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Mode locking is predicted in a nanolaser cavity forming an effective photonic harmonic potential. The

cavity is substantially more compact than a Fabry-Perot resonator with a comparable pulsing period, which

is here controlled by the potential. In the limit of instantaneous gain and absorption saturation, mode

locking corresponds to a stable dissipative soliton, which is very well approximated by the coherent state of

a quantum mechanical harmonic oscillator. This property is robust against noninstantaneous material

response and nonzero phase-intensity coupling.
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Mode-locked (ML) diode lasers are compact sources of

short pulses with countless applications [1]. The growing

relevance of short-distance and on-chip optical communi-

cations for future computers [2] has stimulated the emer-

gence of novel ultracompact sources meeting severe energy

requirements [3]. In this respect, a milestone is the achieve-

ment of microwatt power consumption with very competi-

tive wall-plug efficiency in nanolaser diodes [4]. A crucial

role here is played by the photonic crystal (PC) confining

light within a very small volume. These optical sources can

be directly modulated [5]. Related to ML is self-pulsing,

recently achieved by coupling a PC cavity with a PC

waveguide Fabry-Perot resonator [6]. The aim of this Letter

is to introduce a new approach to ML in nanocavities,

whereby the eigenfrequencies are engineered to become

evenly spaced, as recently demonstrated experimentally

[7]. For that purpose, we introduce a model describing the

nonlinear laser dynamical behavior and look for the

conditions for robust mode locking. In particular, we show

how the peculiarities of the mode-locking process in such

nanolasers permit us to overcome the usual trade-off

between laser size and pulsing period. Moreover, we show

that the considered ML laser behaves according to the

coherent state of a quantum harmonic oscillator, thus

bridging the gap between nonlinear nanophotonics and

quantum optics.

In a Fabry-Perot cavity [Fig. 1(a)] and similar resonators

(racetracks, whispering gallery modes,...), resonance

results from constructive interference of propagating

waves. The round-trip time T is directly related to the

resonator length L through T ¼ 2L=vg, where vg is the

group velocity. If modes are locked, the cavity round-trip

time materializes into a pulse propagating back and forth

inside the cavity, suggesting a straight mechanical analogy

with a free particle bouncing between two barriers. Locking

both the longitudinal and transverse modes of a fiber laser

has been considered very recently in order to control the

spatiotemporal profile of the emitted light [8].

Here, we consider the completely different situation of a

photonic resonator made of a metamaterial with effective

parabolic dispersion ωkk and parabolic effective photonic

potential VðxÞ [see Fig. 1(b)], x denoting the spatial degree
of freedom. A laser based on such a resonator cannot be

described by conventional ML laser theory [9,10]. A

straightforward implementation of this metamaterial is a

quasiperiodic photonic structure. Indeed, Sipe et al. [11,12]

have theoretically demonstrated, using the multiple scales

method and Floquet-Bloch theory, that the dynamical

behavior of the slowly varying field envelope Aðx; tÞ of

the Bloch waves in a nonlinear medium with periodic

dielectric structure is governed by the nonlinear

Schrödinger equation. The effective parabolic dispersion

ωkk ¼ ∂2ω=∂k2 is the second order dispersion of the

normal Bloch mode. In the simplest periodic structure

Fabry-Perot

L

Harmonic OscillatorFree particle in box

L

Chirped DBR
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FIG. 1. Mechanical analogy of (a) Fabry-Perot resonator and

(b) harmonic oscillator implemented in a chirped DBR; (c) Para-

bolic dispersion in a DBR; (d) Hermite-Gaussian modes in a DBR

with parabolic potential. Green area: gain and absorber region.
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model [Fig. 1(b)], the coupled mode theory of a distributed

Bragg reflector (DBR) [13] in a waveguide with group

velocity vg relates the dispersion to the width of the

photonic band gap Δωg through ωkk ¼ 2v2g=Δωg. In gen-

eral, a PC allows control of the dispersion [14] and in most

cases, the band edge is located at a high-symmetry point in

the reciprocal space. Consequently, the dispersion is

symmetric and third order dispersion is zero. As higher

order dispersion could in principle be controlled, this

approximation is well justified within the spectral domain

of interest (see the detailed discussion in the Supplemental

Material [15]).

The Gross-Pitaevskii equation (GPE) is constructed by

adding a potential VðxÞ to the nonlinear Schrödinger

equation resulting in a linear confinement [16]. This can

be obtained by building a dielectric guiding nanostructure

with one of its parameters, for example the period a of the

confining holes, slowly varying with x in a parabolic

manner: aðxÞ ¼ a0 þ ςx2. Then, in the limit of small

changes of a, it can be conjectured that the normal modes

and ωkk are not changed, and the GPE still holds. The only

modification is that the local change of a induces a

frequency offset of the dispersion VðxÞ ∝ ½aðxÞ−1 − a−1
0
� ∝

−ςx2 with ς ¼ ð−Ω2=2ωkkÞða0=ωcÞ where ωc is the edge

of the photonic band. Hence, a chirped periodic dielectric

nanostructure results in a harmonic potential VðxÞ for the
field envelope of the normal modes near the band edge. A

multimode high-Q optical resonator with an effective

harmonic parabolic potential has been experimentally

demonstrated [7,17]. Such a structure is therefore described

by the linear and nondissipative limit of the GPE equation,

written here in a form such that the dispersion ωkk also

appears in the potential term

i
∂A

∂t
þ 1

2
ωkk

∂2A

∂x2
−

1

2

Ω
2

ωkk

x2A ¼ 0: ð1Þ

This equation is strictly equivalent to quantum mechanical

harmonic oscillator and the envelope is described by

a linear superposition of the Hermite-Gaussian eigenmodes

ΨnðxÞ with equally spaced eigenfrequencies ωn ¼
ðnþ 1=2ÞΩþ ωc:

Aðx; tÞ ¼
X

∞

n¼0

CnðtÞe−iωntΨnðxÞ: ð2Þ

If the modes could be phase locked such as to form the

optical equivalent of the coherent state of the quantum

harmonic oscillator, then the wave packet would be

described by a Gaussian pulse with velocity and position

obeying a sinusoidal evolution without deformation and

oscillation period T ¼ 2πΩ−1 corresponding to the fre-

quency separation Ω=2π. The case of the effective

harmonic potential is therefore of particular interest in

the context of laser.

Hermite-Gaussian modes are very different from plane

waves as they are spatially inhomogeneous. This has a

profound implication in their nonlinear interaction.

Moreover, contrary to the Fabry-Perot cavity, the oscilla-

tion period does not depend on the size of the oscillator

but on the effective photon mass m−1

eff ¼ ℏ
−1∂2

kω≡ ℏ
−1ωkk

of the particle and the stiffness of the potential, which can

be expressed as VðxÞ ¼ 1

2
meffΩ

2x2=ℏ. The analogy is

sketched in Fig. 1. As the fractional photonic band gap

of PC cavities is typically Δω=ω ≈ 20% [18] and the group

velocity in semiconductor waveguides is about c0=4, the
model of a distributed Bragg reflector leads to an order of

magnitude estimate of the dispersion ωkk ¼ 45 m2 s−1.

Setting Ω=2π ¼ 100 GHz leads to a length scale for the

Hermite-Gaussian modes xΩ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ωkk=Ω
p

, which is equal to

8.4 μm. The full width at half maximum of the fundamental

mode is then 2
ffiffiffiffiffiffiffi

ln 2
p

xΩ ≃ 14 μm and the size of a cavity

containing N modes scales as 2
ffiffiffiffi

N
p

xΩ [Fig. 1(d)].

We investigate now whether such a comb of modes can

passively mode lock when this harmonic resonator contains

or is hybridized to an active medium providing gain and

saturable absorption. The laser nonlinear dynamical behav-

ior is then described by the modified GPE:

i
∂A

∂t
þ 1

2
ωkk

∂2A

∂x2
− VðxÞA − iH1ðjAj2ÞA ¼ 0: ð3Þ

H1 holds for the dissipative terms and the nonlinear terms

that depend on jAj2:

H1 ¼
1

2
gðx; tÞð1 − iαgÞ −

1

2
aðx; tÞð1 − iαaÞ −

1

2
γ0; ð4Þ

where gðx; tÞ and aðx; tÞ are the time and space dependent

gain and saturable loss coefficients associated with the

Henry factors αg and αa, respectively, and γ0 holds for the

intrinsic losses. Here, the gain is assumed spectrally flat,

which is realistic for quantum well and quantum dot active

materials and a signal bandwidth about 1 THz.

For simplicity, we first consider the case where saturation

of the gain and losses is instantaneous, leading to

gðx; tÞ ¼ g0ðxÞ
��

1þ jAðx; tÞj2
Isat;g

�

; ð5Þ

with a similar expression for aðx; tÞ. Here, Isat;g and Isat;a
are the saturation intensities for the unsaturated gain and

absorption coefficients g0 and a0, respectively. We can then

numerically solve Eq. (3) for different values of the

parameters, and for different values of the widths of the

windows into which g0 and a0 are supposed to be

homogeneous. A first example is given in Fig. 2, which

was obtained when the gain and saturable absorber share
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the same region of width w ¼ 5xΩ [see Fig. 1(d)]. The

parameter values are γ0 ¼ 1010 s−1, rg ¼ g0=γ0 ¼ 5.5,

ra ¼ a0=γ0 ¼ 9, and RI ¼ Isat;g=Isat;a ¼ 5. Such a value

of the internal (nonsaturable) losses γ0 is small, but feasible

for a semiconductor cavity [19]. We also suppose here that

αg ¼ αa ¼ 0. Equation (3) is solved starting from random

initial conditions, and the behaviors of the different modes

are obtained by projecting Aðx; tÞ on the corresponding

ΨnðxÞ. Figure 2(a) shows the evolution of the normalized

intensities of the first six modes, which are the only ones

that reach significant steady-state intensities after a few tens

of nanoseconds. To determine whether this multimode

behavior corresponds to ML operation, we plot the evo-

lutions of the relative phases Δϕn ¼ 2ϕn − ϕn−1 − ϕnþ1

between the modes for n ¼ 1;…; 4 in Fig. 2(b). Here, ϕn is

the argument of the mode expansion coefficient Cn of

Eq. (2). One can clearly see that after less than 10 ns all the

lasing modes are phase locked. Once steady state is

reached, i.e., after about 30 ns, the laser behavior is shown

in Fig. 2(c).

Closer inspection of the spatiotemporal behavior reveals

a wobbling soliton [20], described by sinusoidally varying

width and position. These quantities are plotted, normal-

ized to xΩ, in Fig. 2(d) and coincide almost exactly, except

for small residual oscillation (<1%), with the superposition

of the linear eigenstates [Eq. (2)], describing the coherent

state of the harmonic oscillator in quantummechanics. This

is further apparent in Fig. 2(e) where the amplitude and

phase of the field at a fixed time are compared with the

coherent state. More detailed analysis is given in the

Supplemental Material [15].

The nonlinear laser behavior undergoes bifurcations

separating different possible behaviors. Colors in Fig. 3(a)

represent the regions, in thefrg ¼ g0=γ0; ra ¼ a0=γ0gplane,
where different steady-state behaviors dominate. The sol-

itonlike [20] pulsed operation of Figs. 2(c)–2(e) does not

only require a sufficient amount of gain, but also a sufficient

amount of saturable absorption. Our choice for RI ¼
Isat;g=Isat;a ¼ 5 larger than 1 is also extremely important to

obtain this behavior.

Although different shapes can be imagined for the gain

and absorber, we consider only identical homogeneous gain

and saturable absorption windows of width w centered on

the potential minimum [green area in Fig. 1(d)]. To

investigate the influence of w, we launch the simulation

40 times, starting from random initial fields, for each value

of w ranging from 0 to 6xΩ. The system exhibits multi-

stability: it can reach different steady-state regimes for a

given set of parameters, depending on the initial values. To

gain some statistical insight into this multiattractor behav-

ior, Fig. 4(a) displays the occurrences of each regime vs w.
For w increasing from 0 to 3.2xΩ, the laser is successively
below threshold, in single-mode regime, and finally emits

the soliton solution of Fig. 2(c). Interestingly, in the range

3.2xΩ ≲ w≲ 3.9xΩ, soliton emission is the only stable

solution. In this example, multistability happens for values

of w larger than 3.9xΩ. For example, for w ¼ 6xΩ, Fig. 4(a)
shows that the laser dynamical behavior can fall into three

different stable ML regimes, in which one, two, or three

0 5 10 15 20 25 30
Time (ps)

-2

-1

0

1

2

(a)

(c)

(d) (e)

(b)

FIG. 2. Laser behavior for instantaneous gain and absorber

saturation with common widths equal to 5xΩ. (a),(b) Transient
evolutions of (a) normalized intensities and (b) relative phases

between the modes after the simulation is started from random

mode amplitudes. (c) Evolution of the intracavity intensity in

steady-state regime. (d) Positions of the coherent state (black

dashed line) and the soliton (solid red line) and soliton width

(solid cyan line) normalized to xΩ. (e) Amplitude (left axis, solid

red line) and phase (right axis, solid green line) of the soliton at a

fixed time and corresponding coherent state (dashed line) with

amplitude 2.2Ig.

(a) (b)

FIG. 3. (a) Phase diagram: different steady-state regimes vs

unsaturated gain and absorption normalized to γ0. White hatched

region: different unlocked mutimode regimes. (b) Corresponding

false color plots of the laser intensity spatial distribution vs time,

for different regimes: (0) below threshold; (1) solitonlike pulse;

(2) mode n ¼ 1 alone; (3) mode n ¼ 2 alone; (4) simultaneous

oscillation of modes n ¼ 0 and n ¼ 2.
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pulses oscillate inside the cavity. Figure 4(b) gives exam-

ples of these two last behaviors. The numerical study

reveals that the width w of the gain region is the most

important parameter determining the number of locked

modes and therefore the spatial amplitude of the pulse

oscillation, which is close to w.
Real semiconductor gain and saturable absorption media

have typical response times τg and τa ranging from the

picosecond to the nanosecond domain [21], i.e., not always

negligible compared with the photon lifetime in nano-

cavities or with picosecond pulse durations as in Fig. 2(c).

To investigate the role of such finite lifetimes, we have

solved the modified GPE Eq. (3) with Eq (5) replaced by

∂gðx; tÞ
∂t

¼ −

gðx; tÞ − g0ðxÞ
τg

−

jAðx; tÞj2
τgIsat;g

gðx; tÞ; ð6Þ

with a similar equation foraðx; tÞ. Thevalues of the lifetimes

τg ¼ 1 ns and τa ¼ 10 ps [22,23] we choose are those

typically mentioned in the literature for InP quantum well

lasers [24]. Surface recombination has been recently

improved in nanostructured lasers owing to advanced

passivation techniques such that the carrier lifetime is a

few nanoseconds [4]. We also take a ratio of the saturation

energies RE ¼ Isat;gτg=Isat;aτa ¼ 25 from the literature [23].

This leads to the results of Fig. 5, computed with

αg ¼ αa ¼ 0. The phase diagram of Fig. 5(a) exhibits

new regimes, such as passivelyQ-switched operation, either

in unlocked (point labeled 1) or Q-switched ML regime

(point labeled 2). However, with a proper choice of a0 and
g0, one can still obtain cw passively ML operation, as

evidenced by the red region of Fig. 5(a). Figures 5(b)–5(d)

show one example of such a behavior. The solution is again

very close to a coherent state, although the shape of the pulse

gets slightly distorted close to its turning point [see Figs. 5(b)

and 5(c)]. Between these points, Fig. 5(d) shows that the

spatial pulse shape is quite well adjusted by a coherent state.

Further discussions of discrepancieswith respect to a perfect

coherent state are provided in the Supplemental Material

[15]. Moreover, a simulation given in Sec. V of the

Supplemental Material [15] indicates that the multistability

of Fig. 4 seems to disappear for finite response times, which

is positive for practical applications of such nanolasers.

A nonzero Henry factor, coupling the phase and intensity

variations through carrier dynamics, is known to be a

source of instability for passive ML [25]. However, the

laser bifurcation diagram shows that ML, similar to Fig. 5,

can still be obtained with nonzero values of αg and αa at the

cost of an increase of the pumping (see the Supplemental

Material [15]).

Experimental implementation of the harmonic cavity

nanolaser can be envisaged as follows. We consider a

photonic crystal made of InP and containing InGaAsP

quantum wells to provide enough gain [5,26] for lasing.

It has also been demonstrated that the laser can be operated

well above threshold before any saturation occurs (I > 5Ith
[4]), meaning that the unsaturated gain can exceed many

times the nonsaturable losses. A saturable absorber can be

implemented in many ways, for instance like in Ref. [27].

The harmonic photonic potential is obtained through a

suitable design, for instance using a bichromatic lattice as

an alternative to a chirped period [7]. As shown in Fig. 5(a),

mode locking could be observed with a gain exceeding

saturable losses by a factor close to 5, which is achievable

since theQ factor of InP photonic crystals is about 105 [28].

The large photonic band gap of these structures results in a

large effective photon mass such that the typical cavity size

for 100 GHz period would be less than 100 μm. Thus, the

essential requirements for building an extremely compact

ML integrated nanolaser are met by the current state-of-the-

art of nanolaser technology. Balanced extraction of power

(a) (b)

FIG. 4. (a) Percentage of occurrences of the different regimes,

when the simulation is run 40 times with random initial con-

ditions for each value of the gain and saturable absorption

window width w. Other parameters are RI ¼ 5, g0 ¼ 5.5γ0,

a0 ¼ 9γ0. (b) False color plot of laser intensity vs x and t in

two examples of regimes labeled (1) and (2) in (a), obtained for

w ¼ 6xΩ. They, respectively, correspond to oscillation of two or

three pulses inside the cavity.

0 5 10 15 20
-2

-1

0
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(c) (d)

Time (ps)

FIG. 5. Laser behavior for slow gain and absorber saturations.

(a) Phase diagram: different steady-state regimes vs unsaturated

gain and absorption normalized to γ0: (0) below threshold;

(1) single-mode Q-switched operation; (2) Q-switched ML

operation; (3) continuous-wave mode locking. (b),(c),(d) Stable

ML behavior. Same as Figs. 2(c)–2(e) corresponding to rg ¼ 70

and ra ¼ 10 in area number (3).
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from all the locked modes could be achieved with a

geometry like that in [4].

In conclusion, a novel concept for ML in ultracompact

semiconductor lasers has been proposed, based on a

harmonic potential to confine light. This maps the optical

cavity into a quantum mechanical harmonic oscillator, with

evenly spaced eigenfrequencies, an essential requirement

for ML. The nonlinear behavior is described by the Gross-

Pitaevskii equation with a parabolic potential and nonlinear

terms describing gain and absorption. ML occurs with

Hermite-Gaussian modes, which are very different from

waves of usual resonators, as they are stationary modes

with a strongly inhomogeneous spatial distribution of

energy. Provided that saturable gain and absorption overlap

with all the modes, ML occurs over a broad area in the

phase space, corresponding to the emergence of dissipative

soliton and multisoliton solutions. In the limit of instanta-

neous absorption and gain saturation, the dissipative soliton

is well described by the coherent state of a quantum

mechanical oscillator, namely a Gaussian envelope oscil-

lating without deformation. ML period is controlled by the

design of the photonic potential, and not by the cavity

length. For a fixed ML period, here 10 ps, the linear size of

our cavity is 80 μm, about five times more compact than for

a Fabry-Perot laser made with the same material. Finally,

slow absorption or gain response still allows ML and most

features of the coherent state are retained. Thus, the concept

of ML based on Hermite-Gaussian modes in photonic

nanostructures could solve the long-standing problem of

miniature periodic pulsed sources [26,29]. Moreover, the

laser behaving like a quantum harmonic oscillator makes a

link between nonlinear nanophotonics and quantum optics,

opening the way to interesting ramifications regarding

quantum photon statistics in such ML nanolasers.

Furthermore, analyzing the full bifurcation diagram [30]

is interesting from the viewpoint of nonlinear dynamical

systems theory.
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