
charges and currents are of interest. The sought electromagnetic fields
are governed by Maxwell equations:

rot ~H = ∂t
~D + ~Jσ + ~J0, −rot ~E = ∂t

~B,

div ~D = ρσ + ρ0, div ~B = 0.
(1)

Here ~Jσ and ρσ are the conductivity current and charge densities; ~J0

and ρ0 are the impressed electric currents and charges. The Maxwell
equations should be complemented with constitutive equations that
can be presented in the following form:

~D
(

~E
)

= ε0
~E + ~P

(
~E
)

= ε0ε~E + ~P ′
(

~E
)

,

~P
(

~E
)

= ε0α~E + ~P ′
(

~E
)

, ε = 1 + α;

~B
(

~H
)

= µ0

(
~H+ ~M

(
~H
))

= µ0µ ~H+ µ0
~M′

(
~H
)

,

~M
(

~H
)

= χ ~H+ ~M′
(

~H
)

, µ = 1 + χ.

(2)

ε0 and µ0 are the free-space permittivity and permeability respectively.
These equations describe isotropic nondispersive medium that can

be inhomogeneous, nonstationary, and nonlinear. The polarization and
magnetization are split into a linear part that can be presented by
permittivity and permeability of the following factorized form:

ε(~r, t) = ε‖(r, t) ε⊥(θ, ϕ);
µ(~r, t) = µ‖(r, t) µ⊥(θ, ϕ); ~r = {r, θ, ϕ} (3)

and the rest of the polarization and magnetization that contains
nonlinearity and not accounted inhomogeneity of a more general form;
the latter is included into consideration as induced currents that
depend on the total field (the primed terms in (2)). These induced
sources are joined with the conductivity and impressed currents and
charges. This yields the total electric and magnetic (with hats)
currents and charges defined as follows:

~J = ∂t
~P ′+ ~Jσ+ ~J0, ρ = −div ~P ′+ρσ+ρ0, div ~J +∂tρ = 0;

~̂J = µ0∂t
~M′, ρ̂ = −µ0div ~M′, div ~̂J + ∂tρ̂ = 0.

(4)

Each of the applied, conductive, and induced currents satisfies the
continuity equation given above.

Substitution of constitutive relations (2)–(4) into Maxwell
equation (1) results in:

rot ~H = ∂t

(
ε0ε‖ε⊥~E

)
+ ~J , −rot ~E = ∂t

(
µ0µ‖µ⊥ ~H

)
+ ~̂J . (5)

div
(
ε0ε‖ε⊥~E

)
= ρ, div

(
µ0µ‖µ⊥ ~H

)
= ρ̂. (6)
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On the PEC cones the following boundary conditions are satisfied:

~l · ~E
∣∣∣
L

= 0; ~n · ~H
∣∣∣
L

= 0; ~r0 · ~E
∣∣∣
L

= 0 (7)

where ~n is the normal to the cone; ~l is the unit tangent vector of the
contour L; ~r0 is the ort of the radial coordinate (see Fig. 1).

2.2. Radial-angular Form of Maxwell Equations

Let us split all the vector quantities into an angular 2D vector and a
radial component:

~E = ~E +~r0Er; ~H = ~H +~r0Hr; ~J = ~J +~r0Jr; ~̂J = ~̂J +~r0Ĵr (8)

We also split the divergence and curl operators into angular and radial
derivatives, at which the following vector operator will be used:

∇⊥ = ~θ0∂θ + ~ϕ0
1

sin θ
∂ϕ (9)

This operator acts by usual rules of vector calculus, though the orts
in spherical coordinate system ~r0, ~θ0 and ~ϕ0 are dependent on angular
variables that should be accounted for when applying the operator. In
Appendix A, we give the coordinate form of different vector operations
that involve operator (9).

Divergent Equation (6) written in angular-radial form yields:

r−2∂r

(
r2ε0ε‖ε⊥Er

)
+ r−1∇⊥ ·

(
ε0ε‖ε⊥ ~E

)
= ρ

r−2∂r

(
r2µ0µ‖µ⊥Hr

)
+ r−1∇⊥ ·

(
µ0µ‖µ⊥ ~H

)
= ρ̂

(10)

Projection of curl Equation (5) onto the radial direction results in:

r−1∇⊥ ·
[
~H × ~r0

]
= ∂t

(
ε0ε‖ε⊥Er

)
+ Jr

−r−1∇⊥ ·
[
~E × ~r0

]
= ∂t

(
µ0µ‖µ⊥Hr

)
+ Ĵr

(11)

Angular part of curl Equation (5) can be written as follows:

−r−1
(
∂r

(
r
[
~H × ~r0

])
+ [~r0 ×∇⊥Hr]

)
= ∂t

(
ε0ε‖ε⊥ ~E

)
+ ~J

r−1
(
∂r

(
r
[
~E × ~r0

])
+ [~r0 ×∇⊥Er]

)
= ∂t

(
µ0µ‖µ⊥ ~H

)
+ ~̂J

(12)

Equations (10) and (11) can be used for elimination of the radial field
components from Equation (12). In this way, we obtain the following
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second order equations that contain angular components only:
[
~r0 × ε−1

⊥ ∇⊥µ−1
⊥

]∇⊥ · µ⊥ ~H

= r−1µ−1
‖ ∂rr

3µ‖
{

∂t

(
ε0ε‖ ~E

)
+ r−1ε−1

⊥ ∂r

[
r ~H × ~r0

]}

+ε−1
⊥ µ−1

‖
{

r−1∂r

(
r3µ‖ ~J

)
+ r

[
~r0 ×∇⊥µ−1

⊥ µ−1
0 ρ̂

]}
(13)

[
µ−1
⊥ ∇⊥ε−1

⊥ × ~r0

]∇⊥ · ε⊥ ~E

= r−1ε−1
‖ ∂rr

3ε‖
{

∂t

(
µ0µ‖ ~H

)
+ r−1µ−1

⊥ ∂r

[
~r0 × r ~E

]}

+µ−1
⊥ ε−1

‖
{

r−1∂r

(
r3ε‖ ~̂J

)
+ r

[∇⊥ε−1
⊥ ε−1

0 ρ× ~r0

]}
(14)

∇⊥µ−1
⊥ [~r0 ×∇⊥] · ~E

= −µ0r
2∂tµ‖

{
r−1∂r

(
r ~H

)
+ ε0∂t

(
ε‖ε⊥

[
~r0 × ~E

])}

−r
{

µ0r∂tµ‖
[
~r0 × ~J

]
+∇⊥µ−1

⊥ Ĵr

}
(15)

∇⊥ε−1
⊥ [∇⊥ × ~r0] · ~H

= −r2∂tε0ε‖
{

r−1∂r

(
r ~E

)
+ µ0∂t

(
µ‖µ⊥

[
~H × ~r0

])}

−r
{
∇⊥ε−1

⊥ Jr + rε0∂tε‖
[
~̂J × ~r0

]}
(16)

In the expressions as ∇⊥µ−1
⊥ . . ., we assume that multiplication has

priority over differentiation.
In elimination of the radial components we make essential use of

the factorized form of the permittivity and permeability. For example,
in order to derive Equation (14) we apply operator r−2∂r

(
r2ε‖ε⊥ . . .

)
to the second equation in (12), at which the term containing Er is
transformed as follows:

r−2∂r

(
r2ε‖ε⊥ [~r0 ×∇⊥Er]

)
= ε⊥r−2∂r

(
r2ε‖ [~r0 ×∇⊥Er]

)

= ε⊥
[
~r0 ×∇⊥r−2∂rr

2ε‖Er

]
= ε⊥

[
~r0 ×∇⊥r−2∂rr

2ε−1
⊥ ε⊥ε‖Er

]

= ε⊥
[
~r0 ×∇⊥ε−1

⊥
(
r−2∂rr

2ε⊥ε‖Er

)]

The expression in round brackets is then substituted from the first of
Equation (10).

The boundary conditions (7) in the radial-angular form look as
follows:

~l · ~E
∣∣∣
L

= 0, ~n · ~H
∣∣∣
L

= 0,

∇⊥ ·
(
ε⊥ ~E

)∣∣∣
L

= 0, ∇⊥ ·
[
~H × ~r0

]∣∣∣
L

= 0
(17)



Progress In Electromagnetics Research B, Vol. 19, 2010 157

In deriving the second pair of these conditions we exploit
Equations (10), (11) and the fact that there are no impressed charges
and impressed radial currents on the PEC surfaces [8].

2.3. Angular Derivatives Linear Operators for the
Eigenvalue Problems

Let us unite the transverse vectors ~E and ~H into one 4-dimensional
vector X = col ( ~E, ~H). Then let L4

2 (S, γ) be the Hilbert space of such
4-dimensional real functions that satisfy boundary conditions (17) and
are square-integrable with weight γ = {ε⊥, µ⊥}. The dot product in
L4

2 (S, γ) is defined as integral over the full sphere (dS is a solid angle):

(X1, X2) = 1
4π

∫
S

(
ε⊥ ~E1 · ~E2 + µ⊥ ~H1 · ~H2

)
dS (18)

The normalizing coefficient 4π is the full solid angle and is introduced
here for consistency with traditional normalization of spherical
harmonics.

The set of Equations (13)–(16) complemented with boundary
conditions (17) can be written in operator form. To this aim let’s
extract from Equations (13) and (15) the angular derivatives and
combine them into a linear operator WH : D (WH) → L4

2 (S, γ) defined
as:

WH =
(

0
[
~r0 × ε−1

⊥ ∇⊥µ−1
⊥

]∇⊥ · µ⊥
∇⊥µ−1

⊥ [~r0 ×∇⊥] · 0

)

D(WH)=
{
X∈L4

2 (S, γ) :WHX∈L4
2 (S, γ) ,~l · ~E

∣∣∣
L
=0,~n · ~H

∣∣∣
L
=0

} (19)

In a similar way Equations (14) and (16) yield another linear operator
WE : D (WE) → L4

2 (S, γ):

WE =
(

0 ∇⊥ε−1
⊥ [∇⊥ × ~r0] ·[

µ−1
⊥ ∇⊥ε−1

⊥ × ~r0

]∇⊥ · ε⊥ 0

)

D(WE)=
{

X∈L4
2 (S, γ) :WEX∈L4

2 (S, γ) ,∇⊥ ·
(
ε⊥ ~E

)∣∣∣
L
=0,

∇⊥ ·
[
~H × ~r0

]∣∣∣
L
=0

}
(20)

Thus, the result of action of these operators is defined as:

WHX =
(

0
[
~r0 × ε−1

⊥ ∇⊥µ−1
⊥

]∇⊥ · µ⊥
∇⊥µ−1

⊥ [~r0 ×∇⊥] · 0

)(
~E
~H

)

=
( [

~r0 × ε−1
⊥ ∇⊥µ−1

⊥
]∇⊥ · µ⊥ ~H

∇⊥µ−1
⊥ [~r0 ×∇⊥] · ~E

)
(21)



158 Butrym and Kochetov

WEX =
(

0 ∇⊥ε−1
⊥ [∇⊥ × ~r0] ·[

µ−1
⊥ ∇⊥ε−1

⊥ × ~r0

]∇⊥ · ε⊥ 0

)(
~E
~H

)

=
( ∇⊥ε−1

⊥ [∇⊥ × ~r0] · ~H[
µ−1
⊥ ∇⊥ε−1

⊥ × ~r0

]∇⊥ · ε⊥ ~E

)
(22)

Now the set of Equations (13)–(17) can be written in a more
compact operator form with transverse (angular) derivatives on the
left hand side and radial and time derivatives and the sources on the
right hand side:

WHX=




r−1µ−1
‖ ∂rr

3µ‖
{

∂t

(
ε0ε‖ ~E

)
+ r−1ε−1

⊥ ∂r

[
r ~H × ~r0

]}

+ε−1
⊥ µ−1

‖
{

r−1∂r

(
r3µ‖ ~J

)
+ r

[
~r0 ×∇⊥µ−1

⊥ µ−1
0 ρ̂

]}

−µ0r
2∂tµ‖

{
r−1∂r

(
r ~H

)
+ ε0∂t

(
ε‖ε⊥

[
~r0 × ~E

])}

−r
{

µ0r∂tµ‖
[
~r0 × ~J

]
+∇⊥µ−1

⊥ Ĵr

}




(23)

WEX=




−r2∂tε0ε‖
{

r−1∂r

(
r ~E

)
+ µ0∂t

(
µ‖µ⊥

[
~H × ~r0

])}

−r
{
∇⊥ε−1

⊥ Jr + rε0∂tε‖
[
~̂J × ~r0

]}

r−1ε−1
‖ ∂rr

3ε‖
{

∂t

(
µ0µ‖ ~H

)
+ r−1µ−1

⊥ ∂r

[
~r0 × r ~E

]}

+µ−1
⊥ ε−1

‖
{

r−1∂r

(
r3ε‖ ~̂J

)
+ r

[∇⊥ε−1
⊥ ε−1

0 ρ× ~r0

]}




(24)

Note that (23) is equivalent to Equations (13), (15) and (17), while
Equation (24) is equivalent to Equations (14), (16) and (17).

The following analog of Green’s formula can be derived for
integrals over sphere as defined in (18) (See detailed derivation in
Appendices B, C):

∫

S

(
~A · ∇⊥f∇⊥ · ~B − ~B · ∇⊥f∇⊥ · ~A

)
dS

=
∫

L

[(
~n · ~A

) (
∇⊥ · ~B

)
−

(
~n · ~B

) (
∇⊥ · ~A

)]
f dl (25)

Using this formula one can prove that the introduced operators are
symmetric ones in L4

2 (S, γ). The symmetry of operators WH and WE

means that for any X1, X2 ∈ L4
2 (S, γ) the following equalities hold

(detailed derivation is given in Appendix D):

(WHX1, X2) = (X1,WHX2) ; (WEX1, X2) = (X1, WEX2) . (26)
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Further consideration is aimed at constructing a basis in the
whole Hilbert space L4

2 (S, γ). It is clear that the angular part
of any physically meaningful solution to Maxwell Equations (5), (6)
complemented with boundary conditions (7) belongs to the introduced
Hilbert space L4

2 (S, γ).
Let LH be the range of operator WH . Then the kernel of operator

WH is the orthogonal complement to linear subspace LH in L4
2. That

is,
(
LH

)⊥ = kerWH , and thus L4
2 (S, γ) = LH ⊕ kerWH . Now let LE

be the range of operator WE , then by analogy L4
2 (S, γ) = LE⊕kerWE .

It can be proved that LH ⊂ kerWE and LE ⊂ kerWH , the derivation
is similar to that in Appendix D and is left as an exercise for our reader.
Now let’s define LT as an intersection of the operators’ kernels, i.e.,
LT ≡ kerWH ∩ kerWE . Finally, based on this definition and taking
into consideration the above embeddings the Hilbert space L4

2 (S, γ)
can be decomposed into direct sum of three orthogonal subspaces
L4

2 (S, γ) = LH ⊕LE ⊕LT . Later, it will be shown that the introduced
subspaces LH , LE , and LT correspond to fields of TE-, TM -, and
TEM -type respectively. The subspace LT is empty or has finite
dimensionality equal to N − 1 if the PEC cones contour L is N -
connected.

2.4. Basis of Eigenmodes

Let’s start our consideration with operator WH . In the previous
subsection we established its symmetry; beside others it means that its
spectrum is real-valued, and its eigenfunctions constitute a basis in the
range of the operator, which we denoted as subspace LH ⊂ L4

2 (S, γ).
The spectrum is discrete since the operator is of elliptic type and is
defined on a finite domain. Additionally, the spectrum is symmetric
relative to zero because of the block structure with zero blocks on the
main diagonal. It means that if p2

m is an eigenvalue that corresponds
to eigenfunction Xm = col

(
~Em, ~Hm

)
then p2−m = −p2

m is also an

eigenvalue that corresponds to eigenfunction X−m = col
(

~Em,− ~Hm

)
.

At the end we are interested in expanding individual fields ~E and ~H
over the mode functions. Since eigenfunctions Xm and X−m constitute
a basis, then (Xm + X−m) /2 = col

(
~Em, 0

)
and (Xm −X−m) /2 =

col
(
0, ~Hm

)
also constitute a basis. Hence the mode functions ~Em and

~Hm that correspond to positive eigenvalues p2
m > 0 can be used for

expansion of ~E and ~H fields correspondingly. That is why we write
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the eigenvalues squared p2
m. Similar consideration is also relevant to

operator WE .
So, the eigenvalue problem for operator WH has the following

form:

WHXH
m =p2

mXH
m , XH

m =
(

~EH
m

~HH
m

)
⇒





[
~r0×ε−1

⊥ ∇⊥µ−1
⊥

]∇⊥ ·µ⊥ ~HH
m =p2

m
~EH

m

∇⊥µ−1
⊥ [~r0 ×∇⊥] · ~EH

m = p2
m

~HH
m

~l · ~EH
m

∣∣∣
L

= 0, ~n · ~HH
m

∣∣∣
L

= 0

(27)
This vector eigenvalue boundary problem can be reduced to a simpler
scalar problem. To this aim let’s introduce scalar functions ΦH

m and
ΨH

m that are related with the corresponding vector eigenfunctions ~EH
m

and ~HH
m as follows:

~EH
m = p−1

m ε−1
⊥

[∇⊥ΦH
m × ~r0

]
; ~HH

m = p−1
m ∇⊥ΨH

m. (28)
Substituting (28) into (27) yields the following scalar boundary
eigenvalue problem:




∇⊥ · µ⊥∇⊥ΨH
m + p2

mµ⊥ΦH
m = 0

∇⊥ · ε−1
⊥ ∇⊥ΦH

m + p2
mµ⊥ΨH

m = 0
∂ΦH

m
∂~n

∣∣∣
L

= 0 ∂ΨH
m

∂~n

∣∣∣
L

= 0
(29)

Substituting vector eigenfunctions ~EH
m and ~HH

m in the form (28) into
formulae (10) and (11) one can easily find that in case of no sources
the radial component of electric field vanishes EH

r ≡ 0. Hence, we have
established that the angular components of electromagnetic field from
subspace LH correspond to TE-waves.

Similar consideration for operator WE yields the following vector
boundary eigenvalue problem:

WEXE
n =q2

nXE
n ,

XE
n =

(
~EE

n
~HE

n

)
⇒





∇⊥ε−1
⊥ [∇⊥ × ~r0] · ~HE

n = q2
n

~EE
n[

µ−1
⊥ ∇⊥ε−1

⊥ ×~r0

]∇⊥ ·ε⊥ ~EE
n =q2

n
~HE

n

∇⊥ ·
(
ε⊥ ~EE

n

)∣∣∣
L
=0, ∇⊥ ·

[
~HE

n ×~r0

]∣∣∣
L
=0

(30)

that can be reduced to a scalar problem by introducing scalar
eigenfunctions ΨE

n and ΦE
n :

~EE
n = q−1

n ∇⊥ΨE
n , ~HE

n = q−1
n µ−1

⊥
[
~r0 ×∇⊥ΦE

n

]
(31)

Substituting this form into (30) results in the following scalar boundary
eigenvalue problem:



∇⊥ · µ−1

⊥ ∇⊥ΦE
n + q2

nε⊥ΨE
n = 0

∇⊥ · ε⊥∇⊥ΨE
n + q2

nε⊥ΦE
n = 0

ΨE
n

∣∣
L

= 0 ΦE
n

∣∣
L

= 0
(32)
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It can also be shown that the eigenfunctions in the form (31) being
substituted into (10) and (11) results in vanishing radial component
of magnetic field HH

r ≡ 0 provided that there are no sources. Thus,
the angular components of electromagnetic field from subspace LE

correspond to TM -waves.
In order to construct a basis in subspace LT we should consider

problems (27) and (30) jointly assuming that the eigenvalue is equal
to zero (that corresponds to kernels of the operators):{

WHXT
k =0

WEXT
k =0

,

XT
k =

(
~ET

k
0

)
∪

(
0
~HT

k

)
⇒





[
µ−1
⊥ ∇⊥ε−1

⊥ ×~r0

]∇⊥ ·ε⊥ ~ET
k =0

∇⊥µ−1
⊥ [~r0 ×∇⊥] · ~ET

k = 0
~l· ~ET

k

∣∣∣
L
=0 ∇⊥ ·

(
ε⊥ ~ET

k

)∣∣∣
L
=0





[
~r0×ε−1

⊥ ∇⊥µ−1
⊥

]∇⊥ ·µ⊥ ~HT
k =0

∇⊥ε−1
⊥ [∇⊥ × ~r0] · ~HT

k = 0

~n·~HT
k

∣∣∣
L
=0 ∇⊥·

[
~HT

k ×~r0

]∣∣∣
L
=0

(33)

Acting similarly to consideration in paper [8] one can prove that
each subsystem in (33) has exactly N − 1 linearly independent
solutions, where N is the number of contours bounding the PEC cones
(connectivity of contour L). Similar to the previous consideration, we
introduce scalar eigenfunctions ΦT

k and ΨT
k as:

~ET
k = ∇⊥ΦT

k , ~HT
k =

[
~r0 × µ−1

⊥ ∇⊥ΨT
k

]
. (34)

This results in two scalar eigenvalue boundary problems with
inhomogeneous boundary conditions:{

∇⊥ · ε⊥∇⊥ΦT
k = 0

ΦT
k

∣∣
Lj

= cj
k

{
∇⊥ · µ−1

⊥ ∇⊥ΨT
k = 0

ΨT
k

∣∣
Lj

= dj
k

(35)

where cj
k and dj

k are some constants at the jth contour Lj for the kth
eigenfunction. In order to find all N −1 linearly independent solutions
it is convenient to chose cN

k = 0, cj
k = δkj for k, j = 1, N − 1 and

similarly for dj
k.

These eigenfunctions in form (34) being substituted into
Equations (10) and (11) taking into consideration (35) result in
vanishing radial components of both electric and magnetic fields ET

r ≡
HT

r ≡ 0, thus subspace LT corresponds to TEM -waves as well as
to electrostatic and magnetostatic fields that can exist in such multi-
connected transmission lines. The static fields can be presented as a
superposition of contradirectional TEM -modes.
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2.5. Orthogonality Conditions

At the beginning of the previous subsection we have shown that
the block structure of the operators allows us to treat electric ~E

and magnetic ~H components of the eigenfunctions separately. The
Hilbert space of 4-dimensional vectors L4

2 (S, γ) can be presented as
exterior product of Hilbert spaces of “electric” and “magnetic” vectors
L4

2 (S, γ) = L2
2 (S, ε) ⊗ L2

2 (S, µ). The dot product in electric vector
functional space L2

2 (S, ε) is defined with weight ε⊥:
(

~E1, ~E2

)
e

= 1
4π

∫
S ε⊥ ~E1 · ~E2dS (36)

while in the magnetic vectors functional space L2
2 (S, µ) we use weight

µ⊥: (
~H1, ~H2

)
h

= 1
4π

∫
S µ⊥ ~H1 · ~H2dS (37)

Thus, the original dot product (18) in L4
2 (S, γ) = L2

2 (S, ε)⊗ L2
2 (S, µ)

can be presented as:

(X1, X2) =
(

~E1, ~E2

)
e
+

(
~H1, ~H2

)
h

(38)

From symmetry of operators WH , WE and the fact that LH ⊂ KerWE ,
LE ⊂ KerWH , LT = KerWE ∩ KerWH the following orthogonality
conditions follow for the eigenfunctions of the eigenvalue boundary
problems (27), (30), and (33):
(

~EA
m, ~EB

n

)
e
=δmnδAB,

(
~HA

m, ~HB
n

)
h
=δmnδAB, A,B∈{H,E, T} (39)

Substituting the expressions of vector basis functions via scalar basis
functions (28) into (39) one can establish bi-orthogonality relations for
the scalar basis functions ΦH

m and ΨH
m:

(
ΨH

m, ΦH
n

)
h

= 1
4π

∫
S µ⊥ΨH

mΦH
n dS = δmn (40)

It can be proved that functions
{
ΨH

m, ΦH
n

}
constitute a bi-orthogonal

basis in the Hilbert space L1
2 (S, µ) of scalar real-valued functions

satisfying Neumann conditions at contour L with inner product defined
by (40).

Similarly, it can be shown that the scalar basis functions ΦE
n and

ΨE
n form a bi-orthogonal basis in space L1

2 (S, ε) of scalar real-valued
functions satisfying Dirichlet conditions at contour L. Substitution
of (31) into (39) results in the following bi-orthogonality conditions
and a definition for inner product in L1

2 (S, ε):
(
ΨE

m,ΦE
n

)
e

= 1
4π

∫
S ε⊥ΨE

mΦE
n dS = δmn (41)
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2.6. Expansion of the Sought Fields and Sources over the
Mode Basis

We have constructed a basis in each subspace of L4
2 and thereby have a

full set of modes for expanding the sought fields, initial conditions, and
source functions. Thus, the angular part of the sought fields can be
presented as an expansion over the introduced vector mode functions:

ε
1/2
0

~E (r, θ, ϕ, t) = r−1
∑

A∈{H,E,T}

∑
m

eA
m (r, t) ~EA

m (θ, ϕ)

= r−1

(∑
m

eH
m (r, t) ~EH

m (θ, ϕ) +
∑

n

eE
n (r, t) ~EE

n (θ, ϕ)

+
∑

k

eT
k (r, t) ~ET

k (θ, ϕ)

)
(42)

µ
1/2
0

~H (r, θ, ϕ, t) = r−1
∑

A∈{H,E,T}

∑
m

hA
m (r, t) ~HA

m (θ, ϕ)

= r−1

(∑
m

hH
m (r, t) ~HH

m (θ, ϕ) +
∑
n

hE
n (r, t) ~HE

n (θ, ϕ)

+
∑

k

hT
k (r, t) ~HT

k (θ, ϕ)

)
(43)

The radial component of electric field Er is a scalar real-valued function
satisfying Dirichlet conditions at L. Therefore, it belongs to the space
L1

2 (S, ε). That is why we can expand Er in terms of basis functions{
ΦE

n

}
with

{
ΨE

n

}
being projectors. Thus, we have:

ε
1/2
0 Er (r, θ, ϕ, t) = r−2

∑
n

er
n (r, t) qnΦE

n (θ, ϕ) (44)

The eigenvalues qn are introduced into this formula for convenience in
further derivation. Similarly, the magnetic field radial component Hr

belongs to the space L1
2 (S, µ) and can be expanded over eigenfunctions{

ΦH
m

}
:

µ
1/2
0 Hr (r, θ, ϕ, t) = r−2

∑
m

hr
m (r, t) pmΦH

m (θ, ϕ) (45)

The expansion coefficients eH
m, eE

n , eT
k , hH

m, hE
n , hT

k , er
n, hr

m in (42)–(45)
depend on radial coordinate and time. Let’s name them as mode
amplitudes (angular and radial correspondingly).
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2.7. Projection of Initial Conditions onto the Mode Basis

The problem under study (1) should also be supplemented with some
(probably zero) initial conditions ~H

∣∣∣
t=0

= ~H0 (~r), ~E
∣∣∣
t=0

= ~E0 (~r). By
projecting these fields onto the mode basis we obtain initial conditions
for the mode amplitudes. Using orthogonality conditions (39)–(41)
and definitions of mode expansions (42)–(45) one can find the following
expressions for the mode amplitudes at t = 0:

eA
m(r, 0)=ε

1/2
0

r
4π

∫
S

~E (r, θ, ϕ, 0)· ~EA
m (θ, ϕ)ε⊥dS

hA
m(r, 0)=µ

1/2
0

r
4π

∫
S

~H (r, θ, ϕ, 0)· ~HA
m (θ, ϕ)µ⊥dS

A∈{H, E, T}

er
n(r, 0)=ε

1/2
0

r2

4π

∫
SEr (r, θ, ϕ, 0)ΨE

n (θ, ϕ)q−1
n ε⊥dS

hr
m(r, 0)=µ

1/2
0

r2

4π

∫
SHr (r, θ, ϕ, 0)ΨH

m (θ, ϕ)p−1
m µ⊥dS

(46)

3. SYSTEM OF EVOLUTIONARY WAVEGUIDE
EQUATIONS

Next, we need to obtain governing equations for the mode
amplitudes. To this aim we substitute the expansions of angular field
components (42), (43) into the Maxwell equations in radial-angular
form (13)–(16). The obtained functional equations are then projected
onto the basis of angular vector basis functions using the defined dot
product (36) or (37) in order to obtain a system of PDE for the
angular mode amplitudes. Due to orthogonality conditions (39) some
of the matrices resulted from the projection are identity matrices.
Since the expansion functions are the eigenfunctions of the angular
derivative operators some coefficient matrices are diagonal matrices
of eigenvalues. Finally, due to presence of ε⊥, µ⊥ in the right-hand
side of (13)–(16) some coefficient matrices (L,K) are full, and their
definitions are given later (see (60)). As a result, the following System
of Evolutionary Waveguide Equations (SEWE) has been derived:

∂rr
2µ‖



∂τ

(
ε‖eH

m

)
+

∑

A∈{H,E,T}

∑

m′
LHA

mm′∂rh
A
m′



− µ‖p2

mhH
m

= 1
4π

∫
S

~f1 (~r, t) · ~EH
mdS (47)

∂rr
2ε‖



∂τ

(
µ‖hE

n

)
+

∑

A∈{H,E,T}

∑

n′
LAE

n′n∂re
A
n′



− ε‖q2

neE
n

= 1
4π

∫
S

~f2 (~r, t) · ~HE
n dS (48)
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r2∂τµ‖



∂rh

H
m +

∑

A∈{H,E,T}

∑

m′
KAH

m′m∂τ

(
ε‖eA

m′
)


 + p2

meH
m

= 1
4π

∫
S

~f3 (~r, t) · ~HH
mdS (49)

r2∂τε‖



∂re

E
n +

∑

A∈{H,E,T}

∑

n′
KEA

nn′ ∂τ

(
µ‖hA

n′
)


 + q2

nhE
n

= 1
4π

∫
S

~f4 (~r, t) · ~EE
n dS (50)

∂rr
2µ‖



∂τ

(
ε‖eT

k

)
+

∑

A∈{H,E,T}

∑

k′
LTA

kk′∂rh
A
k′



= 1

4π

∫
S

~f1(~r, t)· ~ET
k dS (51)

∂rr
2ε‖



∂τ

(
µ‖hT

k

)
+

∑

A∈{H,E,T}

∑

k′
LAT

k′k∂re
A
k′



= 1

4π

∫
S

~f2(~r, t)· ~HT
k dS (52)

∂τµ‖



∂rh

T
k +

∑

A∈{H,E,T}

∑

k′
KAT

k′k ∂τ

(
ε‖eA

k′
)


=r−2 1

4π

∫
S

~f3(~r, t)· ~HT
k dS (53)

∂τε‖



∂re

T
k +

∑

A∈{H,E,T}

∑

k′
KTA

kk′ ∂τ

(
µ‖hA

k′
)


=r−2 1

4π

∫
S

~f4 (~r, t)· ~ET
k dS (54)

Then we exclude radial components from Equations (10), (11) and
substitute there the field expansions (42), (43). We express the vector
basis functions via scalar basis functions (28), (31), (34). Finally, these
scalar functional equations are projected onto the corresponding bi-
orthogonal scalar basis functions using a proper dot product definition
(40), (41) based on the type of the boundary conditions that correspond
to the equation terms. As a result, we obtained another 4 evolutionary
equations:

∑

m′
LHH

m′m∂re
H
m′ + ∂τ

(
µ‖hH

m

)
= r 1

4π

∫
S

(
∇⊥ · ε1/2

0
~̂J
)

p−1
m ΨH

mdS (55)

∂re
H
m +

∑

m′
KHH

mm′∂τ

(
µ‖hH

m′
)

= r 1
4π

∫
S

(
∇⊥ · ε1/2

0
~̂J
)

p−1
m ΦH

mdS (56)

∑

n′
LEE

nn′∂rh
E
n′ + ∂τ

(
ε‖eE

n

)
= r 1

4π

∫
S

(
∇⊥ · µ1/2

0
~J
)

q−1
n ΨE

n dS (57)

∂rh
E
n +

∑

n′
KEE

n′n ∂τ

(
ε‖eE

n′
)

= r 1
4π

∫
S

(
∇⊥ · µ1/2

0
~J
)

q−1
n ΦE

n dS (58)
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Here τ = ct, c is the velocity of light in the free space. The source
functions in the right-hand side of Equations (47)–(54) are defined as
follows:

~f1 (~r, t) = r2
[
∇⊥µ−1

⊥ µ
−1/2
0 ρ̂× ~r0

]
− ∂r

(
r3µ‖µ

1/2
0

~J
)

~f2 (~r, t) = r2
[
~r0 ×∇⊥ε−1

⊥ ε
−1/2
0 ρ

]
− ∂r

(
r3ε‖ε

1/2
0

~̂J
)

~f3 (~r, t) = r3∂τ

(
µ‖µ⊥

[
µ

1/2
0

~J × ~r0

])
− r2µ⊥∇⊥µ−1

⊥ ε
1/2
0 Ĵr

~f4 (~r, t) = r3∂τ

(
ε‖ε⊥

[
~r0 × ε

1/2
0

~̂J
])
− ε⊥∇⊥ε−1

⊥ µ
1/2
0 Jr

(59)

The infinite constant matrices of SEWE coefficients L and K describe
mode coupling that occurs due to the presence of ε⊥, µ⊥ in the right-
hand side of (13)–(16). They are defined as follows:

LAB
mn = 1

4π

∫
S ~z0 ·

[
~EA

m × ~HB
n

]
dS

KAB
mn = 1

4π

∫
S ~z0 ·

[
~EA

m × ~HB
n

]
ε⊥µ⊥dS

A,B ∈ {H, E, T} (60)

In case of angular homogeneous structure these matrices become
identity matrices, and the SEWE degenerates a set of uncoupled
equations similar to those presented in [30–32].

The sums in SEWE (47)–(54) are written in a shorten notation
that can be unrolled as follows:∑

A∈{H,E,T}

∑

m′
LHA

mm′∂zh
A
m′

=
∑

m′
LHH

mm′∂zh
H
m′ +

∑

m′
LHE

mm′∂zh
E
m′ +

∑

m′
LHT

mm′∂zh
T
m′ (61)

We further shorten the sums using matrix notation like this (prime
denotes transposition):

LHE∂zhE =
∑

m′
LHE

mm′∂zh
E
m′ , LHT ′∂zeH =

∑

k′
LHT

k′k ∂ze
H
k′ (62)

It should be noted that 6 out of 18 possible matrices (60) are zeros:

LET = LTH = LEH = KTE = KHT = KHE = 0 (63)

For matrices (60) the following relations can be proved:
∑

A

KBALCA′ =
∑

A

LAB′KAC =
∑

A

KAB′LAC =
∑

A

LBAKCA′

=
{

0, B 6= C
I, B = C

A,B, C ∈ {H, E, T} (64)
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Here 0 is null matrix, and I is identity matrix. Substituting (63) into
(64) further results:

LAAKAA′=KAALAA′=KAA′LAA =LAA′KAA =I, A∈{H, E, T} (65)

The shortened formulas (64) in a full form look like:
∑

A

LBAKCA′=δBC⇒
∑

n

LHE
mn KEE

kn +
∑

n

LHH
mn KEH

kn +
∑
n

LHT
mnKET

kn =0

(66)
System of Equations (47)–(58) is overdetermined, i.e., some of

the equations are linearly dependent. For example, using (65) one
can easily prove equivalence of Equations (55) and (56), and the same
is true for Equations (57), (58). In a particular problem this SEWE
should be shortened to a suitable reduced form using the coefficient
matrix properties (63)–(65).

The obtained SEWE allows us to determine only the angular mode
amplitudes. In order to find the radial mode amplitudes we need some
more equations. To this aim we make use of Equations (10), (11).
First, we substitute mode expansions of both angular (42), (43) and
radial (44), (45) field components into Equations (10), (11). Then,
we express all the vector basis functions via scalar basis functions
using definitions (28), (31), and (34). Finally these scalar functional
equations are projected onto the corresponding bi-orthogonal scalar
basis functions using a proper dot product definition (40), (41) based
on the type of the boundary conditions that correspond to the
equation terms. This derivation results in the following differential
equations that can be easily integrated provided that the angular mode
amplitudes are found:

∂r

(
ε‖er

n

)
= ε‖eE

n + r2 1
4π

∫
S ε

−1/2
0 ρ q−1

n ΨE
n dS

∂r

(
µ‖hr

m

)
= µ‖hH

m + r2 1
4π

∫
S µ

−1/2
0 ρ̂ p−1

m ΨH
mdS

(67)

∂τ

(
ε‖er

n

)
= −

∑

n′
LEE

nn′h
E
n′ − r2 1

4π

∫
S µ

1/2
0 Jr q−1

n ΨE
n dS

∂τ (µ ‖ hr
m) = −

∑

m′
LHH

m′meH
m′ − r2 1

4π

∫
S ε

1/2
0 Ĵr p−1

m ΨH
mdS

(68)

Thus, we derived a complete set of governing equations for the
mode amplitudes, which allows us to solve particular problems with
given sources, initial conditions or initial boundary-value conditions.
A summary of all the stages of the proposed method is given in the
next section.
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4. ALGORITHM OF SOLVING A PROBLEM BY THE
METHOD OF MODE EXPANSION IN TIME DOMAIN

The sought fields in the problem under study can be obtained using
the following algorithm:
• Solve scalar eigenvalue problems (29), (32) and (35). As a

result, we find eigenvalues p2
m, q2

n and scalar eigenfunctions
ΨA

m (θ, ϕ) , ΦA
n (θ, ϕ) , A ∈ {H, E, T}

• Construct the vector eigenfunctions ~EA
m (θ, ϕ) , ~HA

n (θ, ϕ) , A ∈
{H, E, T} via obtained scalar eigenfunctions using formulae
(28), (31), and (34).

• Calculate the nonzero SEWE coefficient matrices LAB and KAB

(A,B ∈ {H, E, T}) using formulae (60).
• Calculate the integrals in the right-hand side of SEWE (47)–(58)

and (67), (68) using known source functions ~J0 (~r, t) and ρ0 (~r, t)
and auxiliary definitions (59).

• Find initial conditions for the mode amplitudes by projecting the
initial conditions for the fields using formula (46).

• Solve the initial problem for SEWE (47)–(58) for angular
mode amplitudes. As a result we find mode amplitudes
eA
m (r, t) , hA

m (r, t) A ∈ {H, E, T} for t > 0.
• Integrate equations (67), (68) with found angular mode amplitudes

in the right-hand side. As a result we determine the radial mode
amplitudes er

n (r, t) , hr
m (r, t).

• Substitute the obtained angular and radial mode amplitudes and
basis functions into the field expansions (42)–(45) and use these
formulae for calculating sought electromagnetic fields at arbitrary
space position and time instance.

5. CONCLUSIONS

We presented a new method for calculating transient electromagnetic
fields in conical transmission lines and free space filled with
inhomogeneous non-stationary medium that can be described by
permittivity and permeability of factorized form (3).

The proposed method is based on expansion of the fields over basis
of frequency independent eigenmodes of the structure. The introduced
modes satisfy all the boundary conditions at medium discontinuities
in angular coordinates. This results in a fast convergence of the
series that are obtained from field expansion over such modes.
This fact is not directly demonstrated in the paper, but it was
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formerly established by us for a similar consideration for cylindrical
inhomogeneous transmission lines [20, 21, 36].

The considered approach is a generalization of earlier developed
time domain mode methods. In case of angular homogeneous structure
the developed system of evolutionary waveguide Equations (47)–
(58), (67), (68) degenerates to a set of uncoupled equations similar to
those presented by Shlivinski and Heyman in [30] and by Dumin et al.
in [31, 32].

This paper contains only derivation of the general theory of the
proposed method. An example of its application will be given in a
subsequent paper that will analyze transient radiation of a dielectric-
field TEM-horn. The consideration will be based on the described
method along with method of mode matching in time domain [34].

APPENDIX A. OPERATOR ∇⊥ IN SPHERICAL
COORDINATE SYSTEM

In spherical coordinate system the orts
{
~r0, ~θ0, ~ϕ0

}
depend on angular

coordinate, that is why using vector derivative operators like (9)
requires special attention. The ort derivatives are given as follows:

∂/∂r ∂/∂θ ∂/∂ϕ

~r0 0 ~θ0 sin θ ~ϕ0

~θ0 0 −~r0 cos θ ~ϕ0

~ϕ0 0 0 − sin θ ~r0 − cos θ ~θ0

(A1)

In the main body of the paper we introduced symbolical operator (9);
besides trivial application to a scalar field like ∇⊥ρ and [~r0 ×∇⊥] Ar

it is also used in more complicated vector operations: ∇⊥ · ~A,
∇⊥ ·

[
~A× ~r0

]
, and [~r0 ×∇⊥] · ~A. Specific coordinate form of these

operations in spherical coordinate system looks as follows:

∇⊥ · ~A =
(

~θ0∂θ +
~ϕ0

sin θ
∂ϕ

)
·
(
~θ0Aθ + ~ϕ0Aϕ

)

=
(
~θ0 · ~θ0

)
∂θAθ +

(
~θ0 · ∂θ

~θ0

)
Aθ +

(
~θ0 · ~ϕ0

)
∂θAϕ +

(
~θ0 · ∂θ ~ϕ0

)
Aϕ

+
1

sin θ

[(
~ϕ0 ·~θ0

)
∂ϕAθ+

(
~ϕ0 ·∂ϕ

~θ0

)
Aθ+(~ϕ0 ·~ϕ0)∂ϕAϕ+(~ϕ0 ·∂ϕ~ϕ0)Aϕ

]

= ∂θAθ +
1

sin θ
[cos θ Aθ + ∂ϕAϕ]=

1
sin θ

[∂θ (sin θ Aθ) + ∂ϕAϕ] (A2)
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Similar derivation yields:

∇⊥ ·
[
~A× ~r0

]
=

(
~θ0∂θ +

~ϕ0

sin θ
∂ϕ

)
·
[
~θ0Aθ + ~ϕ0Aϕ × ~r0

]

=
1

sin θ
[∂θ (sin θ Aϕ)− ∂ϕAθ] (A3)

[~r0 ×∇⊥] · ~A =
[
~r0 ×

(
~θ0∂θ +

~ϕ0

sin θ
∂ϕ

)]
·
(
~θ0Aθ + ~ϕ0Aϕ

)

=
1

sin θ
[∂θ (sin θ Aϕ)− ∂ϕAθ] (A4)

Thus, the following forms are equivalent:

∇⊥ ·
[
~A× ~r0

]
= [~r0 ×∇⊥] · ~A = −∇⊥ ·

[
~r0 × ~A

]
= − [∇⊥ × ~r0] · ~A

=
1

sin θ
[∂θ (sin θ Aϕ)− ∂ϕAθ] (A5)

In order to present curl operator in radial-tangential form using the
introduced symbolic operators let’s start from coordinate presentation:

rot ~A = rot
(
~r0Ar + ~A

)
=

~r0

r sin θ
[∂θ (sin θAϕ)− ∂ϕAθ]

+
~θ0

r

[
1

sin θ
∂ϕAr − ∂r (rAϕ)

]
+

~ϕ0

r
[∂r (rAθ)− ∂θAr] (A6)

Now taking into consideration that (sin θ)−1 [∂θ (sin θAϕ)− ∂ϕAθ] =

∇⊥ ·
[
~A× ~r0

]
,

(
~θ0 (sin θ)−1 ∂ϕ − ~ϕ0∂θ

)
Ar = − [~r0 ×∇⊥] Ar and[

~ϕ0∂r (rAθ)− ~θ0∂r (rAϕ)
]

= ∂r

(
r
[
~r0 × ~A

])
, we can present rot as

follows:

rot ~A =
1
r

{
~r0∇⊥ ·

[
~A× ~r0

]
− [~r0 ×∇⊥] Ar + ∂r

(
r
[
~r0 × ~A

])}

APPENDIX B. GAUSS-OSTROGRADSKY FORMULA
FOR ANGULAR DOMAINS

Here, we are going to derive formula (25). First, we prove correctness of
the following two-dimension Gauss-Ostrogradsky theorem in spherical
coordinates: ∫

S

∇⊥ · ~F dS =
∫

L

~F · ~n dl (B1)

Here the operator ∇⊥ is defined by expression (9), ~F (θ, ϕ) =
~θ0Fθ (θ, ϕ) + ~ϕ0Fϕ (θ, ϕ), S = {(θ, ϕ) : θ, ϕ ∈ Λ} is some solid angle
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of the sphere, L is the contour (possibly multi-connected) bounding
the solid angular domain S, ~n = nθ

~θ0 + nϕ~ϕ0 is the outward normal
to the contour L. In order to prove formula (B1) we make use of the
general formulation of Stokes theorem [35] that can be formulated as:
Let ω be n− 1-differential form with compact support on an oriented
smooth manifold Ω of dimension n and ∂Ω be the boundary of Ω with
its induced orientation, then:∫

Ω

dω =
∫

∂Ω

ω (B2)

Let ω = ~F · ~n dl is 1-form then we can see that:

ω= ~F ·~ndl=
[
~θ0Fθ+~ϕ0Fϕ

]
·~n

√
dθ2+sin2 θdϕ2 =Fθ sin θdϕ−Fϕdθ (B3)

Taking the exterior differential from (B3) one can obtain 2-form dω as
follows:

dω = d (Fθ sin θ dϕ− Fϕdθ) =
∂ (Fθ sin θ)

∂θ
dθ∧ dϕ− ∂Fϕ

∂ϕ
dϕ∧ dθ (B4)

Substituting formulae (B3) and (B4) into (B2) taking into considera-
tion that Ω = S and ∂Ω = L we obtain:∫

S

1
sin θ

[
∂ (Fθ sin θ)

∂θ
+

∂Fϕ

∂ϕ

]
sin θ dθ dϕ =

∫

L

~F · ~n dl (B5)

Noticing that dS = sin (θ) dθdϕ and accounting for (A2) we arrive
at (B1) that completes the proof.

APPENDIX C. GREEN’S FORMULA FOR ANGULAR
DOMAINS

Based on formula (B1) the Green’s formula for angular domains (25)
can be proved easily:∫

Γ

[(
~n · ~A

) (
∇⊥ · ~B

)
−

(
~n · ~B

) (
∇⊥ · ~A

)]
f dl

=
∫

Γ

[
~A
(
∇⊥·~B

)
−~B

(
∇⊥·~A

)]
f·~ndl=

∫

Ω

∇⊥·
{[

~A
(
∇⊥·~B

)
−~B

(
∇⊥·~A

)]
f
}

dΩ

=
∫

Ω

{(
∇⊥·~A

)(
∇⊥·~B

)
f+~A·∇⊥f∇⊥·~B−

(
∇⊥·~B

)(
∇⊥·~A

)
f−~B·∇⊥f

(
∇⊥·~A

)}
dΩ

=
∫

Ω

{
~A · ∇⊥f∇⊥ · ~B − ~B · ∇⊥f

(
∇⊥ · ~A

)}
dΩ
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APPENDIX D. PROOF OF SYMMETRY OF
OPERATORS WH ,WE

Finally, we apply formula (25) for proving symmetry of the introduced
differential operators (26). Using definitions of operator WH (19) and
dot product (18) one can derive:

(WHX1, X2)− (X1,WHX2)

=
1
4π

∫

S

{
ε⊥ ~E2 ·

[
~r0×ε−1

⊥ ∇⊥µ−1
⊥

]∇⊥·µ⊥ ~H1+µ⊥ ~H2 ·∇⊥µ−1
⊥ [~r0×∇⊥]·~E1

}
dS

− 1
4π

∫

S

{
ε⊥ ~E1 ·

[
~r0×ε−1

⊥ ∇⊥µ−1
⊥

]∇⊥·µ⊥ ~H2+µ⊥ ~H1 ·∇⊥µ−1
⊥ [~r0×∇⊥]·~E2

}
dS

=
1
4π

∫

S

{[
~E2×~r0

]
·∇⊥µ−1

⊥ ∇⊥ ·µ⊥ ~H1−µ⊥ ~H1 ·∇⊥µ−1
⊥ ∇⊥ ·

[
~E2×~r0

]}
dS

+
1
4π

∫

S

{
µ⊥ ~H2 ·∇⊥µ−1

⊥ ∇⊥ ·
[
~E1×~r0

]
−

[
~E1×~r0

]
·∇⊥µ−1

⊥ ∇⊥ ·µ⊥ ~H2

}
dS

Formula (25) with f = µ−1
⊥ allows us to turn these integrals over

solid angle into integrals over bounding contours where the boundary
conditions can be applied to vanish the terms:

(WHX1, X2)− (X1,WHX2)

=
1
4π

∫

L

[(
~n·

[
~E2×~r0

])(
∇⊥ ·µ⊥ ~H1

)
−

(
~n·µ⊥ ~H1

)(
∇⊥ ·

[
~E2×~r0

])]
µ−1
⊥ dl

+
1
4π

∫

L

[(
~n·µ⊥ ~H2

)(
∇⊥ ·

[
~E1 × ~r0

])
−

(
~n·

[
~E1×~r0

])(
∇⊥ ·µ⊥ ~H2

)]
µ−1
⊥ dl

=
∣∣∣~r0×~n=~l

∣∣∣= 1
4π

∫

L

[(
~l· ~E2

)(
∇⊥·µ⊥ ~H1

)
−µ⊥

(
~n·~H1

)(
∇⊥·

[
~E2×~r0

])]
µ−1
⊥ dl

+
1
4π

∫

L

[
µ⊥

(
~n· ~H2

)(
∇⊥ ·

[
~E1×~r0

])
−

(
~l · ~E1

)(
∇⊥ ·µ⊥ ~H2

)]
µ−1
⊥ dl

=
∣∣∣ ~l · ~E

∣∣∣
L

= ~n · ~H
∣∣∣
L

= 0
∣∣∣ = 0
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Similar derivation for operator WE (20) yields:

(WEX1, X2)− (X1,WEX2)

=
1
4π

∫

S

{
ε⊥ ~E2 ·∇⊥ε−1

⊥ [∇⊥×~r0]·~H1+µ⊥ ~H2 ·
[
µ−1
⊥ ∇⊥ε−1

⊥ ×~r0

]∇⊥·ε⊥ ~E1

}
dS

− 1
4π

∫

S

{
ε⊥ ~E1 ·∇⊥ε−1

⊥ [∇⊥×~r0]·~H2+µ⊥ ~H1 ·
[
µ−1
⊥ ∇⊥ε−1

⊥ ×~r0

]∇⊥·ε⊥ ~E2

}
dS

=
1
4π

∫

S

{
ε⊥ ~E2 ·∇⊥ε−1

⊥ ∇⊥·
[
~r0×~H1

]
−

[
~r0×~H1

]
·∇⊥ε−1

⊥ ∇⊥·ε⊥ ~E2

}
dS

+
1
4π

∫

S

{[
~r0×~H2

]
·∇⊥ε−1

⊥ ∇⊥·ε⊥ ~E1−ε⊥ ~E1·∇⊥ε−1
⊥ ∇⊥·

[
~r0×~H2

]}
dS

=
1
4π

∫

L

[(
~n·ε⊥ ~E2

)(
∇⊥·

[
~r0×~H1

])
−

(
~n·

[
~r0×~H1

])(
∇⊥·ε⊥ ~E2

)]
ε−1
⊥ dl

+
1
4π

∫

L

[(
~n·

[
~r0× ~H2

])(
∇⊥ ·ε⊥ ~E1

)
−

(
~n·ε⊥ ~E1

)(
∇⊥ ·

[
~r0× ~H2

])]
ε−1
⊥ dl

=
∣∣∣

(
∇⊥ · ε⊥ ~E

)∣∣∣
L

=
(
∇⊥ ·

[
~r0 × ~H

])∣∣∣
L

= 0
∣∣∣ = 0

In the latter case the second pair of boundary conditions (17) was used
in order to vanish the result.

In case when there are no PEC domains that determine the
contour L one can chose, as such a domain, any zero vicinity of some
nonsingular point. In such a case the integrals vanish due to the fact
that the integrands remain bounded while the contour length tends to
zero as the domain deforms continuously to a point.
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