
1336 OPTICS LETTERS / Vol. 33, No. 12 / June 15, 2008
Mode-locked 1.93 �m thulium fiber laser with a
carbon nanotube absorber
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We report a ring-cavity thulium fiber laser mode locked with a single-wall carbon nanotube absorber used in
transmission. A carboxymethyl cellulose polymer film with incorporated carbon nanotubes synthesized by
the arc discharge method has an absorption coinciding with in the amplification bandwidth of a Tm-doped
fiber. This laser is pumped by an erbium fiber laser at 1.57 �m wavelength and produces a 37 MHz train of
mode-locked 1.32 ps pulses at 1.93 �m wavelength with an average output power of 3.4 mW. © 2008 Optical
Society of America

OCIS codes: 140.4050, 140.3510, 140.3560, 320.0320, 160.4330.
Recently, a saturable absorption observed in carbon
nanotubes has been used for the passive mode lock-
ing of near-infrared lasers. This regime has been
implemented in a number of mode-locked erbium fi-
ber lasers operating at a wavelength about 1.55 �m.
Different types of cavities and nanotube-based mode-
locker constructions have been used [1–5]. In solid-
state lasers with bulk elements, the carbon nanotube
aqueous suspensions were used for mode locking at
1.06−1.56 �m [6,7]. The filmlike elements incorpo-
rating nanotubes were used at 1.34 �m [8]. However,
to the best of our knowledge there has been no dem-
onstration of the mode-locked laser with the carbon
nanotube absorber operating in the mid-infrared
spectral range and, particularly, around 1.9 �m
range of the amplification band, a characteristic of a
Tm-doped silica fiber.

Pulsed-laser sources in the mid-infrared range are
useful for applications in a variety of fields, including
medicine, spectroscopy, multiphoton microscopy, re-
mote sensing, and pumping of optical parametric os-
cillators. The short-pulse fiber sources with well-
known advantages, such as their compactness,
excellent beam quality, and environmental reliability,
start to challenge the bulk solid-state lasers. A
thulium-doped silica fiber has a broad amplification
bandwidth �1.7−2.1 �m� that makes it suitable for a
short-pulse generation in the 2 �m range. Up to now,
very few short-pulse Tm-doped fiber sources have
been reported, to our knowledge. Authors of [9] used
additive pulse mode locking to generate sub-500 fs
pulses with an average output power of few hundreds
of microwatts. A thulium fiber laser passively mode
locked by an InGaAs-saturable absorber has been
demonstrated [10]. The system has delivered 190 fs
pulses with an output power of 1 mW. Recently, soli-
ton pulses with a tunable wavelength (1.97 to
2.15 �m) and an average power up to 230 mW have
been reported [11] and have been generated with a fi-
ber power amplifier/Raman shifter being seeded with

a subpicosecond tunable Tm−Ho-doped fiber oscilla-
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tor mode locked with a Sb-based semiconductor satu-
rable absorber mirror. The authors of [12] achieved
pulses with 108 fs duration and 230 kW peak power
at 1.98 �m and wavelength tuning over the range of
140 nm via amplification of a Raman-shifted femto-
second erbium fiber oscillator in a large-mode-area
Tm-doped fiber.

In this Letter, we demonstrate a thulium fiber la-
ser mode locked with a single-wall carbon nanotube
absorber and report the results of our experiment. A
polymer film incorporating carbon nanotubes synthe-
sized by the arc-discharge technique forced a ring
thulium fiber laser to produce 1.32 ps mode-locked
pulses with a wavelength around 1.93 �m and an av-
erage output power of 3.4 mW.

We used carboxymetyl cellulose (CMC) as a host
polymer for carbon nanotubes. The advantage of
CMC is that it represents simultaneously a surfac-
tant with a high nanotube dispersion activity and a
medium forming a film after the suspension drying.
Carbon nanotubes synthesized by the arc-discharge
method have an optical-absorption band shifted to
longer wavelengths (in IR range) than the absorption
bands of nanotubes synthesized by other methods,
such as a laser ablation and a high-pressure decom-
position of CO gas. Usually the synthesis method de-
fines a nanotube diameter distribution. On the basis
of Raman spectral analysis we have found that the
prepared CMC film contains nanotubes with diam-
eters of 1.2–1.7 nm. Figure 1 presents the transmis-
sion spectra of the CMC polymer films. The upper
curve corresponds to a pure polymer film without car-
bon nanotubes in it. The oscillation on the spectrum
is caused by an interference in the thin film. At any
rate, it is clear that a transparence of the CMC film
in the 1.8-2 �m range is about 90%. The lower spec-
trum demonstrates a transmission of the CMC film
incorporating the arc single-wall carbon nanotubes.
The spectrum exhibits an absorption band extending
from 1.5 to 2 �m, with its center at 1.75 �m. The ab-

sorption band width is determined by the width of
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the nanotube diameter distribution. This absorption
band of these nanotubes overlaps with an amplifica-
tion bandwidth of a thulium-doped silica fiber. A sig-
nal transmittance of the film at the operating wave-
length 1.93 �m is about 37%.

The laser scheme is shown in Fig. 2. The ring cav-
ity with a total length 5.6 m is comprised of 4 m
Tm-doped fiber, wavelength-division-multiplexed
1.57/1.9 �m fused fiber coupler for pumping, the out-
put fused fiber coupler, the polarization controller,
and the carboxymethyl cellulose polymer film with
incorporated carbon nanotubes inserted in the fixed
connection/physical contact between two ferrules.
The Tm-doped fiber has 0.16 NA, 9.5 �m mode-field
diameter at 1930 nm, �1 W−1 km−1 estimated nonlin-
earity coefficient, and �−55 ps2/km estimated dis-
persion. It is pumped with a cw erbium fiber laser at
1.57 �m to the core. Both pump and output fused
couplers are made from SM28-like fiber that provides
the polarization-sensitive loss at a working wave-
length of 1.93 �m. The polarization controller was
used to minimize polarization-sensitive loss in fiber
couplers. It has to be noted that the control of the po-
larization does not directly influence the regime of
generation but causes a small changing of the thresh-
old and the output power. All fiber ends are angle
cleaved. Unused fiber ends are immersed. There is no
optical isolator in the cavity. Instead, 4 m of highly
Tm-doped fiber (~6000 wt. parts per million) is ap-

Fig. 1. Transmittance optical spectra of the pure CMC
film (upper curve) and the CMC film with carbon nano-
tubes (lower curve).

Fig. 2. Scheme of the ring-cavity Tm-doped fiber laser
mode locked with a carbon nanotube absorber. PC, polar-
ization controller; NT film, CMC polymer film with incor-

porated carbon nanotubes; FC/PC, fiber connector.
plied to provide unidirectional start of laser opera-
tion. With pumping into the core, the power of the lu-
minescence from the pump-input side is significantly
higher than the luminescence from the other side of
the active fiber. We assumed that, owing to this effect
and the use of a nonlinear absorber in the cavity, the
threshold of the generation in the counterdirection to
pump propagation should be lower than in the codi-
rection. Our experiment has proved the assumption
that the laser prefers to start operating in the coun-
terdirection to pump propagation.

In case of absence of the carbon nanotube absorber
in the cavity, the laser always works in a cw regime,
being insensitive to the polarization state. Once the
CMC film with nanotubes is inserted into the cavity,
the laser starts to operate in a passive mode-locking
regime with 280 mW pump threshold in the counter-
direction to pump propagation. Exceeding the pump
power over 330 mW leads to generation in both direc-
tions owing to a lack of a fiber-pigtailed optical isola-
tor in the cavity. That makes laser operation unstable
with Q-switch pulse occurrence and, in turn, results
in damage of the polymer CMC film with carbon
nanotubes. In this case the film with carbon nano-
tubes has to be replaced. With 300 mW pump power
the laser produces a 37 MHz mode-locked pulse train
with 3.4 mW average power at the output. Figure 3
shows the output pulse train measured by a fast
photodetector with a 1.3–2.4 �m working spectral
range and an oscilloscope with 500 MHz bandwidth.

The optical spectrum of the output pulses mea-
sured with 0.33 nm resolution is demonstrated in
Fig. 4. The central wavelength is 1932 nm, and the
spectral width at a half-maximum level is 5 nm. An
output spectrum exhibits typical sidelobes that corre-
sponds to a solitonlike pulse shape. An autocorrela-
tion trace of the output pulses is presented in Fig. 5.
The FWHM level of the autocorrelation trace is 2 ps.
According to a soliton pulse shape, the calculated
pulse duration is 1.32 ps. Thus the time-bandwidth
product is 0.528, exceeding a typical value of a
transform-limited pulse waveform (0.315). This
means that the output pulse is chirped and can be
shortened down to 800 fs after complete compensa-
tion of the chirp. On the other hand, the laser cavity
was not specially designed to obtain the shortest pos-

Fig. 3. Output pulse train with a repetition rate of

37 MHz. Inset, a pulse train in a 2 �s time segment.
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sible pulse duration; the aim was to find out the suit-
ability of a carbon nanotube absorber for mode lock-
ing around 1.9 �m and to create an all-fiber mode-
locked thulium laser. The cavity dispersion was
sacrificed for the simplicity of the laser scheme. The
mode-locking operation is stable while the pump
power is in the 280−330 mW range. No sensitivity
from vibration or small temperature drift was no-
ticed. Mode locking self-starts and does not require
tuning of the polarization controller to start and to
operate. Long-term stability measurement was not
made; nevertheless, for several tens of minutes dur-
ing experiments laser operation is stable.

To summarize, we have demonstrated for the first
time (to the best of our knowledge) a mode locking of
a ring-cavity thulium fiber laser with the help of car-
bon nanotubes synthesized by the arc discharge
method. This all-fiber simple and compact thulium
laser delivers pulses at a 1.93 �m spectral range with

Fig. 4. A typical output spectrum on a linear scale. Inset,
spectrum on a logarithmic scale.
a 2 ps autocorrelation trace and produces a 37 MHz
mode-locked pulse train with a 70 W peak and
3.4 mW average output optical power. Our results in-
dicate that the CMC film with incorporated carbon
nanotubes synthesized by the arc discharge method
is a promising optical material for the mode-locking
laser in the 1.9 �m spectral range. The results pre-
sented here can be extended to higher power and the
shorter pulse durations through a minimization of
the losses, a compensation of dispersion, and an in-
crease in the damage threshold of the polymer film
incorporating single-wall carbon nanotubes.

This work was supported by the “Femtosecond Op-
tics and New Materials” program of the Presidium of
the Russian Academy of Sciences and RFBR-06-02-
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Fig. 5. Autocorrelation trace of the output pulses.


