
Mode Selection and Mode-Dependency Modeling
for Power-Aware Embedded Systems

Dexin Li, Pai H. Chou, and Nader Bagherzadeh
Dept. of ECE, University of California, Irvine, CA 92697-2625 USA

{dli,chou,nader}@ece.uci.edu

Abstract

Among the techniques for system-level power manage-
ment, it is not currently possible to guarantee timing con-
straints and have a comprehensive system model support-
ing multiple components at the same time. We propose a
new method for modeling and selecting the power modes for
the optimal system-power management of embedded sys-
tems under timing and power constraints. First, we not only
model the modes and the transitions overhead at the com-
ponent level, but we also capture the application-imposed
relationships among the components by introducing amode
dependencygraph at the system level. Second, we propose a
mode selection technique, which determines when and how
to change mode in these components such that the whole
system can meet all power and timing constraints. Our
constraint-driven approach is a critical feature for explor-
ing power/performance tradeoffs in power-awareembedded
systems. We demonstrate the application of our techniques
to a low-power sensor and an autonomous rover example.

1 Introduction

Recent trends in mobile and autonomous embedded sys-
tems are giving rise to a new class of power-aware sys-
tems. Unlike low-power systems, whose goal is to minimize
power usage, power-aware systems are more general in that
theymustmake the best use of the available power by adapt-
ing their behavior to the constraints imposed by the environ-
ment, user requests, or their power sources. Power-aware
systems must use components that are capable of multiple
modes of operation. Many of these components offer modes
for power management, while other components allow the
user to control the voltage or frequency as other forms of
power modes. The selection of mode is thus the primary
means of controlling power usage, and it is often done in
conjunction with scheduling.
New off-the-shelf components are offering increasingly

sophisticated modes for power management. However, the

system-level power manager has only limited control over
the modes. Some modes can be set by writing commands to
a control register of a device. However, the power manager
may not be able to arbitrarily select the modes it wishes
at all times. It may be forced to wait or request a change
through a sequence of intermediate modes. Even if a de-
sired mode is available, changing mode can incur nontrivial
overhead both in terms of time and power. The overhead
translates into penalty in performance or power, and it can
cause a system to miss an important deadline.
Another key issue for power management is that mode

selection cannot be done in isolation. The choice of mode
in one component must be coordinated with that in other
components, or else the whole system may not function cor-
rectly. For example, if the mode selection involves a partic-
ular encoding scheme, then the rest of the system that de-
pends on the data representation must also change mode in
order to handle the encoding correctly.
It can be difficult for designer to track details with

modes. The problem is further exacerbated by the fact that
the number of components and the available modes are in-
creasing rapidly. Today’s methodologies either limit the
complexity by using only a small subset of the available
modes (e.g., on, sleep, off), or they are unable to guarantee
timing or power constraints.
Power management of embedded systems must consider

all components in the system. Significant power reduction
in one components may not translate into desirable power
reduction for the whole system. In mission critical applica-
tions, peripheral devices including mechanical and thermal
devices can actually dominate power consumption and must
be an integral part of power management.
We believe that a new methodology for mode modeling

and selection is sorely needed in order to effectivelymanage
the power of the next generation embedded systems. This
paper first introduces a new mode dependency graph for
modeling the enabling relationships among modes within a
component and between components in a system. Second,
this paper presents a newmode selection algorithm that pro-
duces a mode schedule that satisfies timing and power con-

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

R1

20 40 60 80 100 120 140

t3

t1

20 40 60 80 100 120 140
t3

t2
t1

1W

3W

R2

R3

t2

Pmax

(a)

R1

R2

R3

20 40 60 80 100 120 140

t3

t1

20 40 60 80 100 120 140
t3

t1
2W

4W

6W

t1

t2 Pmax

t2

(b)

R1

R2

R3

20 40 60 80 100 120 140

t3

t1

20 40 60 80 100 120 140

t2
t1

1W

2.4W
3W

t1

t2

t2
t3

Pmax

(c)

Figure 1. An application scenario that has resource dependency.

straints on multiple processors and devices. It takes advan-
tage of the mode dependency graph in effectively pruning
the search space, making it practical to incorporate into an
on-line power manager. The advantage with our constraint-
driven approach is that it is not hardwired to a specific ob-
jective such as power minimization. This is a crucial feature
for power-aware embedded systems, for which the ability to
make power/performance tradeoffs is more important than
just power reduction.
This paper is organized as follows. Section 2 reviews re-

lated work. Section 3 presents the mode dependency graph,
while Section 4 describes a mode selection algorithm that
takes advantage of mode dependencymodeling. We discuss
the experimental results in Section 5.

2 Related Work

Many low-power techniques have been developed at all
levelsFor system-level designs, since the components are
largely off-the-shelf or already designed, the applicable
techniques include dynamic voltage scaling (DVS) and dy-
namic power management (DPM).

2.1 Dynamic Voltage Scaling (DVS)

Developed for variable-voltage processors, DVS can
achieve significant energy saving while still enabling the
processor to continue making progress [12, 2]. Although
DVS means running slower, they typically slow down just
enough without violating timing constraints, and many are
based on real-time task scheduling cores [2, 8, 9, 7].
It has been shown that maximal energy saving is

achieved by running the processor at the slowest possible
constant speed, rather than running tasks at full processor
speed and changing the processor to a lower power mode
when idle. Hong et al [2] proposed a heuristic for schedul-
ing real-time tasks on a variable voltage processor. Shin
[8] exploited both execution time variation and idle time
intervals for fix-priority tasks. Shin’s algorithm in [9] deter-
mines the lowest maximum processor speed for each job to

achieve power reduction. Quan and Hu [7] further greedily
determine the lowest voltage for a set of tasks to achieve
more energy savings.
What these DVS techniques have in common is that they

are greedy and assume a single processor. A power-aware
embedded system, however, consists of multiple resources,
which may be one or more processors and peripheral de-
vices. Unfortunately, greedy DVS techniques are not gen-
eralizable to multiple resources under power constraints, as
shown in the following example.

Example: (DVS fails in multi-resource)

Fig. 1(a) shows a Gantt chart (top) and the power profile
(bottom) for a system with three resources: R1 is capable of
voltage scaling, while R2 and R3 are not. The task t1 on R1
has a deadline at 110. The system has a max power con-
straint of 3W . Furthermore, the behavior of the application
dictates that R1 and R3 be co-active. Co-activation means
the execution of one task requires the power consumption
of other dependent services or tasks. A simple example is
that when the CPU is running, it imposes a co-activation
dependency on the memory, but co-activation can be much
more general between sets of tasks.
Fig. 1(b) shows the schedule and the power profile ob-

tained by greedily slowing downR1. Even though all timing
constraints are satisfied, it violates power constraints and it
is not minimum energy. When it is stretched out, t1 over-
laps t2 during time 70-110, and their total power exceeds
the max power constraint. It is not minimum energy due to
the co-activation dependency between R1 and R3: the en-
ergy saving by R1 due to voltage scaling is more than offset
by R3, whose execution is prolonged by R1.
The optimal schedule and power profile are shown in

Fig. 1(c). Resource R1 is slowed down without overlap-
ping t2 on R2. No max power is violated. Although t3 is
stretched with t1 and therefore consumes more energy than
in Fig. 1(a), t1 saves even more energy due to voltage scal-
ing of resource R1. As a result, the system achievesminimal
energy while satisfying all constraints. Fig. 2 summarizes
the energy costs.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

Schedule Timing violation Power violation Energy cost
Fig. 1(a) No No 300
Fig. 1(b) No Yes 320
Fig. 1(c) No No 288

Figure 2. Comparison of three schedules.

Another problem not highlighted with this example is
that mode changes may incur nontrivial power or timing
overhead. If so, overhead must be considered in determin-
ing the feasibility of the mode schedule.
Luo and Jha [5] presents scheduling for multiple pro-

cessing elements by reordering tasks and applying voltage
scaling in this post-processing step after scheduling. Our
approach is similar in that it can also be a post processing
step, and handles precedence and timing constraints, but we
treat power as a hard constraint. Furthermore, we handle
co-activation and other mode-dependency relationships.

2.2 Dynamic power management (DPM)

Previous work on DPM mainly aimed to achieve power
reduction by predicting the system idle time or event distri-
bution and shutting down resources when idle. The simplest
power management policy is time-out based on a fixed or
predicted amount of time before the system’s shutdown or
power-up [3]. Stochastic model [1] is used to address the
uncertainty in system behaviors. DPM techniques can be
effective for minimizing energy and time penalties on aver-
age, but they have several limitations. First, most treat either
power or timing as an objective or penalty, rather than a con-
straint. In real systems, the max power is a real, hard con-
straint, whose violation can lead to malfunction. Second,
they have not considered inter-component dependency in a
system, with the exception of Qiu, Qu and Pedram in [6],
which models multiple service providers and their General-
ized Stochastic Petri Net (GSPN) model can capture some
dependencies among resources. However, their model is
mainly for the request/dispatch behavior of servers rather
than dependency among the servers themselves.
Our new approach, mode selection, combines the advan-

tages of existing approaches. It is entirely constraint driven,
enabling us to make power/performance tradeoffs without
hardwiring any specific goal or policy in the algorithm.

3 Modeling Resource Dependency

Selecting (or not selecting) a mode of a resource may
impact the modes that other resources are allowed to se-
lect. The impact may be co-activation, exclusion, enabling,
and many other possible types of dependency. These depen-
dencies may be extracted from application level specifica-

tions or policies for safety, security, fault-tolerant, power-
saving.In any case, a legal mode combination of the re-
sources is one that respects all of these dependencies, and
a feasible mode combination is one that is legal and satis-
fies all the constraints (namely timing and power). We use
a data structure called the mode dependency graph (MDG)
that enables efficient generation of legalmode combinations
in an order that facilitates the search for feasible combina-
tions that are also low cost.

3.1 Definitions

Definition 1 (Resource γ ∈ Γ) A resource γ is defined as a
graph Rγ(Mγ,Hγ), where Mγ is a set of vertices, and Hγ ⊆
Mγ ×Mγ is a set of edges. A vertex m ∈ Mγ is a power
mode of resource γ. An edge (m,n) ∈Hγ represents a mode
change from mode m to mode n. We define the timing and
energy function for a mode change as: F :Mγ×Mγ→ T ×
E , whereMγ is the set of modes of resource γ, and T , E are
time and energy, respectively. The average power can be
obtained from energy and time information.

Definition 2 (Power and delay functions) Power con-
sumption of a resource γ is represented as a function, π,
mapping from power mode to a power number. Formally,
π : Mγ → R

+. Delay of a mode transition is defined as a
function, δ, mapping from start mode and end mode of a
transition to a delay number. Formally, δ :Mγ×Mγ→R

+.

Definition 3 (Mode combination λ ∈ Λ) Given N
resources (γ1,γ2, . . . ,γN), a mode combination is
λ ∈Mγ1 ×Mγ2×, . . . ,MγN .

3.2 Mode Dependency Graph

A mode dependency graph (MDG) G(M,D) charac-
terizes the inter-resource dependency relationships, where
M =

⋃
γ∈Γ Mγ is a set of vertices representing power modes,

and D is a set of edges standing for dependencies. A vertex
is represented by a circle with a label in the format of “γ.m,”
where γ ∈ Γ is a resource and m ∈ M is a mode of the re-
source. If two vertices have the same labels, we considered
them identical.
The value of a vertex v ∈M is defined as:

|v|=

True if γ is in mode m,
False if γ is in other mode,
Undetermined if γ has not been selected a mode.

(1)
An edge in the MDG represents dependency between

two modes. Suppose an edge (u,v) ∈ E , u = γ1.m1, v =
γ2.m2. The two modes m1 and m2 satisfy the mode depen-
dency graph if:

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

u v Violation
True False YES
True True NO
False True NO
False False NO

Figure 3. A table for violation checking.

Check MDG(mode dependency graph G, resourcr γ, mode m):
1 find all vertices v ∈V that contain resource γ
2 for each v ∈ V {
3 find vertex u that u points to v, if any
4 if violation checking for (u, v) according to Fig. 3 is YES {
5 return False
6 }
7 }
8 return True

Figure 4. Check satisfaction of a MDG.

|u| is True only if |v| is True (���),
|v| is False implies |u| is False (⇐). (2)

In other words, if |u| is True, |v| MAY be True; but if
|v| is False, |u|MUST be False. For example, we represent
the dependency between a CPU and a memory chip such
that the memory is on only if the CPU is in active mode.If
the CPU is not in activemode, then the memorymust not be
on. If both of the above conditions are met, we say that the
CPU and the memory satisfy the mode dependency. Other-
wise, they violate the mode dependency. Fig. 3 summarizes
the conditions that (do not) violate the mode dependency.

To expand the capability of mode dependency graph, we
introduce the logic operators as another kind of vertices. An
operator vertex is represented by a square with an operator
label in it. For the operator vertex with multiple outgoing
edges, the ��� direction combines disjunctively, and the⇐
direction combines conjunctively. For example, a vertex u,
whose value |u| is True, points two vertices v1 and v2. If
either v1 or v2, or both, are True, then they satisfy mode de-
pendency. When v1 and v2 are both false, they violate mode
dependency. The value of an operator vertex can be ob-
tained by evaluating the logic function it represents. We de-
fine the operators AND, OR and XOR. The functions of the
operators follow the normal boolean functions in the same
names except when any input is “undetermined,” the output
is “undetermined.” Given an MDG, a resource γ and one
of its mode m, we can use the routine in Fig. 4 to check
whether mode m satisfies the MDG.

3.3 Generating Mode Combinations

This section shows how to efficiently generate legal
mode combinations using the MDG.
We transform and reduce an MDG to a resource list. The

purpose is to sequence the resources so that the modes of
a resource do not depend on those of the succeeding re-
sources. From the MDG, we shrink each operator vertex to
a point, and remove mode name in each mode vertex. We
then remove the redundant vertices and edges, break the cy-
cle by removing one edge in the cycle, and apply topologi-
cal sort to obtain a resource list.
If the MDG is acyclic, then legal mode combinations can

be generated by a special version of topological traversal.
Starting from the first resource of the list, we check modes
of each resource against the MDG and identify the legal
modes. We keep them and select one for the current re-
source γ, and move to the next resource. We are able to
determine a mode of γ because upon checking the resource,
all the modes of its dependent resources have been already
determined since they are all located before γ. We progres-
sively generate a mode combination as we check legality of
modes and select one at each resource. As we reach the end
of the list, we obtain a legalmode combination. We enumer-
ate the rest of legal modes at the end resource, backtrack to
previous resources, and enumerate their legal modes to gen-
erate other legal mode combinations.
Note that there may be cycles in an MDG, which im-

plies that in the resource list obtained above, modes of a
resource may depend not only on preceding resources, but
also on succeeding resources. We call such resources dirty-
resource. In this scenario, we keep track of which resources
the current resource γ are dependent on. When the modes of
all dependent resources are determined, we evaluate a mode
of γ to determine whether the mode satisfies the MDG.
Fig. 6 shows the detailed algorithm, which is the general
case for both acyclic and cyclic MDGs.

3.4 Example: Microsensor

A microsensor system is a node in a distributed mi-
crosensor network [10]. It consists of a sensor, a processor,
memory chips, radio frequency module and other auxiliary
parts. The microsensor obtains information from environ-
ment and sends processed data to a base station. The sensor
and the memory each has two modes, on and off. The pro-
cessor has three modes, active, idle and sleep. The radio
has three modes, transmit-and-receive (tx rx), receive-only
(rx), and off. There are a total of 36 mode combinations for
these components.
The behavior and dependencies of the devices in this

system can be derived from high-level power management
policies: the sensor and the radio may be both off only if the

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

S.off

R.off

AND A.sleep

R.rx

R.rx_tx

XOR

XOR

A.sleep

A.idle

M.onA.active

S.off

M.on A.active

A: processor
M: memory
R: radio
S: sensorR.on S.on

(a)

S

R

A

M

SR

R

A

A

A

M A

=>
S

R

A M

S R A M

||
V

I

II

III

(b)

Figure 5. (a) A MDG example: microsensor. (b) Reduce the MDG to a resource list.

ModeGen From Cyclic MDG(mode dependency graph G):
1 reset the list of mode combinations Λ← /0
2 reset a mode combination λ← /0
3 transform G into a resource list L[0 . . .N−1
4 mark out dirty-resources in L
5 p← 0
6 while p≥ 0 {
7 while 0≤ p < N {
8 if L[p] is not a dirty-resource {
9 if found an unmarked mode m for task L[p] {
10 if check MDG(G, γ, m) = TRUE {
11 if L[p].cached is not empty {
12 if all cached resources satisfy G is TRUE {
13 λ[p]← m, p← p+1 }
14 } else {λ[p]← m, p← p+1 }
15 }
16 mark the mode m
17 } else {unmark all modes of L[p], p← p−1 }
18 } else {
19 locate the last resource L[q] that L[p] is dependent on
20 L[q].cached← L[p]
21 }
22 p← p+1
23 }
24 if p = length(L) { push λ into Λ}
25 p← p−1
26 if found an unmarked mode m for the resource L[p] {
27 unmark all modes for current resource
28 p← p−1
29 } else {
30 if check MDG(m, G) =TRUE {
31 λ[p]← m, push λ into Λ, p← p+1 }
32 }
33 }
34 return Λ

Figure 6. Generate mode combinations for
cyclic MDG.

mode S R A M
M1 on tx rx active on
M2 on rx idle off
M3 on rx sleep off
M4 on off sleep off
*M5 off tx tx active on
*M6 off rx idle off
*M7 off rx sleep off
M8 off off sleep off

Figure 7. Mode combinations of microsensor.

processor is in sleep mode; either of them may be on only
if the processor is in sleep mode or idle mode; both the
sensor and the radio may be on only if the processor is in
active mode; the memory is on if and only if the processor
is active. Fig. 5(a) shows the MDG of the microsensor.

Using the MDG, our algorithm automatically generate
eight mode combinations that satisfy the given MDG (see
Fig. 7). Suppose we want the microsensor to work in a
proactive way: when it is off, the system can only be waken
up by the sensor when it senses information from environ-
ment. The radio cannot wake up the system, for example,
by receiving a remote command. We add another item “the
radio may be on only if the sensor is on” (in dashed box in
Fig. 5(a)) to the MDG in Fig. 5(a). Then we run our algo-
rithm on the new MDG and obtain five mode combinations
(without * in Fig. 7). This result exactly matches the mode
combinations in manually designed results [10].

Through this simple example, we show our algorithm is
able to systematically generate legal mode combinations,
and by editing the mode dependency graph, we can ob-
tain mode combinationswithout manually going through all
possible mode combinations.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

4 Mode Selection

Mode selection works as a post-processing stage after
scheduling. It validates and improves the schedule with
more architectural knowledge than the scheduler. Our ap-
proach is a constraint-driven search algorithm that considers
resource/task dependency and mode change overhead, and
tries to find a mode schedule that satisfies system timing and
power constraints.

4.1 Problem Statement

The input to the problem consists of a set of tasks X , a
schedule σ, a mode dependency graphG, power constraints
Pmax and Pmin, and timing constraints represented by con-
straint graph Gc [4]. The output is a mode schedule σ′ that
meets system power and timing constraints by means of le-
gal mode combinations.

Definition 4 (Task x ∈ X) A task x is defined by a tuple (τx,
ωx), where τx is a task identifier, andωx ∈Ω is the workload
of the task. In the context of this paper, we assume each task
x has already been mapped to a resource γ. The operation
delay dx and power profile Px(t) of a task x depend on the
workloadωx and the selected modes m of resource γ.

Depending on the nature of the resource, workload ωx

can be the number of cycles for a processor, the number of
atomic actions for a device, e.g., the number of steps for a
step motor, or simply the time to perform a task.

Definition 5 (Schedule σ) A schedule σ maps each task to
its start time. An idle interval with respect to a schedule
σ and a resource γ is a time interval during which no task
is scheduled to run on γ. Note that during an idle interval,
the resource can still consume nonzero power, depending
on the mode.

Definition 6 (Mode schedule σ′) A mode schedule σ′
maps each task x ∈ X ′ (which is mapped to resource γ) to
the task’s start time and a modem∈Mγ, where X ′= X ∪Xo.
Xo is a set of overhead tasks, which are inserted whenever
there is a mode change on a given resource.

A mode schedule σ′ is feasible if all mode combinations
are legal (Section 3) and all timing and power constraints
are satisfied at all times:

Pmin ≤ ∑
γ∈Γ

Pγ(t)≤ Pmax 0≤ t ≤ tend (3)

Tmin(u,v)≤ σ′(v)−σ′(u)≤ Tmax(u,v) ∀u,v ∈ task set X(4)

MODE SELECTION(σ, G, Pmax, Pmin, Gc):
0 /* input : schedule σ */
1 /* power constraints Pmax and Pmin */
2 /* timing constraint graph Gc */
3 /* mode dependency graph G */
4 /* output: a feasible mode schedule σ′ */
5 run ModeGen From Cyclic MDG(G)
6 for each λ in Λ {
7 map λ to tasks T in σ, get σ1
8 if check timing(σ1, Gc) = TRUE {
9 decompose σ1 into time intervals S
10 for each s ∈ S {
11 select modes for idle intervals
12 while Pmax and Pmin not satisfied {
13 select other modes for idle intervals
14 }
15 } So far we obtain a mode schedule σ′
16 add mode change overhead as new tasks into σ1, get σ2
17 if check timing(σ2, Gc) = TRUE AND
18 check power(σ2, Pmax, Pmin) = TRUE {
19 return λ∪modesselected f oridleintervals }
20 }
21 }
22 }

Figure 8. Top level search algorithm.

where tend is the overall schedule length, and Pmin and Pmax

are the minimum and maximum power constraints, respec-
tively. The reason for a minimum power constraint has
been discussed elsewhere [4]. It can be used for not only
power/performance tradeoffs but also for jitter control.

4.2 Algorithm

Our search algorithm contains a loop with two steps.
First we find modes for tasks that satisfy task dependency
and timing constraints. Second we determine modes for the
idle intervals on each resource. Note that after the first step,
the operation delay for certain tasks may be changed due
to certain mode selected (i.e., modes of different clock rate
due to voltage scaling) or task dependency. An advantage
of selecting task modes and idle interval modes separately
is that we can apply different kinds of system constraints,
which help prune out illegal mode combinations efficiently.
We reorder the modes for each resource by their power con-
sumption in increasing order and search from the smallest
one. By doing so we both speed up our search process
and find solutions very close to the energy-optimal solution.
The top level algorithm is shown in Fig. 8.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

drv.on

str.on

OR haz.off

ppc1.oncam1.on

ppc2.on rf1.on

ppc3.on rf2.on

rf1.on ppc2.on

rf2.on ppc3.onsci

Figure 9. The MDG for the microrover.

Selecting modes for tasks

We select modes for tasks by generating legal mode combi-
nations of tasks that satisfy the MDG. Note that the MDG
used for a schedule may be a mix of resource dependency
and task dependency, which represent time-invariant and
time-variant dependency of resources. For example, in
Fig. 9, the sub-graph in the dashed box represents resource
dependency, whereas the rest of the graph shows the task
dependency. We can still use the algorithm introduced in
last section to generate legal mode combinations of tasks.
Once a legal mode combination is determined, we can ob-
tain a new schedule since the operation delay of tasks be-
come known under their selected modes and under their co-
activation dependency. We check timing constraints for the
new schedule. If it fails, we generate another legal mode
combinations and check again; if it passes, we use the mode
combination for mode selection of idle intervals.

Selecting modes for idle intervals

On each resource, overhead may exist at the mode
changes.We find a set of modes for each idle interval such
that the time overhead of the mode changes is less than the
length of the idle interval. We treat overhead as additional
tasks to the schedule we obtained. We characterize those
overhead tasks with time and average power, which can be
derived from time and energy information. We decompose
the new schedule into time intervals such that within each
time interval there is no task event (start or end event). The
decomposition is done in the following way: We find the
start and end events of all tasks. All the events cut the time
axis into non-overlapping segments. Each segment forms a
time interval. We check system power constraints in each
time interval. If the schedule fails power constraints, we
attempt a mode change on resources that currently have an
idle interval, and check power constraints again. If all the
modes fail the power constraints, we backtrack to the pre-
vious time interval. If we backtrack to the beginning of the
schedule and still cannot find feasible modes, we attempt
the next legal mode combination and select modes for idle
intervals again.

cam

drv

haz

ppc

rf

sci

str
200 400 600 800 1000 1200 1400

ppc2 (op,375)

haz1 (on)

rf2 (transmit)

sci1 (op)

cam1 (op)

(sleep)

(off) (off)

str1 (on)

(sleep)

(nap)
ppc3 (op,500)ppc1 (op,300)

drv1 (on)

(doze,500)

(off)

(off)

(sleep)

(off)

(off)

rf1 (transmit) (receive)(receive)

Pmin

Pmax

0W

6W

12W

18W

24W

30W

Figure 11. A mode schedule for microrover.

5 Experimental Results

We apply our algorithm to an example based on the Mars
rover [11]. The rover travels on the surface of Mars to
perform scientific experiments and shoot images. Its re-
sources consist of a camera (CAM), scientific devices (SCI),
a radio-frequency modem (RF), a microprocessor (PPC),
a hazard detector (HAZ), driving motors (DRV) and steer-
ing motors (STR). CAM takes a picture, sends the picture
data to PPC for processing, PPC outputs to RF, and then
the rover moves to another location (HAZ, DRV, STR) to
perform scientific experiments (SCI, PPC, RF).
PPC can work at a number of different clock rates (with

a full speed of 500MHz) and can be set to doze, nap or
sleep modes. RF can be in rx only mode, tx-rx mode and
sleep modes. The other resources have only two modes
each, on and off. Mode-change overhead is significant for
some resources. Due to the low temperature on Mars, DRV
must be pre-heated for some time before turned on. Similar
reason applies to STR, RF, and SCI. The inter-resource re-
lationships are shown in Fig. 9. For example, when HAZ is
working, neither DRV nor STR should be working. RF may
be in tx-rx mode if and only if the processor is operating.
Fig. 11 shows a feasible mode schedule, in both time

view and power view. Task ppc2 on PPC cannot be fur-
ther slowed down because PPC and RF must be co-active.
If PPC is greedily slowed down, it will violate max power
constraint during the interval 500 - 560. Task drv1, haz1
and str1 are not overlapped due to the system requirement
specified in the mode dependency graph. STR and SCI need
significant time to pre-heat, which is adequately considered
(the light areas in their tracks). Idle interval between r f1
and r f2 on RF is set to rx only rather than off because the
timing overhead of mode changes (including pre-heating)

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

Scenario Task sequence Costsimple Costgreedy Costmodesel Relative energy (simple/greedy/modesel)
A CAM/MOV/SCI 19002 18442 17935 100% /97.0%/93.4%
B MOV/CAM/SCI 16381 15013 14667 100% /91.6%/89.5%
C CAM/SCI/MOV 20294 19505 19014 100%/96.1%/93.6%
Mission tasks: CAM: shoot images; MOV: move to another location; SCI: perform scientific experiments.
Approaches: simple: assume two modes; greedy: greedily voltage scaling; modesel: our algorithm.

Figure 10. Comparison among different working scenarios.

is larger than the length of the interval. The idle interval
before r f1 is set to rx only for the same reason.

We compared our algorithm with two other approaches:
approach one assumes only two modes, on and offapproach
two greedily applies voltage scaling technique whenever
possible (we allow power constraint violation in this ap-
proach). The results are shown in Fig. 10. Approach one
gives the worst results because it never utilizes available
modes. Approach two is better than approach one since it
saves energy by applying voltage scaling technique, but its
greediness pays the cost since its saving by slowing down
the processor is more than offset by the extra energy con-
sumed on the RF modem. And in all the scenarios, ap-
proach two violates max power constraint. Our algorithm
gives the best results because we utilize multiple modes of
resources and apply voltage scaling on the processor. At
the same time, we avoid extra energy cost on RF by identi-
fying co-activation dependency between the two resources
and performingmode selection to find the feasible solution.

6 Conclusions

This paper presents a method for capturing mode de-
pendency and an algorithm for mode selection in power-
aware embedded systems. The mode dependency graph in-
troduced in this paper enables legal combinations of modes
to be systematically derived. Today’s designers perform
this task manually. However, as components offer increas-
ingly sophisticated modes for power management, while at
the same time imposing even more restrictions on mode
changes, the complexity will grow quickly beyond what
humans can handle. Our MDG represents a structured ap-
proach to controlling the complexity of powermanagement.
We also present a search algorithm that takes advantage
of the MDG. By considering power/timing constraints and
overheadon transitions, this technique gives designers more
confidence in the feasibility of the synthesized results in
real-life applications. Furthermore, our algorithm incorpo-
rates heuristic ordering to optimize for the energy cost of
the solution, and it shows realistic, system-level improve-
ments over previous techniques that either do not handle
constraints or multiple components.

Acknowledgment

This research was sponsored by DARPA under contract
F33615-00-1-1719. It represents a collaboration between the Uni-
versity of California at Irvine and the NASA/Cal Tech Jet Propul-
sion Laboratory. Special thanks to Dr. N. Aranki, Dr. B. Toomar-
ian, Dr. M. Mojarradi and Dr. J. U. Patel at JPL and Kerry Hill at
AFRL for their discussion and assistance.

References

[1] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli.
Policy optimization for dynamic power management. IEEE
Trans. Computer-Aided Design, 18:813–833, June 1999.

[2] I. Hong, D. Kirovski, G. Qi, M. Potkonjak, and M. B. Sri-
vastava. Power optimization of variable voltage core-based
systems. In Proc. of DAC, pages 176–181, 1998.

[3] C.-H. Hwang and A. Wu. A predictive system shutdown
method for energy saving of event-driven computation. In
Proc. of DAC, November 1997.

[4] J. Liu, P. Chou, and N. Bagherzadeh. Power-aware scheduling
under timing constraints for mission-critical embedded sys-
tems. In Proc. 38th DAC, pages 840–845, June 2001.

[5] J. Luo and N. K. Jha. Battery-aware static scheduling for
distributed real-time embedded systems. In Proc. of DAC,
pages 444–449, 2001.

[6] Q. Qiu, Q. Wu, and M. Pedram. Dynamic power management
of complex systems using Generalized Stochastic Petri Nets.
In Proc. of DAC, pages 352–356, 2000.

[7] G. Quan and X. S. Hu. Energy efficient fixed-priority schedul-
ing for real-time systems on variable voltage processors. In
Proc. of DAC, pages 828–833, 2001.

[8] Y. Shin and K. Choi. Power conscious fixed priority schedul-
ing for hard real-time systems. In Proc. of DAC, pages 134–
139, 1999.

[9] Y. Shin, K. Choi, and T. Sakurai. Power optimization of
real-time embedded systems on variable speed processors. In
Proc. of ICCAD, pages 365–368, 2000.

[10] A. Sinha and A. Chandrakasan. Operating system and al-
gorithmic techniques for energy scalable wireless sensor net-
works. In Proc. 2nd Int. Conf. on Mobile Data Management,
pages 199–209, January 2001.

[11] H. Stone. Mars Pathfinder Microrover: A low-cost, low-
power spacecraft. In Proc. the 1996 AIAA Forum on Advanced
Developments in Space Robotics, August 1996.

[12] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. IEEE Annual Foundation of Computer
Science, pages 374–382, 1995.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

