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Theory and experiments are currently being developed in our laboratory to use tailored light fields to control 
the dynamics of molecular reactions. We have recently shown theoretically that a properly chirped light pulse 
can be used to overcome the natural tendency of wave packets to spread on anharmonic molecular potential 
energy surfaces. The optimal chirp rate can be readily obtained by solving a linear optimal control equation. 
In this paper we analyze a number of aspects crucial to the success of the experiments. We test the robustness 
of the optimal electric field with respect to variations in the field parameters (chirp rates, pulse duration, and 
carrier frequency). We also study the effects of finite temperature by using a thermal vibrational distribution 
as the initial state in the dynamics. Finally, we describe the experimental apparatus that we plan to use to 
perform the control experiments, and discuss several technical issues related to synthesizing the optimal field 
and detecting the focused wave packet. 

I. Introduction 

In previous papers'-* we have presented a formalism for the 
weak field control of molecular dynamics and computational 
examplesof the implementation of this theory. The theory enables 
us to predict the light field which best achieves a given objective. 
Using realistic potentials for the 12 and Na2 molecules, we showed* 
that this globally optimal field can be used to control the evolution 
of a vibrational wave packet on an excited electronic potential 
energy surface. The ability to steer a wave packet to a desired 
region of configuration or phase (position/momentum) space at 
a selected final time by mode-locking the vibrational states of a 
molecule is a first step in controlling the outcome of a chemical 
reaction. For reviews of alternative approaches to this problem, 
see refs 3-7. 

The globally optimal field can be well approximated by a simple 
functional form consisting of a series of Gaussian pulses with 
time dependent phase functions containing phase constants, center 
frequencies, and linear and quadratic chirps. Although the 
Gaussians do not reproduce the optimal field perfectly, they are 
still quite successful at driving the molecular system toward the 
desired goal. Furthermore, the parameters of the best fit fields 
are experimentally reasonable, thereby making the synthesis of 
such pulses feasible. 

In this paper, we concentrate on a number of aspects crucial 
to observing in the laboratory the effects that we have predicted. 
One concerns the robustness of our results with respect to small 
changes in the parameters of the optimal field. This is important 
because neither the theory nor the experiments are perfect, and 
if the region of stability in parameter space is small, we may 
never reach it in the experiments or locate it reliably in the 
calculations. 

In our previous calculations2 we neglected the effects of finite 
temperature on the dynamics. While we have previously treated 
thermal effects analytically and presented computational results 
for displaced harmonic oscillators,' our initial work on the 
molecular examples assumed a pure v" = 0 initial state, which 
corresponds to a "temperature" of 0 K. In this paper, we analyze 
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the effects of the thermal vibrational distribution on the ground 
electronic state by performing the calculations with a mixed state 
consisting of a Boltzmann weighted sum of vibrational levels. 

Finally, we are constructing experiments8 to control molecular 
dynamics using our calculations as a guide to the experimental 
design. We describe the apparatus we are building to synthesize 
the optimal fields and to measure the resulting quantum control 
and discuss some of its characteristics. 

11. Theory 

In this section we review the relevant quantum control equations. 
We refer the reader to refs 1 and 2 for a more detailed derivation. 
For related work by other authors, see refs 9-14. 

We assume that two electronic potential energy surfaces, a 
ground state and an excited state, are the only states relevant to 
the dynamics. We further specialize to the case of a diatomic 
molecule and consider only its vibrational coordinate. The theory 
proceeds by choosing a target, Le., the objective of the control, 
and then calculating the optimal field that excites a wave packet 
which has the maximal overlap with the target at a selected final 
time, 11. The initial state is then propagated in the presence of 
the optimal field to determine how well the target is attained. 

We note that the theory is derived in the weak field limit (we 
treat the more general strong field case elsewhere'). However, 
this limit does not imply the limit of zero electric field but refers 
to the regime in which the molecular response is linear in the field 
strength. In this respect, the weak field limit can actually extend 
to quite high intensities. In fact, most spectroscopic observations 
to date have been performed in this limit. 

We begin with a conventional wave packet propagation in the 
absence of the field. The time-propagated wave packet on the 
excited state can be written as 

Ilt,(t)) = e-i("a*/,)'/hl+,O(O) ) (1) 

I&W = PIY'') (2) 

In this equation He is the excited-state Hamiltonian, and the 
initial state I&o)) is 

where (v") is a vibrational level on the ground electronic state 
with eigenenergy €8'. For simplicity we assume in the following 
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that the dipole moment p is a constant (Condon approximation). 
The time propagation is performed with the Chebychev method,ls 
and the Hamiltonian is discretized using the discrete variable 
representation (DVR).16J7 The time-evolving wave packet is 
stored at each time step so that the (expensive) propagation need 
only be performed once. 

The kernel of the control problem132 is the molecular response 
function M, which can be constructed in the weak field limit as 
a convolution of the time-evolving wave packet with a target 
operator A, 

Notice that Mdepends only on properties of the material and the 
target and has no dependence on the electric field. Thus 
I&)) can be stored and then recycled to study additional 
targets. In this and previous papers, we choose the target to be 
a minimum uncertainty Gaussian distribution centered at a 
particular configuration x-and momentum p at a final time t f .  
Thus the target operator, A = I@”) ( @ A ( ,  is a projection operator 
onto the target wave function @“(x),18J9 

where wqq is the variance of the target in position  AX)^). This 
equation also implies that wppwqq = h2/4, where wpp is the variance 
of the target in momentum (=(Ap)Z). @AX) is therefore a 
minimum uncertainty wave packet; that is, PXAp = h/2 .  The 
objective of the control problem is to find the electric field which 
excites a vibrational wave packet that best overlaps with the target 
at tf. A related procedure has been suggested by Averbukh and 
Shapiro2O to determine the electric field that produces an optimally 
squeezed wave packet and demonstrated for a system of displaced 
harmonicoscillators. We emphasize that eq 4 is only one possible 
choice of target and that any desired target can be expressed in 
terms of an appropriate target operator and phase-space distri- 
bution. In a polyatomic case, for example, the target operator 
might, be a projection onto a particular product arrangement. 
The target can also be an optimal intermediate wave packet which 
is then driven to a final target by a subsequent interaction with 
another optimal light field. Thus, by interacting with one light 
field to focus in phase space, and a second field to carry the 
molecule to a desired final state, the products of a reaction can, 
in principle, be controlled. 

We next proceed to find the optimal field by diagonalizing Ms, 
a symmetrized version of the M function, 

r d r ’  @(T,T’) E(?’) = XE(T) ( 5 )  

where 

@(T,T’) = [@(T’,T)]* = M(t,.-r,T--T’) (6) 
for 7’ I T .  By discretization of Ms and E on a grid of T and T‘, 

eq 5 can be recast as a conventional matrix eigenvalue equation, 

MSE = XE (7) 
In eqs 5 and 7, the eigenvalues A are the yields with respect to 
the incident field energy, and the eigenvectors associated with X 
are theoptimal fields. The eigenvector associated with the largest 
eigenvalue is therefore the globally optimal field, in the sense 
that it is the weak field which excites a wave packet that has the 
best possibleoverlap with the target at thechosen final time. This 
expression illustrates one advantage of operating in the weak 
field limit. The globally optimal field is obtained directly from 
thesolution of an eigenequation. In the strong field case, control 
equationscan bederived,1.4.el3 but they must be solved iteratively, 
rather than directly, which can involve repeating the wave packet 
propagation many times. In addition, the iterative procedure is 

not guaranteed to converge to the globally optimal field but may 
instead converge to a local extremum, especially in the (general) 
situation of many local minima with overlapping basins of 
attraction. However, strong field effects are intensely interesting, 
and we believe that both weak and strong field solutions are worth 
pursuing for computational as well as experimental reasons. 

Having obtained the globally optimal field, we next calculate 
the effect of that field on the system, which can be written in the 
weak field limit as 

Once again, the &t) quantities calculated previously can be 
re-used for this convolution. 

To determine how well we have attained our goal, we define 
an achievement function2 

The achievement a is normalized at the final time tf and is a 
dimensionless quantity with values between zero and one that 
can be used for an arbitrary weak control field. It differs from 
the yield, A, in that X is valid only for the optimal weak field and 
is scaled by the field strength, which is arbitrary in the weak field 
limit. 

The procedure outlined above gives the globally optimal weak 
field for a particular material system and choice of target. 
However, in an experiment, only a restricted universe of light 
fields can be synthesized. We have chosen as an illustration to 
fit the globally optimal field by one possible functional form that 
can, in principle, be constructed in the l a b o r a t ~ r y . ~ . ~ ~  The 
representation of this complex field is a series of Gaussians of the 
form 

where 

E J ,(t) = A ~ - l / z ( ~ - r , ) ~ / r ~ e - i ~ ~ ~ ) e - ~ ~ ~ ( ~ - r , )  (11) 
A, is the amplitude of thejth pulse, I j  is the center time of the 
j th  pulse, and weg is the difference in energy between the minima 
of the excited- and ground-state potentials. The temporal width 
of the pulse (fwhm) is (In 16)W’,. The time-dependent phase 
q( t )  can be expanded in a Taylor series containing a phase constant 
gj, center frequency i j l, as well as linear and quadratic chirps c i  
and c’j, respectively, 

pi(t) = gj + Gj(r-rj) + ‘ / , ~ ; ( t - r ~ ) ~  + 1/6~’:(t-r,)3 (12) 

For a field consisting of a single pulse, $is arbitrary and irrelevant. 
We use a conventional nonlinear fitting routine22 to find the best 
fit values of the parameters. Note that this procedure gives the 
best fit of the optimal field by a particular parameterized 
functional form. It does not, in general, guarantee that the 
parameters so obtained are those which optimize the achievement, 
a(t). We have used an alternative method which uses a conjugate 
gradient method to maximize the achievement with respect to 
the parameters2 but will not discuss the results of that optimization 
procedure further here. 

111. Robustness 
An important criterion for the success of control experiments, 

such as those under construction in our laboratory, is for the 
optimal fields predicted by the theory to be robust with respect 
to variations in the parameters. Such variations can be caused 
by inaccuracies in the theoretical model or the material description 
(Hamiltonian) which is its input, or experimental uncertainties, 
including the inability to create fields that exactly match the 
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Figure 1. Potential energy curves for the 12 ground X and excited B 
states. The target for the molecular reflectron is a minimum uncertainty 
wave packet with an incoming momentum (momentum to the left) in the 
bound region of the potential surface. The objective is to find the optimal 
field E(?)  that creates a time-evolving wave packet on the excited surface 
which best overlaps the target at a given final time tf. 

17.50- 100 200 300 400 500 

t ( fs )  

Figure 2. Globally optimal and Gaussian best fit fields for the reflectron 
at T = 0 K. (a) Intensity lE(?)12 for the optimal field (solid line) and best 
fit field (dotted line). The intensity units are arbitrary, as long as the 
weak field limit isvalid. (b) Wigner representation for theglobally optimal 
field (solid contours) and best fit field (dotted contours). 

specifications of the theoretical optimal fielda8 To test the 
robustness of our results, we analyze in this section one of the 
cases we have presented previously, the 12 reflectron? and discuss 
the effects of varying the parameters of the field. 

For the reflectron (see Figure l) ,  our chosen goal is to create 
a minimum uncertainty wave packet at  a final time of 550 fs on 
the excited B state of 12 centered at  a position = 3.72 A with 
an incoming center momentum (momentum to the left in Figure 
1) corresponding to a kinetic energy p2/2m = 0.05 eV, where m 
istheIzreducedmass. Theenergyof thetarget ( @”MaA) relative 
to the minimum of the B state potential is 2867 cm-1, placing it 
in theboundregionofthespectrum, 1853 cm-1 below dissociation. 
The shift of the bottom of the B state relative to the bottom of 
the ground X state, wcg, is 15 769 cm-1. The 1 2  potentials used 
in this work are as presented previously.2 In Figure 2 we show 
the globally optimal electric field for the reflectron and the 
Gaussian function of eqs 10-12 that best fits the optimal field. 
The parameters of the best fit field are presented in Table I. 
Figure 2a shows IE(t)I2 for the optimal and best fit fields, and 
Figure 2b shows a modified Wigner representation, 

~ , ( t , w )  = 2 R e c d ~  e-‘w~~*(t+r/2) ~ ( 1 - 7 / 2 ) e - ~ ~ / r e ~  ( I  3) 

of the optimal and best fit fields. In eq 13, the self-interference 

TABLE I: Best Fit Parameters for the Reflectron 
parameter best fit value parameter best fit value 

A 1 .o P + mea 18 580 cm-l 
r 234 fs C/ -4 .3 cm-l/fs 
r 90 fs (151-fs fwhm) C” -1.1 x 10-2cm-l/fs2 
@ 

TABLE II: Reflectron Achievements as a Function of 
Varying the Parameters of the Best Fit Field 

- 

achievement case achievement case 
globally optimal field 0.97 c‘ - c‘ X 2; e”- 0 0.64 
best Gaussian fit 0.94 c‘ - 4; c”+ 0 0.34 
c”+ 0 0.89 r + r  x 2 0.91 
c“+ <‘f 0.84 r--r/2 0.82 
c’+ 0; c”+ 0 0.46 P - 6 + 50 cm-l 0.77 
e‘+ C’X 2; e”+ 0 0.54 6 + 6 - 50 cm-l 0.79 

of the field present in the standard Wigner representation has 
been filteredout with a Gaussian window function. The parameter 
T~ is chosen to be on the order of the temporal duration of the 
pulse, and therefore its effect on the spectral bandwidth is minimal. 
The Gaussian filter has no effect on the temporal bandwidth. 

Several points are evident from Figure 2 and Table I. First, 
the optimal and best fit fields display a sizable negative chirp. 
Thus, the high-energy components of the wave packet are excited 
before the low-energy components. It is the presence of this chirp 
that causes the focusing of the wave packet at  tf. The reflectron 
operates by creating a wave packet in which the vibrational modes 
are phase-locked. This packet reflects off the soft outer wall of 
the potential in such a way that a narrow wave packet is produced 
at  the selected final time. The high-energy components travel 
‘further” than the low-energy components, to more anharmonic 
regions of the potential, where they feel less force returning them 
to the target region. Since their traversal time is longer, they 
must be created first. At tf, the high-energy components “catch 
up” with the low-energy components and interfere constructively 
to form a narrow wave packet that has maximal overlap with the 
target. 

Another point evident from Figure 2 and Table I is that the 
optimal field is quite simple, and the parameters of the best fit 
field are reasonable, given current laser technology. The spectral 
bandwidth (fwhm) corresponds to a transform limited pulse of 
21 fs. The carrier frequency of 18 580 cm-I, or 538 nm, 
corresponds to a vibronic excitation energy of 2921 cm-l above 
the zero of the B state, which is nearly, but not exactly, equal to 
the target energy of 2867 cm-1. The linear chirp of -4.3 cm-l/fs 
is of a magnitude that can be created by standard optical elements 
(gratings, prisms, etc.). Finally, we note that the achievement 
for the globally optimal field is 0.97, while the achievement for 
the Gaussian best fit field is 0.94. As can be seen in Figure 2, 
the best fit field is not a perfect match to the optimal field. In 
particular, the Gaussian form cannot reproduce the asymmetry 
in the optimal field, yet it still achieves 97% of the optimal 
achievement. This is one indication that the optimal field is in 
fact quite robust. In what follows we investigate in more detail 
the effect of variations in the parameters of the field on the 
achievement. We show the results of several such tests in Table 
11. 

As can be seen in Table I, and by the curvature of the Wigner 
representations in Figure 2, the optimal and best fit fields contain 
a quadratic chirp. While both linear and quadratic chirps are 
fairly easy to make in the laboratory, they cannot be controlled 
with absolute precision. It may also be difficult to control them 
independently. Fortunately, ascan be seen in Table 11, the effect 
of the quadratic chirp on the achievement is not dramatic. 
Eliminating it completely causes the achievement to decrease to 
92% of the optimal, and even changing its sign causes a decrease 
to only 89% of the optimal. 

As might be expected from the classical description of the 
mechanism of the reflectron described above, the magnitude and 
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sign of the linear chirp are quite important to the dynamics. 
Using a transform limited pulse, or a pulse in which the quadratic 
and linear chirps have been set to zero, we obtain an achievement 
of 47% of the optimal. Using a value of twice the optimal linear 
chirp gives an achievement of 56% of the optimal, while half the 
optimal chirp gives 66% of the optimal. However, changing the 
sign of the chirp reduces the achievement to 35% of the optimal. 
In designing an experiment, such as the pumpprobe or p u m p  
dump experiments described below, focusing a wave packet a t  a 
location that has maximum Franck-Condon overlap with the 
final state should increase the measured signal dramatically. Our 
prediction, then, is that the results will be quite sensitive to the 
linear chirp. Nonetheless, the variations in the linear chirp in 
Table I1 are substantial, and yet considerable control remains. 
This again is an indication that our results are robust to small 
fluctuations in the parameters. We also note that the achieve- 
ments listed in Table I1 for the cases in which we have varied the 
best fit parameters arelower limits to the achievements attainable 
with respect to the remaining parameters. That is, we did not 
change the linear chirp, for example, and then re-optimize the 
remaining parameters. Doing so would undoubtedly increase 
the achievement. 

The effects of altering the temporal duration of the pulse are 
not as dramatic as changing the chirp. Using twice the optimal 
temporal duration I? results in 94% of the optimal achievement, 
while a pulse of half the optimal duration yields an achievement 
of 85% of the optimal. The result of changing the temporal 
duration of the pulse while leaving the chirps fixed is to focus the 
wave packet before the target (if r is greater than the optimal 
value) or after the target (if r is less than the optimal). This 
robustness with respect to the temporal duration is encouraging, 
because one of the more difficult aspects of the reflectron 
experiment, as discussed below, is tocreate a pulse with sufficient 
bandwidth and intensity at  the desired frequency. The spectral 
bandwidth required to synthesize the reflectron pulse is not simply 
the inverseof the temporal fwhm of theoptimal field but is instead 
the bandwidth of the transform limited pulse that is the input to 
the device that makes the chirps. Thus, for the reflectron, the 
temporal duration of the required input pulse is not 151-fs fwhm 
as might be assumed from Table I, but rather 21 fs, which is the 
duration required to support the spectral bandwidth. Intense 
pulses of such duration are difficult, but not impossible, to make. 

Finally, the effect of changing the frequency shift of the optimal 
field is fairly large. A change of +50 cm-’ diminishes the 
achievement to 79% of the optima1,and -50 cm-I, to 81% of the 
optimal. The reflectron depends upon components of the wave 
packet with different frequencies and therefore different transit 
times interfering constructively in the target region. Detuning 
the carrier frequency of the dump pulse causes excitation of more 
or less high- or low-energy components and spoils the constructive 
interference. However, 50 cm-’ is a rather large frequency shift 
and provided that light of the desired frequency can be made (via 
nonlinear frequency mixing, white light generation, etc.), fre- 
quency control of much better accuracy than this should be 
attainable. 

IV. Finite Temperature 

One aspect of the dynamics not treated in our previous studies 
of the reflectronZ is the effect of finite temperature. That is, we 
assumed that I2  begins in a pure u” = 0 ground state, corresponding 
to a temperature of T = 0 K. In reality, the vibrational levels 
of the ground electronic state are usually populated with a 
Boltzmann distribution. To include the effects of finite tem- 
perature, we must calculate the effect of the optimal field on a 
mixed state rather than a pure state. In this case, the theory is 
better adapted to the density matrix formalism in which it was 
originally derived,’ rather than the Hilbert space formalism and 
Schrainger representation presented in section 11. 

In the linear or weak field regime, the molecular response 
function for a mixed state is simply the weighted sum of the M 
functions for thevibrational states that have significant population 

M = W,,,M,,, 
v” 

where W,P is the Boltzmann factor 

k is the Boltzmann constant and Tis the temperature. The M,,! 
functions are calculated as in eqs 1-3, with initial states tu”) 
representing the various u’l vibrational levels of the ground state. 
The M function is then symmetrized and diagonalized as in eqs 
5 and 6. To calculate the achievement, we use a density matrix 
formalisml-2 in which 

(16) 
wherepdt(t) = I$c(f,u”) ($e(t,J’lis thedensitymatrixon theexcited 
state resulting from excitation of the u” vibronic level of the ground 
electronic state by the field. The total density matrix p = 
,&W,PP/I. The achievement can be rewritten in a Wigner phase 
space representation as 

In eq 17, the target A@,q) in the phase space representation is 

and wppwqq = h2/4. The target in this equation is exactly the 
same as the target in eq 4, except that it is written in the Wigner 
representation, rather than the coordinate representation. 

Despite the apparent additional complexity of eqs 14-18, the 
finite temperature calculations are not much more difficult than 
the pure state case. The optimal field obtained from the M 
function of eq 14 is used to propagate independently each initial 
vibrational state lu”) in the sum. The Wigner density matrix for 
each initial state is calculated as 

1 
p,,,@,q) = -fmds e-ips$*,,,(q - s/2)  J/,,,(q + s/2) (19) 27rh -OD 

and summed with the appropriate weight Wp to form p. The 
achievement is then calculated using eq 17. Using this procedure, 
we repeated the reflectron calculation at  a temperature of 300 
K. 

We find at  T = 300 K that several eigenvalues X of the control 
eigenequation (eq 5 )  are significantly different from zero. This 
is in contrast with the T = 0 K case, in which only one eigenvalue 
is important. The Wigner representation of the globally optimal 
field at  T = 300 K is shown in Figure 3a, and the second best 
optimal field a t  T = 300 K is shown in Figure 3b. The 
achievements for these two fields are 0.91 and 0.41, respectively. 
Also plotted in Figure 3a is the optimal field for the pure uf’ = 
0 (or T = 0 K case) and, in Figure 3b, the optimal field for the 
pure uff = 1 initial state. The achievement for the uff = 1 initial 
state is 0.82, compared to 0.94 for the pure uf’ = 0 case. 

Figure 3a shows that the globally optimal fields for T = 0 K 
and T = 300 K are almost identical. The optimal fields for the 



12606 The Journal of Physical Chemistry, Vol. 97, No. 48, 1993 Kohler et al. 

19.5 

0 100 200 300 400 500 17.5 

t (fs) 

19.0 

t (fs) 

Figure 3. Optimal fields for the reflectron at T = 0 K and T = 300 K. 
Globally optimal fields for (a) T = 0 K (solid contours) and T = 300 
K (dottcdcontours). (b) Globally optimal field (eigenfunction with largest 
eigenvalue A) for a pure uff = 1 initial state (solid contours) and the 
sccond best optimal field (eigenfunction with second largest eigenvalue) 
for T = 300 K (dotted contours). 

second largest eigenvalue and for the pure Y" = 1, as shown in 
Figure 3b. are also very similar, and clearly different from the 
globally optimal T = 0 K and T = 300 K fields. The Y" = 1 
optimal field is shifted to somewhat later times and lower 
frequencies than the v" = 0 optimal field. This is partly because 
of the frequency difference between the Y" = 0 and Y" = 1 levels 
of the ground state but also partly because the Franck-Condon 
factors between these two states and theexcited state aredifferent. 
In particular, some of the higher energy components of the initial 
v" = 1 wave packet are dissociative and do not contribute to the 
control. The portion of the initial v" = 1 state that contributes 
most strongly to thecontrol has maximum Franck-Condon overlap 
at larger internuclear distances than the v" = 0 case and so requires 
less time to reach the target. The match between the Y ' ~  = 1 
optimal field and the second best optimal field is not perfect, in 
part because the eigenvector corresponding to the second largest 
eigenvalue must have a node, but these two fields are certainly 
more simialr to each other than to the v" = 0 optimal field. 

Figure 4a shows the Wigner density matrix p(p,q, t f )  resulting 
frompropagation of the wave packet in the presenceof theoptimal 
field at T = 0 K. Figure 4b shows p(p,q,tf) for the T = 300 K 
case. Also shown in the figures is the initial distribution on the 
ground state reflected onto the excited state and the target 
distribution4p.q). The T = 0 K caseclearly has a better overlap 
with the target, though the T = 300 K overlap is still large. The 
higher temperature wave packet is considerably broader than the 
T = 0 K case and does not overlap the target as well in the lower 
and higher momentum regions of the target. This is reasonable 
because some fraction of the high-energy components excited by 
the field are actually dissociative and never reach the target. 
Similarly, some of the low-energy components will not have 
sufficient time to reflect from the outer turning point and reach 
the target with the required momentum. 

The result that the T = 300 K optimal field is so similar to the 
T = 0 K field optimal field is at first somewhat surprising, 
especially since the fractional vibrational populations Wdl for v" 
= 0 and Y" = 1 at 300 K are 0.64 and 0.23, respectively. Two 
factors conspire to cause this behavior. First, as we discussed in 

x (A) 
Figure 4. Wigner wave packets p(u,x,rf), where x is the postion and D is 
the velocity, created by the globally optimal field at (a) T = 0 K and (b) 
T = 300 K. Also shown are contours of the initial density (solid contours 
centered at 2.67 A) and the target A(x,u) (dotted contours). The wave 
packet is plotted as a function of the velocity rather than the momentum 
for illustrative purposes. 

section 111, the achievement is very sensitive to the detuning of 
the excitation frequency. The vibrational constant in 12 is about 
214 cm-1, and as shown in Table 11, a detuning of 50 cm-' is 
enough to decrease the achievement considerably. Second, we 
are operating in the weak field limit, or linear regime, so the 
vibrational states cannot mix via a nonlinear mechanism such as 
Raman scattering. Thus it is not possible, for example, for 
populations beginning in the v" = 0 level to be transferred to Y" 
= 1 and then excited by the field to the excited potential surface. 
In thecaseof finite temperature, then, the optimization procedure 
has discovered a somewhat non-intuitive result. Rather than 
choosing a frequency and chirp that is intermediate between that 
of the optimal fields for the individual vibrational states, the 
control equations predict an optimal field very close to the v" = 
0 result, at the expense of exciting very little of the r" = 1 or 
higher vibrational states. The net result of the finite temperature 
is a decrease in the achievement, with very little modification to 
the T = 0 K optimal field. This again is an indication of the 
robustness of our results. 

V. Experimental Aspects 

The experimental challenges to realizing practical control over 
chemical reaction dynamics are considerable. We have empha- 
sized in this paper control of dynamics at the level of the first 
interaction with light to create a wave packet in a desired region 
of phase space. This process will in general be followed by a 
second interaction with light to achieve control over the final fate 
of the molecule (for example its reaction products). There are 
experimental difficulties to be overcome associated with both the 
synthesis of the femtosecond light fields necessary for controlling 
the dynamics, as well as the coherent detection of the resulting 
wave packet motion. Fortunately, considerable progress has been 
made recently in producing the shorter and sufficiently energetic 
pulses necessary for easier implementation of the first in te rac t i~n .~~ 

On the detection side, wave packet dynamics have been observed 
with femtosecond temporal resolution by a variety of methods 
including laser-induced fluorescence from higher lying molecular 
potential energy surfaces,24,25 and by time-resolved stimulated- 
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Figures. Schematic-diagram of amplified femtosecond titanium sapphire 
(Ti:S) laser system. 

emission spectroscopy, in which an initially prepared wave packet 
on an excited-state surface is stimulated back down to the ground 
state.26.2’ Recently, Dunn et a1.28 have observed the motion of 
Naz wave packets by detecting the time-resolved spontaneous 
emission. For both the preparation and detection of quantum 
dynamics in gas-phase sysetms, it is advantageous to have available 
pulses which are as short as possible. We focus in this section 
on synthesizing the control or preparation light fields. However, 
the same repertoire of techniques will be needed for the generation 
of probe fields. Ultrafast diffraction using short X-ray or electron 
pulses could also, in principle, provide invaluable information on 
detection of the dynamics,2.29-3’ and we are working on ways to 
produce such pulses as well. 

As discussed above, we require light fields which have 
controllable linear and nonlinear frequency chirps and which can 
be produced at  a desired center frequency. Our strategy is to 
begin with the shortest duration femtosecond pulses which we 
can make reproducibly, followed by, if necessary, nonlinear optical 
techniques for shifting the frequency of the pulses to the desired 
spectral region. Linear filtering can be used to produce the phase 
and amplitude structureof theoptimallight field. We now discuss 
briefly femtosecond pulse generation, amplification, frequency 
conversion, and pulse shaping with reference to the experimental 
apparatus we are constructing. 

We are using an amplified femtosecond titanium sapphire 
(Ti:S) laser system shown schematically in Figure 5. This system 
is based on the kilohertz chirped pulse amplifier of Salin et al.,23 
which is now commercially available from Clark-MXR, Inc. A 
Ti:S oscillator (Clark Instruments, Inc., Model NJA-4) produces 
approximately 30-fs pulses which are then stretched by using an 
all reflective pulse stretcher to 200-250 ps. The stretched pulses 
are seeded into a regenerative Ti:S amplifier pumped by an 
intracavity doubled Nd:YAG laser (Clark-MXR, Model ORC- 
1000). The high average power of this laser (as much as 40 W 
at 532 nm at a repetition rate of 5 KHz), coupled with its excellent 
energy stability (f l%), makes this an excellent pump laser. The 
laser cavity for regenerative amplification uses a wide bandwidth 
thin film polarizer (ARO, Inc.) which permits limited tuning of 
the amplified pulse frequency. Amplified pulses with as much 
as 4.2-W average power have been produced by this laser system 
at 2.5 kHz with a 40% slope efficiency. Following recompression 
with two 1200 lines/” gratings (with a throughput of 70%) the 
amplified pulse duration is currently approximately 100 fs at  
2.5-W average power. 

Ti:S oscillators currently produce the shortest pulses of any 
femtosecond oscillator, and it is now possible32 to obtain pulses 
of less than 20 fs. Shorter amplified pulses should be available 
soon, once aberrations in the pulse stretcher/compressor com- 
bination are better compensated. Recently, amplified pulses as 
short as 40 fs have been 0btained.~3 Thus, we hope to soon have 
available sub-30-fs pulses with millijoule energies from the Ti:S 
chirped pulse amplifier. 

While tunability in Ti:S regenerative amplifiers is possible 
from approximately 750-850 nm, to produce light a t  other 
wavelengths we rely on nonlinear optical techniques. Second, 
third and fourth harmonic generation can be accomplished using 
nonlinear optical crystals. In our laboratory, we have achieved 
up to 50% conversion efficiency of the infrared into the second 
harmonic by using type I phase matching in BBO or LBO crystals 
and up to 6% total conversion efficiency (or lo%, if one excludes 
reflection from uncoated optics) into the third harmonic by type 
I wave mixing in BBO. At the same time, we are able to preserve 
the femtosecond duration of the laser pulses. Femtosecond pulses 
in the UV such as these will be a possible source for producing 
ultrashort electron or X-ray pulses. 

Light in spectral regions not covered by harmonics of the Ti:S 
tuning curve can be produced by white light generation34 or by 
optical parametric generation.35 By focusing our millijoule pulses 
into fused silica substrates of varying thickness, we have been 
able to produce an extremely broad continuum spanning the 
ultraviolet to the infrared. Competing optical nonlinearities such 
as self-focusing can limit the quality of the white light pulses, but 
if the intensity of the fundamental is not too far above the white 
light threshold, excellent spatial mode quality and phase coherence 
are obtainable. Compression of white light pulses down to 16 fs 
has now been d e m ~ n s t r a t e d . ~ ~  We have also generated a white 
light continuum in fused silica using 390-nm second light from 
our laser. Due to the high pulse energy available with this system, 
we have chosen to use approximately 3% of our amplified pulse 
to generate a continuum. After frequency doubling, we use the 
remaining light to pump a dye amplifier and amplify a portion 
of the continuum. 

Finally, to realize the optical fields predicted by theory, it is 
necessary to control both the optical phase and amplitude. The 
calculations presented earlier describe pulses in which the linear 
frequency chirp is the prominent feature. Such pulses can be 
created by passing a transform limited pulse with sufficient 
bandwidth through a linear dispersive system such as a grating 
or prism pair. By adding proper lengths of bulk dispersive 
materials, it is possible to control higher phase terms in the pulse 
as well. Programmable means for synthesizing femtosecond pulses 
have also been demonstrated by using liquid crystal modulators 
to perform spectral filtering.21 Using amplitude masking in the 
pulse stretcher of a chirped pulse amplifier, we havedemonstrated 
control of pulse characteristics at  the output of the compressor. 

VI. Conclusions 

In this paper, we present an analysis of some of the factors 
relevant to the experimental observation of weak field control of 
molecular dynamics. Using the 12 molecular reflectron as an 
example, we show that the globally optimal weak field is simple 
and robust and can be well fit by a Gaussian functional form with 
parameters that we believe can be attained in the laboratory. The 
best fit to the globally optimal field achieves nearly the same 
degree of control as the globally optimal field. Varying the 
parameters of the best fit field does reduce the control, but the 
optimal field is quite robust, even to fairly significant changes in 
the parameters. 

We also showed that thermal vibrational excitation of the 
ground electron state results in slightly diminished control, but 
that the globally optimal field for I2 near room temperature has 
an achievement of 87% of the T = 0 K case. Interestingly, the 
optimal fields for T = 0 K and T = 300 K are nearly the same. 
The optimal solution, at  least a t  300 K in the weak field limit, 
is to control the Y” = 0 portion of the ground-state distribution 
as well as possible, rather than attempting to use a weighted 
mean of the optimal fields for the individual vibrational states 
to control the entire ensemble. 

The results of the theoretical calculations have inspired us to 
attempt the reflectron experiment in the laboratory. We describe 
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the apparatus that we are constructing to create and shape the 
required light fields. The experiment is challenging because it 
requires intense, short pulses with specified linear and quadratic 
chirps. Detection of the focused packet adds an additional degree 
of complexity to the experiment. 

Detection is possible by dumping to the ground state in a 
stimulated-emission pumping (SEP) type experiment, or pumping 
to a higher lying excited state, in a pumpprobe type experiment. 
The optimal probe field can also be calculated as a control problem 
in which the pump and probe fields are optimized sequentially 
or coherently to maximize an observable on the probe surface. 
The choice of this observable, as well as the required form of the 
probe field are important experimental considerations. 

Finally, we note that our calculations can be extended by a 
classical mechanical implementation of control theory. Prelim- 
inary results for the reflectron show, at least in the cases studied, 
that the classical results agree reasonably well with the quantum 
results.)’ The classical implementation is more efficient com- 
putationally and allows, for example, rotation to be included in 
the dynamics, and thus in the calculation of the M function and 
the globally optimal light fields. In addition, the classical theory 
is more practical for studying large polyatomic molecules, where 
control of chemically distinct products can be realized, and in 
treating clusters, surfaces, and condensed phases. It will not be 
appropriate when interference or tunneling is the dominant 
process. 
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