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Mode regularization of the configuration space path integral in curved space
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The path integral representation of the transition amplitude for a particle moving in curved space has
presented unexpected challenges since the introduction of path integrals by Feynman fifty years ago. In this
paper we discuss and review mode regularization of the configuration space path integral, and present a three
loop computation of the transition amplitude to test with success the consistency of such a regularization. The
key features of the method are the use of the “Lee-Yang” ghost fields, which guarantee a consistent treatment
of the nontrivial path integral measure at higher loops, and an effective potential specific to mode regulariza-
tion which arises at the two loop order. We also perform the computation of the transition amplitude using the
regularization of the path integral by time discretization, which also makes use of Lee-Yang ghost fields and
needs its own specific effective potential. This computation is shown to reproduce the same final result as the
one performed in mode regularizatidis0556-282(99)02216-X]

PACS numbgs): 04.62:+v, 11.15.Bt

I. INTRODUCTION cuss a method of defining the path integral by employing
mode regularization as it is by now standard in many calcu-
The Schrdinger equation for a particle moving in curved lations done in quantum field theory. The methods extends
space with the metrig,,,(x) has many applications ranging the one employed by Feynman and Hibbs in discussing mode
from nonrelativistic diffusion problem&@escribed by a Wick regularization of the path integral in flat spaldg. It has
rotated version of the Schilinger equationto the relativis- been introduced and successively refined in Rffs-§]
tic description of particles moving in curved space-time.where quantum mechanics was used to compute one loop
However, it cannot be solved exactly for an arbitrary back-trace anomalies of certain quantum field theories. The key
ground metriag,,,(x), and one has to resort to some kind of feature is to employ ghost fields to treat the nontrivial path
perturbation theory. A very useful perturbative solution canintegral measure as part of the action, in the spirit of Lee and
be obtained by employing the well-known ansatz introducedrang[3]. These ghost fields have been named “Lee-Yang”
by De Witt[1], also known as the heat kernel ansatz. Thisghosts and allow us to take care of the nontrivial path inte-
ansatz makes use of a power series expansion in the time gfal measure at higher loops in a consistent manner. The path
propagation of the particle. The coefficients of the powerintegral is then defined by expanding all fields, including the
series are then determined iteratively by requiring that theyhosts, in a sine expansion about the classical trajectories
Schralinger equation be satisfied perturbatively. and integrating over the corresponding Fourier coefficients.
Equivalently, the solution of the Schitimger equation can The necessary regularization is obtained by integrating all
be represented by a path integral, as shown by Feynman fiftyourier coefficients up to a fixed modi¢, which is eventu-
years agd2]. One can formally write down the path integral ally taken to infinity. A drawback of mode regularization is
for the particle moving in curved space and check that thehat it does not respect general coordinate invariance in tar-
standard loop expansion reproduces the structure of the hegét space: a particular noncovariant counterterm has to be
kernel ansatz of De Witt. However, the proper definition ofused in order to restore that symmef®]. General argu-
the path integral in curved space is not straightforward. Inments based on power countifguantum mechanics can be
fact it has presented many challenges due to complicationdiought as a superrenormalizable quantum field thepiys
arising from(i) the nontrivial path integral measuf8] and  the fact that the correct trace anomalies are obtained by the
(ii) the proper discretization of the action necessary to regudse of this path integral suggest that the mode regularization
late the path integral. A quite extensive literature has beedescribed above is consistent to any loop order without any
produced over the years addressing especially the latter poiatiditional input.
[4]. As usual when dealing with formal constructions, it is a
In this paper we short cut most of the literature and disgood practice to check with explicit calculations the pro-
posed scheme. It is the purpose of this paper to present a full
three loop computation of the transition amplitude. The re-
*Present address: Dipartimento di Fisica, Univerdit®ologna,  sult is found to be correct since it solves the correct Schro
via Irnerio 46, 1-40126 Bologna, ltaly. Email address: dinger equation at the required loop order. This gives a pow-
bastianelli@bo.infn.it erful check on the method of mode regularization for
"Email address: corradin@grad.physics.sunysb.edu quantum mechanical path integrals on curved space. In addi-
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tion, we present our computation in such a way that it can be 9 1

easily extended and compared to the time discretization —E‘I’%—EV%V(X) v (4)
method developed in R€f9], which is also based on the use

of the Lee-Yang ghosts. This method requires its own speang corresponding euclidean action

cific counterterm(also called effective potentjato restore

general coordinate invariance. As expected both schemes 1 o

give the same answer. 5[X]=f dtl 59, )X X"+ V(X) |. )

The paper is structured as follows. In Sec. Il we review

the method of mode regularization and discuss the effectivis mentioned in the Introduction the heat equation can be

potential specific to this regularization. In Sec. Ill we presentsg|ved by the heat kernel ansatz of De Wit;

a three loop computation of the transition amplitude. Here

we make use of general coordinate invariance to select Rie- 1 <

mann normal coordinates to simplify an otherwise gigantic P(x,y,t)= (2—,[)D,7e*"(xvy)“2 a,(x,yt" (6
computation. We check that the result satisfies the Schro . n=0

dinger equation at the correct loop order. Moreover, from

this result one can extract the leading terms of theWhICh depends parametrically on the poyit that specifies

" _ oD _ 7~
Seeley—De Witt coefficientsg,a;,a, for noncoinciding the boundary conditionl’(x,y,0)=5"(x—y)/vo(x). Here

: : : . X,y) is the so-called Synge world function and corre-
points, as defined in the forthcoming E&). In Sec. IV we o S ,
extend our computation to the time discretization scheme§Por;ds to half the squaretq geodes”m ddlsstanlce. 'I[')he \c/\(;.(;:tfﬂ-
This is found to compare successfully with the results previ-C'enff.S .a”%(’y)d are ;Otme |.mej bca Ie ; eetﬁy— e Wi
ously obtained in Sec. Ill. Finally, in Sec. V we present ourCOCTNICIENtS and are determined by piugging the ansdy

into Eq. (4) and matching powers df

conclusions and perspectives. In the Appendix we present A o . .
technical section with a list of loop integrals employed in the Now we want to describe In detail how to get the solution

: : ; f EQ. (4) by the use of a path integral which employs the
text. In particular, we discuss how to compute them in modegIassical action in Eq(5). Following Refs.[6-8] we write

regularization as well as in time discretization regularization. o . 4
g g the transition amplitude for the particle to propagate from the
initial point x/ at timet; to the final pointx{ at timet; as

Il. MODE REGULARIZATION follows:

The Schrdinger equation for a particle of massmoving

. . . . . x(0)=x¢ _ 1
in a D-dimensional curved space with metny, ,(x) and (X |t t-)E(x"le*BH|x-">=f Dx exp{——s}
coupled to a scalar potenti®l(x) is given by o f ' X(-1)x, B
5 (7)
Iﬁﬁqf:H\I’, (l) where
where S=8x,a,b,c]
ﬁZ . JO d 1 iy Ka? 1 bhc?
H= — —— V21 V(x) @) =, Tigw(x)(x x"+a*a”+b#c?)
2m
with V2 the covariant Laplacian acting on scalars. It can be + B2 V(X)+Vyr(¥)]], (8
obtained by canonical quantization of the model described
by the classical action 1 1
m o VMRzgR_ ﬂgﬂvgaﬁgyé‘r,uayr Vﬁ61 (9)
Sl x]= f dt 5 9,, (X)X X" = V(x) ()
Dx=DxDaDcDc. (10)

when ordering ambiguities are fixed by requiring general co-

ordinate invariance in target space and requiring in additiod-or commodity we have shifted and rescaled the time param-

that no scalar curvature term be generated by the orderings &ter in the actiont=t;+ g7 with 8=t;—t;, so that—1

the quantum potentidIFor convenience we will Wick rotate < 7<0. Note that the total time of propagatighplays the

the time variablet— —it and setm=#=1 to obtain the role of the Planck constarit (which we have already set to

following heat equation: 1) and counts the number of loops. In the loop expansion
generated bys the potentialsv and V\z start contributing

'One could be more general by coupling the particle also to a
vector potentialA ,(x). It is simple to do so, since mode regular- 2lt is also customary to redefine tlag(x,y) by extracting a com-
ization will respect the corresponding gauge invariafick For mon factorA¥?(x,y), whereA(x,y) is a scalar version of the so-
simplicity we setA ,(x) =0 in this paper. called Van Vleck—Morette determinant.
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only at two loops® The full actionS includes terms propor- whereA is a constant. Note that this fixes the path integral
tional to the Lee-Yang ghosts, namely the commuting ghostfor a free particle to

a* and the anticommuting ghodltg* andc*. Their effect is 1

to reproduce a formally covariant measure: integrating them f Dx eXF{ — _Sfree} —Ae §2/2ﬁ, (15)

out producesDx=11{detg,,,[x(7)]}*?dPx(7). As we will B

discuss, mode regularization destroys this formal covariancevhere

Nevertheless general covariance is recovered thanks to the 0 1

effects of the potentiaV/r directly included in the action Sfree:f dr= 8, ,(X*X"+a a’+ b c"). (16)

(8). With precisely this counterterm the mode regulated path -1 2F

integral in Eq.(7) solves the equation in E¢4) in both sets It is well-known thatA=(278) 2 however, this value

OT yanables ) agd &".ti) and with the boundary con- can also be deduced later on from a consistency requirement.
dition <x#,t|x{‘,t>= &~ (X = x[)INg(x). The way to implement mode regularization is now quite
For an arbitrary metrig,,,(x) one is able to calculate the ¢|ear: |imiting the integration over the number of modes for
path integral only in a perturbative expansiondrand in the  each field to a finite mode numbbt gives the natural regu-
coordinate displacements® about the final poink{': ¢*  Jarization of the path integral. This regularization resolves
=x{'—x{". The actual computation starts by parametrizing the ambiguities that show up in the continuum limit.
The perturbative expansion is generated by splitting the
XH(7)=Xpo(7) +0H(7), (1) action into a quadratic pa,, which defines the propaga-
tors, and an interacting pa8,;, which gives the vertices.
We do this splitting by expanding the action about the final
point x{* and obtain

wherexg(7) is a background trajectory amg(7) the quan-
tum fluctuations. The background trajectory is taken to sat
isfy the free equations of motion and is a function lineatin
connectingx!* to xf in the chosen coordinate system, thus S=S,+S5,=S,+S3+ S+ -, 17

enforcing the proper boundary conditions
g prop y where

Xby(T) =X} — 7. 12 o 1 .
= dr - g,,(&*&"+qg#*g"+a*a”+b*c”), (18

Note that by free equations of motion we mean the ones = f—l 2 9ul7E"Hata )
arising from(8) by neglecting the potentialé+ Vg and by
keeping the constant leading term in the expansion of the 0 1 a_ za WLV g gy

: . _ : Ss= | d75 d40,,(Q%—£7T)(£#E"+ 0"
metric g,,(x) around the final poinkf’, thus making the -1
space flat. Obviously, one could also use the exact solution

of the classical equations of motion as background trajectory, +aka"+b*c"-2g"£"), (19
but this would not change the result of the computation. It 0 1

' [ izati = - aqBy grgBr2_pqagh
would correspond just to a different parametrization of the S, J dr 4(9af9ﬁ9,w(q qP+ g% qe&Pr)
space of paths. -1

The quantum fieldg*(7) in Eq.(11) should vanish at the

time boundaries since the boundary conditions are already X(§46"+ g q"+aka"+ b c"—20"¢")

included inxgy( 7). Therefore they can be expanded in a sine
series. For the Lee-Yang ghosts we use the same Fourier +BAV+VyR) |- (20)
expansion since the classical solutions of their field equa-
tions area*=b*=c*=0. Hence In this expansion all geometrical quantities, suclgas and

. 349, as well asv andVyr, are evaluated at the final point
. xf, but for notational simplicity we do not exhibit this de-
® — M fo
¢H(7) ,Z‘l $mSin(mm7), (13 pendenceS, is taken as the free part and defines the propa-

gators which are easily obtained from the path integral
where ¢ stands for all the quantum fieldg*,a*,b*,c*. The

~ w v =—Bg*"(xs)A(T,0),
measureDx in Eq. (10) is now properly defined in terms of (@*(na‘to)) AT (XA (T.0)
integration over the Fourier coefficiengs’ as follows: (a¥(7)a"(o))=pg""(xs) "A(7,0), (21)

Mo D (b#(7)c*(0))=-2B9""(x;) "A(7,0),

DXZDqDanDCZ,\LTM A ngl };[1 m deydandbrdCn,  \yherea is regulated by the mode cutoff
19 M

2
A(r,0)= D, — —posin(amn)sin(ama) | (22)

3Reintroducing’ one can see that the classical poterMahust  and has the following limiting value fo —o:
be of order.® while the counterternVyy is a truly two loop effect
of order#?. Al(r,0)=7(c+1)0(t—0)+a(r+1)8(c—7). (23
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Note that we indicat€ A(7,0)=(d/d7)A(7,0), A'(7,0) where the angle brackets denote the averaging with the free
=(dldo)A(7,0) and so on. Details on the properties of actionS,, and amount to use the propagators given in Eq.
these functions are given in the Appendix. (21) in the perturbative expansion. Note that in the last line
Now, the quantum perturbative expansion reads of the above equation we have kept only those terms contrib-
~ 1 uting up to two loops, i.e., up t®(B), by taking into ac-
(X e xf 'ti>:f Dx ex;{ - ES count thaté#~0O(B?), as follows from the exponential ap-
pearing in the last line of Eq24) after one averages ovét.

=Ae (1209, 8"¢" o= (L) Sny) Note also that having extracted the coefficigntogether
with the exponential of the quadratic acti® evaluated on
:Ae—(llzﬂ)gwéugv( < 1—183— 154 the background trajectory implies that the normalization of
B B the left over path integral is such thét)=1.
1 Using standard Wick contractions and going through a
+ WS§> +O(B3’2)). (24)  lengthy calculation one gef8]
1 11 win ey
< ES:S - ﬁ4 aguvg g g (25)
1 B 1
<— ES4> =da0p9,u1] 57(9"79 @ —grag”F)— —(9“”§“§B+ gerErEr—2gragrer) - 5 1—25"6 E°¢P |+ B(V+Vir),

(26)
1 2 ﬂ afuvaAp ap~uv~BN afB N ~vp ap~BurVN ap~BNNVp 1 MN N VP ga ¢fB
25253 = %a9us7590| 59779 G — 497G~ 69" g g™ + 49T + 497 ™) + 751079 E"E
+2(g*Pgrt— g™ gHh) Eer+(29°hgPr—grPghr) £4¢7 + (2g#P g — 49 gPP) €]

1 1
+E%(gaﬁé“fvfxé’)—49“A§“§”§B§p+49’“§“§ §ﬁ§p)+’?— agrerePeher|. (27)

This gives the transition amplitude in the two-loop approxi-wave function¥ (x; ,t;) and the measurgg(x;) in Eg. (29
mation. about that point, performs the integration oaix/=dP¢~,

To test its consistency one can use it to evolve in time amnd matches the various terms. The leading term fixes
arbitrary wave function¥ (x,t)

Y =A(27B)°P?¥ A= (2mpB) P~ (29
W (xs,t)= | dPxVg(x)(xF t|xE W (x; L) (28)
and the terms of orde8 give
and verify if ¥(x;,t) solves the correct Schidimger
equatiort* Since the transition amplitud@4) together with 1
the resultg25), (26), and(27) is given in terms of an expan- Bl — ¥+ V¥ —V¥|=0. (30
sion around the final pointx¢,t;), one Taylor expands the 2

This last equation means that the wave functibrsatisfies

“The factor\g(x) appearing in Eq(28) is suggested by the ex- the correct Schiinger equation(4) at the final point

pression of the path integral in Ef) which is formally a scalar for (xf ’t.f)'. )

Vyr=0. However, general coordinate invariance is broken by Itis interesting to note that the countertelyyr appears
mode regularization, and recovered thanks to the effects of th@nly in the last line of Eq(26). Actually the value of the
countertermVyg . Therefore the measure appearing in E2g)  counterterm reported in E¢9) has been deduced in R¢8]
should be considered as an ansatz which is verified, for example, B9y imposing that the transition amplitude would solve Eq.
the calculations presented in the next section. (30). General arguments can then be used to show that this
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counterterm should be left unmodified at higher loops. In In general, the terms contributing to the transition ampli-
fact one can consider quantum mechanics on curved spactsle up to three loops are given by

as a super renormalizable one-dimensional quantum field

theory, and check by power counting that all possible super-<X,L ] x* t.):Ae*(1’%)9uv§"§v<e*(1’:3)5im)

.. . . IR { EATRE R

ficial divergences can only appear at loop order 2 or less in

B. In the next section we are going to check that it is so ey v 1

indeed, expelling doubts which have sometimes been raised =Ae (198" (<1—/—3(33+ S4+ S5+ Sp)
that mode regularization would be inconsistent at higher

loops. Thus one can consider mode regularization as a viable 1 ) 1

way of correctly defining the path integral in curved spaces. +2_[32[(S3+S4) +25355]— 6_,6’3(83

2 1 5/2
Ill. THE TRANSITION AMPLITUDE AT THREE LOOPS T35S+ W$> +O(B )> ' (32
In this section we want to check E@8) at the next order
in B, which is equivalent to showing that the transition am-
plitude computed by the path integral satisfies the Schro
dinger equation not only at the poimnt{(,t;) but in a small
neighborhood of it. This computation can be quite lengthy if

Clearly the computation would be quite complex in arbitrary
coordinates. Fortunately, in Riemann normal coordinates
many terms are absent

done in arbitrary coordinates. To make it feasible we select a S3=0, (33
useful set of coordinates: the Riemann normal coordinates
centred at the poinkf. In such a frame of reference the 0 1 wuB , ,
coordinates of an arbitrary point* contained in the neigh- ~ S4= f_ldT g RaupX "7 (x"x"+a’a +b*c”)
borhood of the origin are given by a vectt(x) belonging
to the tangent space at the origin. This vector specifies the 5
unique geodesic connecting the origin to the given priht +B°(V+Vur) |, (34)
in a unit time. In such a frame of reference the coordinates of
the origin are obviously given bg*(x;)=0. In what follows o 1
we _W|II use Rl_emann normal _coordlnat(_as which we keep de- Sszf dr —V.R, Vﬁxaxgxy(kﬂkuaﬂaubﬂcu)
noting byx* since no confusion can arise. -1 |12 7 em
The expansion of the metric around the origin is given by
(see, e.g., Ref.7] for a derivation B9, (V Vi) |, (35)
1 B
g,uv(x):g,uv(o)—’_ §RaMVﬁ(O)X X 0 1 1 -
S6: j,ldT IOV'}’V&RQMVB_FZSRQF-UBRVV F)
1
+ 5 VoRauus(0)X xPx X XOXPXYXO(XMX" + a*a”+ bHc”)
1 2 A
- + = X%P,d5(V+Vyr) |- (36)
+ %V'yvﬁRa,ule(o)_’_ZsRa,uolBR'yV 5(O)> 2 A
X XUXBX YO+ O(X5). (31  Note that all structures such &,,,s, V, Vur, and de-

rivatives thereof are evaluated at the origin of the Riemann
Note that the coefficients in this expansion are tensors besoordinate system, but for notational simplicity we do not
longing to the tangent space at the origin. This is a propertyndicate so explicitly. The computation is still quite lengthy

of Riemann normal coordinates. and we get
1 1 B
~ 554) =g Rapt "€ 11— GR 12— BV+Ving), (37
1 1 " B B
- ESS =~ 15V Rap €7 I3+ 5V REY 4= 59, (V+ V) 7, (38)
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1 1 1 my | gagB ey gd B 2 agp 1 "
_ESG = ZOVVV(SRaB+Z5RaMVﬁRy ) g f g f |5_ IOV Raﬁf g Iﬁ_ﬁ Z_()(VaVBR+V VaRB/J,)
2 v| gaegf v 1 agB B 28
+ ISRQ/.LVBR# f f |7_IB OV’U'V Rauvﬁ+ 5 RBM g g (I 6~ I 7) - %RQMV)\RBM
asB 2 1 1, B wsB B? N
X E9EB(1 g+ 1)+ B2 V Rt 2R, + 2oR%, | lo— & dudp(V A VR 785+ =00, (V+ Vi),
(39
< ! 32>—1< 1s>2+< ! sz> (40)
2B2 4 2 B 4 ﬁz 4 con'

1 1 B B B
< 252 52> TZRanﬁRyWa‘fafBgaf”lo_ ﬁRaMRgufaf’g‘“n_ 7_2Ra,u,vﬁR'uV§a§ﬁ4|12_ ﬁRaMuxRﬁﬂy)\fagﬁGlm
con

P B
+ 23Ry 21at 5 RG,3 1s, (41)

where the integrals, are listed and evaluated using mode regularization in the Appendix. Inserting the specific values of the
terms arising from the effective potenti),r when evaluated at the origin

1
VMRzng (42
1
&aVMR: gvaR, (43)
1
aaaﬁVMR 8V01VBR 36 a;w)\Rﬁ (44)

leads us to the following expression for the transition amplitude at the third loop order

1 v
<X’? tf|xi‘“ N= 1/2ﬁg,u,1/§#§

— £ POV R
(277/3>D/2 f EPEV R

1——5‘15 Rop— /3( ! v

1 1
Bgav ( R+V)+§a§ﬂ§y§ (360 a,u,VBRy 5+ 288 aﬁRyzS SOV VﬁRaB)

aeBl MVN wv__ ”
TR 30 ann R T 5gR R 720 R
L RV R VYR s VLV R SRR
Tl 2RV ResT 220 anvB” 480" =" A aVp
+ 2 L : —5aRasT LRiv - —-V?R- —V2v +0(8%? (45)
720 8~ 720 8" 2| 12 120 '
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This is the complete expression which should be used to tesBjat orders?. A straightforward calculation shows that one
indeed obtains an identity after making use of E2D). The mode regulated path integral described in the previous section
passes this consistency check. Therefore it can be considered as a well defined way of computing path integrals in curved
spaces.

Before closing this section it may be useful to cast the transition amplitude in a more compact form which can be made
manifestly symmetric under the exchange of the initial and final point. Keeping on using the Riemann normal codidinates
which we recallx{'=0 and&*=x{*—x{=x!) and defining symmetrized quantities as

— 1
A= S[AX) +AX)] (46)
we can write
O ) = s X — 5 8GR | RV |+ 08| SRR o T R
T S P2 28 w12 ab Pl12 360 enrsR T 150" 7V oRas
“BlR P ! RAY 1R R4 1V“V"R 1VVR 1VVV
+ﬁ§ g ﬁ) apuvN™\B ﬁoRa;l,vﬁ ﬁ) ap'™B % aMVﬁ—’_ﬁ) aVp +1_2 a'pB
1 — 1 — 1_— 1__
2| T p2 _ T p2 T v2p_ g2 5/2
TR\ gt 2T 1200 © 120 V)OO )}' 4

From this expression one can extrilgy reexpanding part of 1 1

the exponential and comparing with E¢(6)] the leading Vw=gR+ gg“vr,mﬁryﬁa, (50
terms of the Seeley—De Witt coefficierag,a;,a, for non-

coinciding points and obtain, in particular, the one loop trace b2

anomalies for the operatét=—$V2+V(x) in two and four A=(2mB) 7% (51

dimensions.
The propagators to be used in the perturbative expansion

implied by the brackets on the right hand side of E§) are
the same as in Eq21). The only difference is in the pre-
. . . ) scription how to resolve the ambiguities arising when distri-

The computation performed in the previous section was,tions are multiplied together. The prescription imposed by
cast in such a way that can be easily extended to a differenie giscretization consists in integrating the Dirac delta
regularization scheme: the time discretization method develfunctions coming form the velocities and the ghosts propa-
oped in Ref[9]. Such a regularization was obtained by de'gators (thanks to the Lee-Yang ghosts they never appear
riving directly from operatorial methods a discretized VerSiO”multiplied together and using consistently the valug0)
of the path integral. Taking the continuum limit one recog-_ 1/2 for the step function. Note also the presence of the
nizes the action with the proper counterterm, and the rum%ctor[g(xf)/g(x-)]l"‘ appearing in this scheme

. . 1 .

how to compute Feynman graphs. These rules differ in gen-- 5 reqit of the calculation has the same structure as the

eral from the one required by mode regularization. The coUNg e reported in Eqs(37), (38), (39), (40), (41) with the
tertermV,, arising in time discretization differs frond s, difference that/,,z should be substituted by, leading to

IV. TIME DISCRETIZATION

too.
The time discretization method leads to the following path 1
integral expression of the transition amplitu®g V= =R (52)
8 1
1/4
(Xl iy =A gixf; e~ (V25,00 (= (VRS 1
9(X; S
(48) JaNMw= g VaR, (53
e dad5V 1VVR 1R RN
0 1 . aBVW g8« B 24 apvN' B ’
Sn f 971509, 00 = 9, ()] X + aa (54)
and with the following different values of the integrals com-
+bHe?)+ BV(X)+Vu(x)]|, (49 puted in time discretization regularization:
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1 APPENDIX

1,=0, 13=0, 15=0, 1,=0, ly3===, Ilis=—-=. . . . .
! 3 > 10 ¥12r B 12 The function A(7,o) appearing in the propagators is

(55) given in mode regularization by

The other integrals are as in mode regularization. Inserting M 2

all these values back in E¢48) and expanding the coeffi- A(r,0)= 2 |- 22Sin (mm7)sin (mmo) | (A1)
cient [g(x;)/g(x;)]¥* at the required loop order give the m=1 T

same transition amplitude as in E¢5) or, equivalently, in
Eq. (47). Thus this result constitutes a successful test on th
method developed in Ref9].

and leads to the following limiting values &— «, at least
fh the bulk (we recall that—1=<7,0<0):

A(r,o)=7(c+1)0(7—0o)+o(t+1)0(oc—171), (A2)
V. CONCLUSIONS

In this paper we have discussed a proper definition of the ‘A(r,0)= ;A(T,a')= o+ 0(t—o0), (A3)
configuration space path integral for a particle moving in T
curved spaces. By performing a three loop computation we P
have tested its consistency and checked that one can equally  A*(7 6)=—A(7,0)= 7+ 6(o— 1), (A4)
well obtain the perturbative solution of the Schimger do
equation by path integrals. This fills a conceptual gap, show-

ing that the perturbative description of a quantum particle ., . _d d _

moving in a curved space obtained by De Witt by solving the 2 (70 == 57 A(n.0)=1=d(7=0), (AS)
Schralinger equation(i.e., using the canonical formulation

of quantum mechanidsl]) can equally well be obtained in 3?

the path integral approach introduced by Feynman fifty years ~ “A(7,0)=>—5A(7,0)= (0~ 7). (AB)

ago. This approach may also have practical applications in
quantum field theoretical computations when carried out int is also useful to report the following limiting values for

curved background using the world line formali$fo]. coinciding points:
We have mainly described the mode regulated path inte-
gral. Its definition was obtained in Ref®6—8| by using a A(7,7)=1°+T, (A7)

pragmatic approach to identify its key elements, and needed

a strong check to test its foundations. This we have provided 1

in this paper. We find that the method of mode regularization Afmn)="Ar,1)=7+ 5. (A8)

is also quite appealing for aesthetic reasons, since it is close

to the spirit of path integrals that are meant to give a globaNote that at the regulated level one can easily obtain the

picture of the quantum phenomena. following identities by inspection of EqA1) and its deriva-
On the other hand we have also extended our computatiofjyes

to the time discretization method of defining the path inte-

grals[9]. This method is in some sense closer to the local ‘A(r,7)+ "A(r, )= A(7,7)], (A9)
picture given by the differential Schdmger equation, since
one imagines the particle propagating by small time steps. It A*(r,7)=0 at r=-1,0,
is nevertheless a consistent way of defining the path integral, (Al10)
maybe superior at this stage, since one obtains its properties
directly from canonical methods. As we have seen also this d[A(T,7)]=2A%(T,7), (A1)
scheme gives the correct result for the transition amplitude.

An annoying property of the two regularization schemes “A(r,0)=A"(7,0). (A12)

we have been discussing is that they both do not respect . _ .
general coordinate invariance in target space, and requirkhe limiting values given above should be used with care in
specific noncovariant counterterms to restore that symmetryhe perturbative expansion of the path integral. Rather, one
It would be interesting to find a reliable covariant regulariza-Should resort to the proper regularized expressions whenever
tion scheme or, at least, a scheme which while breaking coambiguities arise. In mode regularization we have adopted
variance(e.g., in the decomposition of the action into free the following strategy: one should partially integrate as much

and interacting parjsdoes not necessitates noncovariantdS possible to reach expressions which are free of ambigu-
counterterms. ities, and which can be computed directly in the continuum

limit. Following this procedure we have obtained the follow-
ing results needed in the text:
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0 1
I2=j dT[A('A'+"A)—‘A2]|,=—Z, I12=f Jdrd(r [72('A‘2—"A2)A|U+A‘2A|U
-1

(A14) —27AT AT A4 2 AZCAT A+ AZ(CAT
. L +A),—27A CACAT+ A,

_ Jrep0 oo 2. _-
|3—J'71dT[T( A + A)+TA 27' A:”T 2, _27_2 .A .A.A.|U_2AA.A.|U+27_A .A.A.|U

(AL5) )
F20 AN A )= 5 (A24)
0 1
|4=f Al 7("A"+"A)— 7 'A% = 5,
-1
(A16) |13=f ded(T [7ACA"2—"A2)o—r"AA Ao

0 P ) 3. 1 +AZ°A—AAA+27A "AZ—27A A A’
l5= d7*CA+“A)+ 12 A—-27 A]|T=—§,
Al7 -
(A17) 18" (A25)

0
|6=f dr 2 ACA"+ "A)+A%—27 "A A][,=0,
o |14=f dedU [A[("A"2="A?)A[,

(A18)
—4A|AT AN, 2A]AZCAT+ A,
0 1
|7=f drl{ 7 ACA™+"8) =7 A% = - o, F2A' A CATA,F2A° A ATAY,
-1
(A19) —AA|ACACAF CA)| A CATH A LAZCA
(X 1
0 1 +M)o]= 15 (A26)
|8=f dr AZ(C'A*+ A)—"A2A]|,= —,
_1 24
(A20)
|15=f dedo' [A2("AT2—""A2)+ A2A"2
0 1
|9=f dral=-¢, (A21) 1
-1 —2A7AATA)= - o (A27)

_ 2/ 0A02_ ee A2y 2 2 0p2
llO_J' f drdo [27°(°A A% +4r""A On the other hand, the time discretization method needs a

P 5 . .. different prescription in order to resolve the ambiguities. It
—87 ATAT0+2A-8AA 0 +ATA A0 consists in integrating the Dirac delta functions whenever
+47°AA 0]=1, (A22) they appea(lth(_a Lee-Yang ghosts_ guarantee that they never
appear multiplied togethgand using consistently the value
6(0)=3 for the step function. We present now a list of the
elementary integrals needed in the text and whose values
differ in the two regularizations. We have reported both val-
ues, the one related to time discretization being included in

= [ [ drdo (s aCa )]0

+ A AT A o= 27" AT+ A LA Ao square brackets:
+A| AT A +AA A, —2A] SA AT,

Diepe | oo e
+27(°A+ A LATA| 4 27A° CA AT, f dr AT+ "A)| =~ ¢ M (A28)
—27("A"+ A, A A ,—27A°| SAT A o]

1 1
! 2 f dr A+ A= [_Z},
RS (429 (A29)
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fd ACAT+ A= 3 11 fjdd AA A o= ! !
T 7 N==15 5| rdo 7 77736 | 18
(A30) (A32)
f fdd 2("AT2—"A?) 2 D13 f drdo A A A" A= L
rdo 7790 | 45 e ~ 180 | 360"
(A31) (A33)
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