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Mode selection in swirling jet experiments:
a linear stability analysis

By FRANÇOIS GALLAIRE AND JEAN-MARC CHOMAZ

Laboratoire d’Hydrodynamique - LadHyX, CNRS–Ecole Polytechnique,
F-91128 Palaiseau, France

(Received 28 October 2002 and in revised form 16 June 2003)

The primary goal of the study is to identify the selection mechanism responsible for
the appearance of a double-helix structure in the pre-breakdown stage of so-called
screened swirling jets for which the circulation vanishes away from the jet. The
family of basic flows under consideration combines the azimuthal velocity profiles
of Carton & McWilliams (1989) and the axial velocity profiles of Monkewitz (1988).
This model satisfactorily represents the nozzle exit velocity distributions measured in
the swirling jet experiment of Billant et al. (1998). Temporal and absolute/convective
instability properties are directly retrieved from numerical simulations of the linear
impulse response for different swirl parameter settings. A large range of negative
helical modes, winding with the basic flow, are destabilized as swirl is increased,
and their characteristics for large azimuthal wavenumbers are shown to agree with
the asymptotic analysis of Leibovich & Stewartson (1983). However, the temporal
study fails to yield a clear selection principle. The absolute/convective instability
regions are mapped out in the plane of the external axial flow and swirl parameters.
The absolutely unstable domain is enhanced by rotation and it remains open for
arbitrarily large swirl. The swirling jet with zero external axial flow is found to first
become absolutely unstable to a mode of azimuthal wavenumber m = −2, winding
with the jet. It is suggested that this selection mechanism accounts for the experimental
observation of a double-helix structure.

1. Introduction

Vortices with axial flow are encountered in many technical applications such
as leading-edge vortices on delta wings or flame holders in combustion devices.
Considerable effort (see Ash & Khorrami 1995, for a complete review) has been
directed towards understanding the stability characteristics of these flows since,
depending both on the amount of swirl and the precise velocity profiles, they may
be highly sensitive to perturbations and exhibit vortex breakdown (Leibovich 1984;
Delery 1994).

The objective of the present study is to determine the temporal and
absolute/convective instability properties of suitably chosen families of swirling
jet/wake velocity profiles representative of real experimentally measured flow fields,
such as those of Billant, Chomaz & Huerre (1998). These basic flows differ from the
well-known Batchelor profiles in two main characteristics: a decreasing circulation
towards zero away from the rotating core and a smaller shear layer thickness.
The predictions of the analysis are then compared to the experimentally observed
characteristics of the helical structures which such flows can support.
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The swirling flow experiments in pipes of Sarpkaya (1971) and Faler & Leibovich
(1977) were crucial in the understanding of the sequence of events leading to vortex
breakdown in the form of a double helix, a spiral and a bubble. In all studies,
the relevant non-dimensional parameter is the swirl, which quantifies the relative
importance of the swirl velocity with respect to the axial velocity. In a recent
contribution, Billant et al. (1998) conducted a detailed study of the onset of vortex
breakdown in a hydraulic swirling jet discharging into a large water tank at low
Reynolds numbers, in the range 300 <Re < 1200. As in swirling pipe flows, they
determined that vortex breakdown sets in beyond a well-defined value of the swirl
parameter S ∼ 1.3, where S is defined by expression (2.4). This transition is preceded
by the appearance of a characteristic double-helix state of azimuthal wavenumber
m =2 which breaks the axisymmetry of the jet. Further detailed analysis of the
sequence of unsteady states supported by the jet below vortex breakdown onset was
carried out by Loiseleux & Chomaz (2003) at a Reynolds number of Re =1490. The
double-helix state was then observed precisely at the jet outlet in the range of swirl
parameters 0.6 <S < 1. The aim of this study is to explain in detail the occurrence of
the double helix from the linear instability analysis of the underlying swirling base
flow.

There have been many attempts in the literature to relate the appearance
of breakdown in swirling flows to temporal stability theory. Lessen, Singh &
Paillet (1974), Duck & Foster (1980) and Leibovich & Stewartson (1983) demonstrated
that the swirl parameter has a plural influence on the stability of the Batchelor or
q vortex (see Batchelor & Gill 1964) which satisfactorily represents trailing line
vortices as well as swirling pipe flows (Faler & Leibovich 1977; Escudier, Bornstein
& Maxworthy 1982). Negative helical modes of high azimuthal wavenumber are
destabilized when the swirl is increased from zero. Further increasing the swirl above
q ∼ 1.58 completely stabilizes the Batchelor vortex. These results have been confirmed
and refined in the presence of viscosity by Lessen & Paillet (1974), Khorrami (1991)
and Mayer & Powell (1992) among others. These investigations have been somewhat
inconclusive as far as the onset of vortex breakdown is concerned. Whereas the most
unstable mode is found to be helical, the most robust vortex breakdown state is
observed to be axisymmetric. Similarly, the occurrence of simple (m = 1) and double
(m =2) spirals cannot be accounted for by temporal stability theory since the most
unstable mode corresponds to high azimuthal wavenumber m � −4.

More recently, temporal stability studies have been extended to account for the
spatio-temporal development of disturbances. More precisely, these have sought
to discriminate between convective instabilities (CI) for which perturbations are
irremediably advected downstream, and absolute instabilities (AI), for which
perturbations grow in the same place. In the context of vortex breakdown, this
distinction appears as a natural generalization of the supercritical/subcritical flow
concept introduced by Benjamin (1962). Supercritical flows allow downstream
travelling waves only, whereas subcritical flows allow both upstream and downstream
travelling waves. The existence of absolute instability plays a crucial role in accounting
for the occurrence of synchronized self-sustained oscillations, so-called global modes,
in a variety of spatially developing shear flows such as wakes, hot jets, and counterflow
mixing layers as reviewed by Huerre & Rossi (1998). It is then natural to examine
whether vortex breakdown might be triggered by a transition from convective to
absolute instability.

The Batchelor vortex with zero external flow was determined by Delbende, Chomaz
& Huerre (1998), Olendraru, Sellier & Huerre (1999) and Olendraru & Sellier (2002)



Mode selection in swirling jet experiments 225

to become absolutely or almost absolutely unstable to several helical modes of
distinct symmetry (m = −2, −3, −4, . . .) at intermediate swirl settings. The analysis,
however, failed to yield an unambiguous mode selection. No clear relation could
be established between these spatio-temporal stability properties and axisymmetric
vortex breakdown or helical structures observed in swirling jets before breakdown.

In a related study of the Rankine vortex with a top-hat jet profile (Lim &
Redekopp 1998; Loiseleux, Chomaz & Huerre 1998), a somewhat clearer transition
to absolute instability was identified via a sequence of modes m = −2, m = −3, . . . at
sufficiently high swirl parameters. Loiseleux et al. (1998) accordingly suggested a
criterion for vortex breakdown based on the amount of swirl necessary for the first
convective/absolute transition to occur: the mode m = −2 is the first to undergo this
transition at a swirl level q = 1.61, which compares favourably with the experiments
discussed in Spall, Gatski & Grosch (1987). The motivation for the present study
came from the fact that, though Loiseleux et al. (1998)’s study failed to account
for the axisymmetric (m = 0) or spiral (m = 1) nature of vortex breakdown itself,
it was nevertheless qualitatively consistent with the experimental observations of
Billant et al. (1998) and Loiseleux & Chomaz (2003) regarding the appearance of a
double helix m = 2 prior to breakdown. However, it holds for the idealized Rankine
vortex with plug flow, a broken line profile which is not a proper description of the
experimental swirling jet. The present study seeks to examine this issue rigorously in
the context of an accurate model of the experimental velocity profiles of Billant et al.
(1998). In particular, we wish to include the general effects of azimuthal shear and
centrifugal instabilities, which are both absent in the case of the Batchelor vortex and
the Rankine vortex with plug axial flow. It is emphasized that the study is not aimed
at predicting breakdown but at explaining the origin of the dynamical state preceding
breakdown.

Two methods are currently available to determine the absolute/convective nature of
the instability pertaining to a given velocity profile. The classical procedure consists of
applying the Briggs–Bers pinching criterion to the dispersion relation in Fourier space
(Bers 1983). This method is exhaustive but it requires a subtle detailed inspection of
the topology of spatial branches in the complex wavenumber plane. Alternatively, one
may choose to remain in physical space and generate numerically the linear impulse
response of the basic flow, as in Brancher & Chomaz (1997) and Delbende et al.
(1998). The temporal and convective/absolute instability properties are then directly
retrieved from the behaviour of the impulse response wavepacket for large time. In
the case of the Batchelor vortex, this procedure has been shown to yield the same
results as the classical method, as demonstrated in Olendraru & Sellier (2002).

Recent theoretical studies by Couairon & Chomaz (1999) and Pier & Huerre
(2001), as reviewed in Huerre (2000), have reinforced the link between linear
absolute/convective instability ideas and the presence of nonlinear global modes
in spatially varying flows. To summarize these studies, the frequency and spatial
structure of the nonlinear global mode is determined by the most upstream station
to undergo an absolute instability. If the flow inlet is absolutely unstable, the global
frequency is given by the real part of the absolute frequency at the inlet. If absolute
instability only arises beyond a specific downstream station, the global frequency
is given by the real absolute frequency at this transition station. These conclusions
apply provided that the weakly non-parallel assumption holds and that linear and
nonlinear absolute instability always coincide, as discussed in Chomaz (1992) and
Couairon & Chomaz (1997). In the present study, we view the pre-breakdown state
as the manifestation of a nonlinear global mode within the flow. As a working



226 F. Gallaire and J.-M. Chomaz

assumption and in the absence of full knowledge of the streamwise evolution of
the basic flow, we assume that it will first become absolutely unstable at the inlet.
It is therefore postulated that the pre-breakdown global mode will oscillate at the
absolute frequency and wavenumber prevailing at the inlet. As in the majority of
realistic flows, the weakly non-parallel assumption is not rigorously valid. Second-
order effects should then be considered that leave the essential features of the global
mode unchanged but significantly modify the threshold value.

The study is organized as follows. Models of the inlet swirling jet profile are
discussed and compared with experiments of Billant et al. (1998) in § 2. Section 3
is devoted to the non-trivial specification of the sign of variables in swirling flows.
The numerical simulations of the impulse response and the diagnostic tools needed
to retrieve the instability properties are outlined in § 4. Section 5 pertains to the
temporal instability results while § 6 examines the absolute/convective instability
features. The dependence of the temporal and spatio-temporal mode selection on the
Reynolds number is examined in § 7. A comparison with the experimentally observed
characteristics of the pre-breakdown state is finally presented in § 8.

2. Swirling jet base flows

Consider a swirling jet flow around the x-axis of a fluid with kinematic viscosity
ν. Let us introduce Cartesian coordinates (x, y, z) as well as cylindrical coordinates
(x, r, θ). In dimensional variables, indicated by an asterisk, the basic flow under
consideration is

U ∗
x (r∗) = U∞ +

Uc − U∞
1 + (exp[(r∗/R)2 log(2)] − 1)N

, (2.1a)

U ∗
r (r∗) = 0, (2.1b)

U ∗
θ (r∗) = Ωcr

∗exp[−(r∗/Rv)
α]. (2.1c)

In (2.1a), U∞ denotes the free-stream velocity, Uc the centreline axial velocity, and
the jet core radius R refers to the location of the cylindrical shear layer. The non-
dimensional parameter N characterizes the intensity of the shear, in other words
the thickness of the shear layer. The axial velocity profile (2.1a) was introduced by
Monkewitz (1988) and Monkewitz & Sohn (1988) in order to study the instabilities of
circular wakes and jets. In (2.1c), Ωc is the rotation rate on the axis, Rv is a measure
of the vortex core size and the non-dimensional parameter α represents the azimuthal
shear intensity. This azimuthal velocity profile was first introduced by Carton &
McWilliams (1989) and then used by Carnevale & Kloosterziel (1994) and Orlandi
& Carnevale (1999) to describe the plane shear instabilities of so-called isolated or
screened vortices, i.e. vortices with circulation decreasing away from the core.

Using the jet core size R as length scale and the centreline axial velocity defect
�U ≡ Uc − U∞ as velocity scale, we introduce the four non-dimensional parameters

Re =
�UR

ν
, q =

ΩcR

�U
, rv =

Rv

R
, a =

U∞
�U

. (2.2)

In (2.2) Re denotes the Reynolds number, q the swirl parameter which compares
the intensity of the rotation to that of the advection, rv is the vortex to jet core
radius ratio, and a is the advection parameter which is a measure of the free-stream
axial velocity far from the axis. An alternative would have been to consider instead
parameter Λ =(Uc − U∞)/(Uc + U∞) = 1/(1 + 2a) as in Monkewitz (1988). As defined
for instance in Loiseleux et al. (1998) for the Rankine vortex with plug flow, a > 0
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Figure 1. Model I basic flow field: (a) azimuthal velocity profile (2.3c) for α = 4, rv = 0.9; (b)
axial velocity profile (2.3a) for N =3 and a = 0. Symbols refer to experimental data of Billant
et al. (1998) at Re =666 and S =0.68 (�), S =0.92 (�), S = 1.08 (�). The correspondence
between S and q is specified in the table of figure 2.

corresponds to coflowing jets, −0.5 <a < 0 to counterflowing jets, −1 <a < −0.5 to
counterflowing wakes and a < −1 to coflowing wakes. One must emphasize that the
overall direction of the axial flow changes to negative when a � −1. Throughout the
study, the Reynolds number is set to Re =667, except in § 7, where its influence is
analysed.
In non-dimensional variables, the base flow is then

Ux(r) = a +
1

1 + (exp(r2 log(2)) − 1)N
, (2.3a)

Ur (r) = 0, (2.3b)

Uθ (r) = qr exp(−r/rv)
α. (2.3c)

These profiles will be referred to as model I. Typical azimuthal and axial velocity
distributions are displayed in figure 1, together with the experimental data obtained
at Re = 666 and for three different swirl parameters by Billant et al. (1998) and a = 0.
In order to fit the real experimental profiles of Billant et al. (1998) close to the nozzle
exit, the non-dimensional parameters have been set to the values N = 3, rv =0.9 and
α = 4. Note that the non-dimensional parameter rv which characterizes the ratio of
the vortex core size to the jet core size does not coincide with any particular point in
the azimuthal velocity profile and in particular not the location rmax of the maximum
azimuthal velocity, for which rmax = rv(1/α)(1/α).

It should also be mentioned that the swirl number q defined in (2.2) differs from
the definition of its counterpart S in Billant et al. (1998), defined by

S =
2RUθ (r =R/2)

Ux(r = 0)
, (2.4)

where R is the radius of the jet. The nonlinear correspondence between q and S is
given in table 1.

Note that the experimentally measured axial velocity profile displays an overshoot
near the axis, which is due to the strongly convergent nozzle of the swirling jet
apparatus. This overshoot is not accounted for in the model I family of profiles, as
readily seen in figure 1. In order to evaluate its influence, we introduce another family
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S 0.68 0.92 1.08
q 0.82 1.16 1.48
u1 0.89 0.83 0.77
u2 0.22 0.37 0.52
rc 0.42 0.42 0.42

Table 1. Fitting parameters of model II.

U
x

1

1

r

Figure 2. Model II axial velocity profiles given by (2.5) and accounting for the axial velocity
overshoot. Symbols refer to experimental data of Billant et al. (1998) at Re= 667 for S = 0.68
(�), S = 0.92 (�) and S = 1.08 (⋆). Parameters of model II for best fitting with experimental
profiles of Billant et al. (1998) are indicated in table 1. The correspondence between S and q
is the same as for model I.

of axial velocity profiles:

Ux(r) =
u1

1 + (expr2 log(2) − 1)N
+ u2exp(−r/rc)

2, (2.5)

keeping (2.3b) and (2.3c) the same. These profiles will be referred to as model II. In
(2.5), u1, u2 and rc depend on the swirl number S and they are determined so as to
provide the best possible fit with the experimental measurements, as seen in figure 2.
Corresponding best-fit values of u1, u2 and rc are given in table 1. Since model I
is far more generic and will be shown to capture most of the physics of screened
swirling jets, the instability analysis of model II is postponed to the last section and
the bulk of the study is concerned with model I. Profiles similar to model I have been
measured in the swirling jet experiment of Liang (2003). Furthermore, we should draw
the reader’s attention to the discrepancy between the experimental measurements of
Escudier et al. (1982) or Faler & Leibovich (1977) and the fitted Batchelor profiles.
In both cases, the azimuthal velocity falls off faster than 1/r .

3. Sign conventions

The literature contains contradictory sign rules. Experimentalists, for instance
Escudier, Bornstein & Zehnder (1980), choose to denote as positive the helical modes
winding in the same direction as the basic flow rotation, whereas theoreticians, for
instance Lessen et al. (1974), usually refer to the sign of the azimuthal wavenumber
m in a normal mode expansion. It is therefore appropriate to describe in some detail
the conventions used in the present paper.
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Without loss of generality, only base flows with q positive are considered, the
negative-q cases being deduced by applying the following symmetry (see Olendraru
& Sellier 2002 for details):

(q, m) → (−q, −m). (3.1)

Swirling jets with q � 0 rotate in the direct sense defined by the right-hand rule with
respect to the x-direction, i.e. the streamwise direction. In other words, the flow is
rotating counter-clockwise when viewed from the downstream x-direction.

Infinitesimal normal mode perturbations are considered to be harmonic of the
following form:

u(x, r, θ, t) = u(r)ei(kx+mθ−ωt) + u∗(r)e−i(k∗x+mθ−ω∗t), (3.2)

where the eigenfunction u(r), the wavenumber k and the frequency ω may be complex
and now the asterisk stands for the complex conjugate. As a consequence, the sense
of winding of a helical perturbation is given by the sign of the product Re(k) × m. If
this product is positive, it corresponds to what we call a positive helical mode which,
when travelling in the x-direction, winds clockwise, i.e. in opposite direction to the
flow. If Re(k)×m is negative, the helical mode is negative and winds counterclockwise,
i.e. in the same direction as the flow.

Expression (3.2) readily displays the real nature of the perturbation u, and shows
that it may be equivalently represented by

(k, m, ω) or (−k∗, −m, −ω∗).

In temporal stability theory where k is assumed real, the usual convention is to restrict
the study to positive values of k, negative k values being obtained through the above
transformation. With this restriction, positive helical modes correspond to m > 0 and
negative helical modes to m < 0. In that case, the sign of Re(ω) gives the sign of the
axial phase velocity c = ω/k, and the sign of the product m × Re(ω) the sign of the
azimuthal phase velocity cφ = ω/m.

In spatio-temporal theory, k is complex and as seen later in the paper, it is
convenient to let Re(k) take both signs. In that instance, the winding sense of helical
perturbations is determined by considering the sign of Re(k) × m and not simply of
m as in temporal theory.

An additional complexity arises if comparison with experiments is involved. When
describing vortex breakdown, one in general defines the positive streamwise direction
as that of the free-stream velocity, even in the lee of the breakdown bubble where
the flow is of wake type. Figure 3(a) depicts a typical axial velocity profile inside a
breakdown bubble, as seen from an experimentalist’s point of view. In the present
paper as well as in many theoretical studies, the convention for the base flow is
different, with the axial velocity difference �U = Uc − U∞ being taken as always
positive. The experimental velocity profile of figure 3(a) is then replaced by its
symmetric counterpart in figure 3(b). We transfer from one to the other through an
x → −x reflection symmetry and if all the experimental quantities are denoted by a
prime, the transformation that should be applied is a′ = −a, q ′ = q , k′ = k, m′ = −m

and ω′ = −ω. In that case, positive m′ will correspond to negative m, i.e. helices
rotating in the direction of swirl.
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a

(a) (b)

–a

Figure 3. (a) Typical experimental wake profile in the lee of a breakdown bubble with a
positive x-axis pointing downstream. (b) Corresponding profile with the convention of the
present paper.

4. Numerical method and diagnostic tools

Throughout the study, the linear temporal and spatio-temporal instability properties
are retrieved from direct numerical simulations of the linear impulse response
originating from an initial localized disturbance. The main feature of the method
is that it gives access to the most amplified mode for each pair k and m of axial
and azimuthal wavenumbers when temporal theory is considered, and for each pair
of ray velocity vg = x/t and azimuthal wavenumber m when spatio-temporal theory
is considered. The procedure is only briefly outlined and the reader is referred to
Delbende et al. (1998) for more details.

4.1. Numerical implementation

We consider the evolution of infinitesimal disturbances superimposed on the basic
flow profiles and governed by the linearized incompressible Navier–Stokes equations.
As in classical stability analysis (Drazin & Reid 1981), the basic flow is assumed to be
steady and uniform in the axial direction. Formally, this may be achieved by adding
a body force that exactly compensates for the viscous diffusion of the basic flow.

We use the code described by Brancher, Chomaz & Huerre (1994) and Delbende
et al. (1998). The linearized Navier–Stokes equations are projected onto 1440 ×
128 × 128 Fourier modes in the three Cartesian directions (Ox is the direction of
the jet axis and Oy and Oz two arbitrary perpendicular directions). In physical
space, this corresponds to a cubic mesh of spacing dx = dy = dz = 0.05 and box
lengths Ly = Lz = 6.4 and Lx =72, the jet radius being unity as in (2.3a). The time
step dt = 0.005 is chosen so as to satisfy a CFL-type numerical stability condition
dx/dt =10 to be compared to a maximum velocity magnitude of order 2. Fine
resolutions in the y- and z-directions are necessary because of the small scales of
the axial and azimuthal shear layers. Such a mesh refinement has become recently
available thanks to the NEC SX5 computer at IDRIS (CNRS). The sides of the
box Ly = Lz are chosen large enough so that confinement due to the periodicity
in the y- and z-directions is weak. The axial length Lx of the box guarantees a
high resolution dk in axial wavenumber while the fine mesh size dx gives a large
cut-off wavenumber. These choices have been found to be sufficient to characterize
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properly both the temporal and the spatio-temporal instabilities. Convergence has
been evaluated by performing a high-resolution simulation with 2160 × 196 × 196
mesh points and dx =dy =dz =0.033 for the case q = 1.2. All the quantities to be
reported in the following were found to vary by less than 1% in the temporal theory
and 2% in the spatio-temporal theory. In some exceptional situations where k =0
modes are unstable and two unstable modes with the same azimuthal dependence
have comparable amplitudes, variations were found to reach 5%. This was deemed
to be acceptable and results could always be improved by choosing larger integration
times.

In order to mimic the Dirac delta-function forcing in space and time and to
remain compatible with the cut-off wavenumber chosen here, the initial conditions
are chosen as in Delbende et al. (1998). A divergence-free initial Gaussian perturbation
of characteristic velocity perturbation amplitude 0.1 is contained within a sphere of
radius ρ = 0.5. The impulse is centred at x0 = 15, r0 = 1 and θ = 15◦ in order to feed
energy into all azimuthal wavenumbers. The length scale ρ is a compromise: it is small
enough to reproduce a localized impulse and it respects the resolution limitations in
truncated spectral space.

Once the impulse response is computed, it is analysed by choosing a state variable
a(x, y, z, t) which is determined at the nodes of a cylindrical grid a(x, r, θ, t). We
select the axial velocity perturbation

a(x, y, z, t) ≡ ux(x, y, z, t). (4.1)

The cylindrical coordinate space is discretized into 40 points in the radial direction
in the range 0 � r � Rmax = Ly and 64 points in the azimuthal direction. This
therefore restricts the analysed azimuthal wavenumber range to |m| < 32, but we have
systematically checked that no aliasing error is introduced by this cut-off since in all
simulations modes |m| > 32 are stable.

4.2. Diagnostic tools

Within a temporal framework, for a given azimuthal wavenumber m, the axial
wavenumber k is given real and the frequency ωm(k) is complex and unknown. Let
us introduce the azimuthal Fourier transform a(x, r, m, t) of a(x, r, θ, t) as well as the
double (axial and azimuthal) Fourier transform a(k, r, m, t). For a given wavenumber
pair (k, m), the behaviour of a(k, r, m, t) is dominated for large time by the most
unstable mode of eigenfunction f (r) and complex frequency ωm(k), according to the
relation

a(k, r, m, t) ∝ f (r)e−iωm(k)t , t → ∞. (4.2)

The definitions and discrete-time approximations of the growth rate ωm,i(k) and the
frequency ωm,r (k) are listed in table 2.

As noticed by Delbende et al. (1998), the times t1 and t2 and the time-increment
t2 − t1 used to numerically evaluate these quantities have to be large enough to
ensure convergence on the leading most unstable mode and circumvent low-frequency
oscillations. In order to guarantee that the transient regime has ended, we have chosen
t1 so that Am(k, t1) is at least three orders of magnitude larger than the initial amplitude
Am(k, 0). All growth rates have been computed by setting t2 =2t1. In addition we have
checked that the growth rate computed for two other time intervals (t1, 1.5t1) and
(1.5t1, 2t1) differs by less than 1% from the value obtained with the nominal range
(t1, 2t1). By contrast, in order to compute the mode frequency, the time interval t3 − t2
must be short enough (Delbende et al. 1998) to circumvent the difficulties associated
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Nature Definition

Signal a(k, r,m, t) =

∫ +∞

−∞

∫ 2π

0

a(x, r, θ, t)e−i(kx+mθ ) dx dθ

Amplitude Am(k, t) =

(
∫ Rtot

0

|a(k, r,m, t)|2r dr

)1/2

Phase φm(k, t) = arg(a(k, r0,m, t)), with 0 � φm(k, t) < 2π

Growth rate ωm,i(k) = lim
t→∞

∂

∂t
ln Am(k, t)

Numerical approximation ωm,i(k) ∼ ln(Am(k, t2)/Am(k, t1))

t2 − t1

Frequency ωm,r (k) = lim
t→∞

− ∂

∂t
φm(k, t)

Numerical approximation ωm,r (k) ∼ − φm(k, t3) − φm(k, t2)

t3 − t2

Table 2. Definitions and approximations of the different characteristic quantities used in
temporal stability theory.

with the discontinuous nature of the phase function φm(k, t) whenever it reaches 0 or
2π (see table 2).

In the spatio-temporal formulation, the development of the wavepacket along rays
of specific velocity x/t = vg is considered.

According to steepest descent arguments (Bers 1983), the long-time behaviour of
the impulse response along each spatio-temporal ray x/t = vg is dominated by the
mode with highest spatio-temporal growth rate according to

a(x, r, m, t) ∝ g(r)t−1/2exp
[

km(vg)(x − x0) − ωm(vg)t
]

, t → ∞, (4.3)

where g(r) is the eigenfunction and km(vg) and ωm(vg) represent the complex
wavenumber and frequency travelling at the group velocity vg . In (4.3), the real
part of the exponent

σm(vg) = ωm,i(vg) − vgkm,i(vg) (4.4)

denotes the temporal growth rate observed when travelling at the group velocity vg .
The definitions and discrete-time approximations pertaining to the growth rate and

to the imaginary and real parts of the complex wavenumber and the local complex
frequency are listed in table 3. We emphasize, for reasons to be explained below, that
we have not used a demodulation procedure based on the Hilbert transform as in
Delbende et al. (1998). According to signal processing theory (Schwartz, Bennett &
Stein 1966), the Hilbert transform degrades the tails of the wavepacket considerably
when its spectrum does not vanish at k = 0. The accurate determination of the leading-
and trailing-edge velocities of the wavepacket then becomes hazardous. In such cases,
the edges of the wavepacket are still accessible by making use of the usual azimuthal
Fourier transform a(x, r, m, t) of the real signal a(x, r, θ, t). This procedure, however,
has a shortcoming: the phase and amplitude variations along a ray are less precisely
distinguished, resulting in a decrease in accuracy. This remains acceptable if larger
times t1 and t2 are used. Note that positive and negative helical modes cannot be
separated and the mode with the largest growth rate will dominate. This feature can
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Nature Definition

Signal a(x, r,m, t)

Amplitude Am(x, t) =

(
∫ Rtot

0

|a(x, r,m, t)|2r dr

)1/2

Phase φm(x, t) = arg(a(x, r0,m, t)), with 0 � φm(k, t) < 2π

Growth rate σm(vg) = lim
t→∞

∂

∂t
ln

(

t1/2Am(vgt + x0, t)
)

Numerical approximation σm(vg) ∼ ln(Am(x0 + vgt2, t2)/Am(x0 + vgt1, t1))

t2 − t1
+

ln(t2 − t1)

2(t2 − t1)

Frequency ωm,r (vg) = lim
t→∞

− ∂

∂t
φm(vgt, t)

Numerical approximation ωm,r (vg) ∼ − φm(x0 + vgt3, t3) − φm(x0 + vgt2, t2)

t3 − t2

Wavenumber km,r (vg) = lim
t→∞

∂

∂x
φm(vgt, t)

Numerical approximation km,r (vg) ∼ φm(x0 + vgt2 + δx, t2) − φm(x0 + vgt2, t2)

δx

km,i km,i(vg) = − d

dvg

σm(vg)

Numerical approximation km,i(vg) ∼ − σm(vg + δx/t2) − σm(vg)

δx/t2
ωm,i ωm,i = σm(vg) + vgkm,i(vg)

Table 3. Definitions and approximations of different characteristic quantities used in
spatio-temporal stability theory

be seen by the fact that, due to the real nature of a(x, r, θ, t),

a(x, r, m, t) = a∗(x, r, −m, t). (4.5)

As a consequence, the convention adopted in temporal stability theory cannot be
pursued: the winding direction of a helical mode on a given ray x/t = vg is not given
by the sign of m but by the sign of the product m × km,r . Furthermore, since the
signal is not demodulated, growth rates and other quantities may oscillate in time
and space due to the phase variations. This phase jitter is only significant on rays
where the two symmetric positive and negative helical modes are of equal amplitude.
In our study, as will become clear in § 5, the negative helical modes are in general
considerably more unstable than their positive counterparts, resulting in a satisfactory
determination of the mode characteristics in all cases of interest.

5. Temporal instability

It is well known (Delbende et al. 1998) that temporal stability properties depend on
the advection parameter a through a trivial Doppler shift. Throughout this section,
we therefore assume a = 0 without loss of generality.
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5.1. Inviscid instablity mechanisms and general criteria

The models under consideration are in many respects distinct from the classical
Batchelor or q-vortex which is often used to describe fully developed trailing line
vortices.

When q is set to zero, one recovers a cylindrical jet or wake profile in the absence of
rotation. Flows with axial shear have been studied by Rayleigh (1892) and Batchelor
& Gill (1964) in order to generalize the well-known inflection point criterion. For a
given axial wavenumber k and azimuthal wavenumber m a necessary condition for
inviscid instability is that the quantity (rU ′

x)/(m
2 + k2r2) displays a local extremum

somewhere in the fluid. As noticed by Batchelor & Gill (1964) or Lessen & Singh
(1974), this condition is in general too weak: for instance the fully developed jet
is unstable only to the m =1 mode, whereas the necessary condition is satisfied for
all m.

When q goes to infinity, the axial velocity becomes negligible and one recovers a pure
vortex with a screened azimuthal velocity profile uθ (r). Such a screened (or isolated)
vortex will be unstable to two-dimensional (k =0) as well as axisymmetric (m =0)
and helical disturbances. This property makes it quite distinct from the Lamb–Oseen
(also referred to as Burgers) vortex which remains neutrally stable in the inviscid
limit. Note also that the Lamb–Oseen azimuthal velocity profile is the same as for the
Batchelor vortex. According to the generalization of the two-dimensional inflection
point criterion to a circular geometry (see Rayleigh 1892; Drazin & Reid 1981), the
existence of a local extremum in the axial vorticity associated with Uθ (r) constitutes
a necessary condition for instability to two-dimensional disturbances of the form eimθ .
Thus, the presence of azimuthal shear is very likely to destabilize the screened vortex.
But this is not the only potentially destabilizing agent: by virtue of the sufficient
(Rayleigh 1916) and necessary (Synge 1933) Rayleigh criterion, an axisymmetric
rotational flow Uθ (r) is unstable to axisymmetric perturbations if and only if the
square of its circulation decreases in the radial direction. Centrifugal instability will
therefore also affect the screened vortex.

When q is finite but non-zero, the physical effects described above all come into
play. Several inviscid criteria have been established: the centrifugal instability Rayleigh
criterion has been generalized by Howard & Gupta (1962) to vortices with axial flow,
i.e. swirling jets. In contrast to the case of a pure vortex, it only gives a necessary
condition for instability to axisymmetric modes m =0. A local condition for helical
instability has been proposed by Ludwieg (1961), under the assumption of a narrow
annulus of fluid. Leibovich & Stewartson (1983) later derived a more stringent
sufficient (but not necessary) condition for helicoidal instability which is further
discussed in § 5.6.

It may easily be verified that these inviscid criteria are all fulfilled by the base flow
(2.3), but none predicts which mode will dominate. The objective of this paper is to
determine precisely the spatio-temporal structure of the dominant mode, in particular
the selected wavenumber pair (k, m).

5.2. Non-swirling jets

Figure 4(a) presents the growth rate ωm,i(k) of the unstable modes as a function of the
axial wavenumber k. Note that in the absence of rotation, the positive and negative
helical modes have the same growth rate. Only m =0, m = ±1, m = ±2 and m = ±3
are unstable, higher-order modes being stable for all k. The overall highest growth
rate is reached at k = 1.8 for the bending modes m = ±1. Although there exist spatio-
temporal results on the family of axial velocity profiles introduced by Monkewitz
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Figure 4. Model I temporal instability of a pure jet, i.e. at q = 0. (a) growth rate ωm,i(k) as:
a function of axial wavenumber k; (b) frequency ωm,r (k) as a function of k. Only the unstable
portion of ωm,r is displayed.

(1988) and used in this study, there are no corresponding viscous or inviscid temporal
stability results. Still, a qualitative comparison may be made with the spatial stability
analysis of Michalke (1984) for the model profile Ux(r) = 1

2
[1 + tanh((1/r − r)/4Θ)],

where Θ is the non-dimensional shear layer thickness, provided that both the present
profile and Michalke’s correspond to the same axial shear layer thickness

Θ =

∫ ∞

0

Ux(r)[1 − Ux(r)] dr. (5.1)

Michalke (1984) determined that the most unstable mode is m =1 when Θ � 1/5
and m =0 when Θ � 1/10. For 0.1 � Θ � 0.2, m =1 and m =0 are in close
competition. For the axial velocity profile (2.3a), the shear layer thickness ratio Θ

equals 0.13 at N = 3 and figure 4(a) indicates that the most unstable mode is m = ±1
with m =0 having a comparable but less intense growth rate. The present results are
therefore consistent with Michalke’s analysis.

Figure 4(b) represents the associated real part of the frequency ωm,r . It is seen that,
as a first approximation, the phase velocity ωm,r/k remains equal to 0.5, the average
velocity between the free stream a = 0 and the jet velocity of unity.

5.3. Swirling jets of moderate swirl, q = 0.4

As soon as a small amount of swirl is applied, negative azimuthal modes become
unstable. For instance, figure 5(a), which is is the analogue of figure 4(a) but for a swirl
parameter q =0.4, shows strong destabilization of negative azimuthal wavenumbers
up to m = −14. The overall maximum growth rate is attained for m = −1. It may
be seen that m = ±2 and m = ±3 are unstable at k = 0, i.e. for pure two-dimensional
perturbations in a cross-axial plane. Modes m =2 and m = −2, resp. m =3 and m = −3,
have the same non-zero growth rate at k =0. When k =0 the only destabilizing
mechanism is the azimuthal shear, the axial velocity field losing all its influence on
the development of the instabilities. For an azimuthal shear parameter α = 4, Carton
& McWilliams (1989), Carnevale & Kloosterziel (1994) and Orlandi & Carnevale
(1999) have shown that the only unstable modes of an isolated vortex with azimuthal
velocity profile (2.1c) and Ωc = 1 and no axial flow are m =2 and m =3 with inviscid
growth rates ω2,i(0) = 0.1 and ω3,i(0) = 0.05, in reasonable agreement with the present
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Figure 5. Model I temporal instability at q = 0.4 for moderate swirl: (a) growth rate ωm,i(k)
as a function of axial wavenumber k; (b) frequency ωm,r (k) as a function of k.
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Figure 6. Model I temporal instability at q =0.8: (a) growth rate ωm,i(k) as a function of
axial wavenumber k; (b) frequency ωm,r (k) as a function of k. These stability diagrams are
representative of swirl values q � 0.8.

viscous results. The precise evolution of the instability modes from the non-rotating
case (§ 5.2) to the moderately rotating case will be detailed in § 5.5.

5.4. Swirling jets with large swirl values q = 0.8 and q = 1.2

For larger swirl, m = −1 is no longer the leading mode but is replaced by m = −5.
Typical instability curves are displayed in figure 6, for swirl q = 0.8. As in the previous
case, m = ±2 and m = ±3 are unstable at k = 0, with the same growth rate for positive
and negative modes.

As k increases from zero, in addition to the m = ±2 and m = ±3 modes, the bending
m =+1 and m = −1 as well as the axisymmetric m =0 modes become unstable
followed by the negative helical modes m = −4 to m = −17. Each mode m is unstable
in a finite wavenumber range [ka

m; kc
m] with for example ka

m =0 for −3 � m � 3. Note
that both ka

m and kc
m are monotically decreasing functions of −16 � m � 3. Each

mode reaches its maximum growth rate ωmax
m,i at kmax

m . The value of ωmax
m,i first increases

with m and reaches its overall maximum for m = −5, indicated by a circle at kmax
−5 = 3.8

in figure 6, before decreasing continuously.
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Figure 7. Model I temporal instability at q = 1.2: (a) growth rate ωm,i(k) as a function of
axial wavenumber k; (b) frequency ωm,r (k) as a function of k. These stability diagrams are
representative of swirl values q � 0.8.

Figure 6(b) depicts the corresponding frequency ωm,r (k) as a function of k for the
unstable azimuthal modes in their unstable wavenumber range. Positive helical modes
m � 0 are seen to possess positive frequencies indicating that they rotate in time in the
same direction as the flow. Negative helical modes m < −1 have negative frequencies
at small k and positive frequencies at large k, indicating that they rotate in time in
the same direction as the flow at small k but in the opposite direction to the flow at
large k. At the overall maximum growth rate for kmax

−5 = 3.6, the negative helical mode
m = −5 is seen to rotate in time in the opposite direction to the vortex. The bending
mode m = −1 is quite peculiar since it rotates in the opposite direction to the swirling
jet in the whole unstable wavenumber range.

The discussion concerning q =0.8 is in fact much more general. For q � 0.8, we
have observed that the temporal stability results are very similar to the q = 0.8 case,
except that all growth rates increase linearly with q . The similarity between figure 6
at q = 0.8 and figure 7 at q = 1.2 provides an illustrative example. In the large-q
limit, the flow becomes analogous to a pure vortex without axial flow and at infinite
Reynolds number. The only existing studies on the stability of pure isolated vortices
are either a full three-dimensional stability study at Re = 667 (Gallaire & Chomaz
2003), or an inviscid study limited to the two-dimensional limit k = 0 (Carnevale &
Kloosterziel 1994), or restricted to α = 2 and |m| � 2 (Gent & McWilliams 1986). In
view of these analyses, it is expected that the flow remains unstable for the modes
m = 0, m = ±1, m = ±2 and m = ±3 as q continues to increase, in strong contrast to
the Batchelor vortex.

5.5. Dependence on swirl parameter

In order to analyse in detail the evolution of the growth rates as the swirl is increased,
we depict in figure 8 contours of the growth rates in the (k, q)-plane for different
azimuthal wavenumbers. The m =0 bulging mode (figure 8a) is unstable without
rotation, the axial shear leading to the formation of vortex rings via the classical jet
instability. As q is increased, the growth rate of all wavenumbers increases (figure 8a).
The centrifugal instability cooperates with the axial shear to enhance the instability of
the axisymmetric mode. Larger axial wavenumbers are then destabilized. The growth



238 F. Gallaire and J.-M. Chomaz

(a)

k

0 2 4 6 8 10 12

0.4

0.8

1.2

1.6

0 2 4 6 8 10 12

0.4

0.8

1.2

1.6

0 2 4 6 8 10 12

0.4

0.8

1.2

1.6

0 2 4 6 8 10 12

0.4

0.8

1.2

1.6

(b)

(c) (d )

k

q

q

Figure 8. Model I contours of the growth rate for representative modes in the (k, q)-plane.
The interval between two neighbouring contours is dσ = 0.05 and the grey scale is the same on
all four plots. (a) m= 0; (b) m= +2; (c) m= −2 and (d) m= −5. The white zone corresponds
to negative values of the growth rate (stable region).

rate at small k is insensitive to q since the instability is only due to the axial shear at
large wavelength. The maximum growth rate increases with q and it is reached for a
slowly increasing value of the axial wavenumber close to k =2.

For m =+2, the overall behaviour is reversed (figure 8b): small axial wavenumbers
are strongly destabilized by the presence of rotation and even k = 0 becomes unstable.
This corresponds to the effect of the azimuthal shear that renders the two-dimensional
flow in the (r, θ)-plane unstable. By contrast, axial wavenumbers beyond k =2 are
almost unaffected by the rotation. At small k, the negative mode m = −2 (figure 8c)
exhibits a behaviour remarkably similar to m = +2 (figure 8b) since both modes are
controlled by the azimuthal shear instability for such large wavelengths. For axial
wavenumbers larger than k = 2, the mode m = −2 is strongly destabilized by the
rotation. This feature indicates that, at large k, the centrifugal effect is stabilizing
for m =+2 but destabilizing for m = −2. The explanation for the strong difference
between the stability properties of positive and negative helical modes constitutes
the topic of the next subsection. For m = −5 (figure 8d) swirl strongly promotes the
instability and the unstable k-range drifts towards large k values.

5.6. Comparison with the centrifugal instability analysis of
Leibovich & Stewartson (1983)

The strong destabilization of the negative helical modes observed for instance in the
range q � 0.8 but already apparent for q = 0.4, is reminiscent of the results obtained
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by Mayer & Powell (1992) and Khorrami (1991), among others, for the Batchelor
vortex, in spite of the strong differences in the profile shapes and in the resulting active
instability mechanisms. The main difference is that, when inviscid instability modes
are concerned, as the swirl ratio becomes larger than a finite value of q (q = 1.58 in
the inviscid limit), the Batchelor vortex restabilizes whereas the present swirling jet
flow does not.

The underlying physical reason for the dominance of negative helical modes as a
general feature of swirling jets may be found in the early work of Ludwieg (1960),
in the short note of Emanuel (1984) or in the detailed large-m asymptotic study
of Leibovich & Stewartson (1983). Its most likely interpretation as a manifestation
of centrifugal instability in a sloped reference frame aligned with the direction of
vanishing strain as outlined below.

According to Leibovich & Stewartson (1983), at any given radius r0, it is possible
to construct an eigenmode centred on r0 with a maximum growth rate, at leading
order in (1/m)−1/2, reached for the (k, m) wavenumber pairs such that

β = −k/m =
D(Uθ/r)

DUx

∣

∣

∣

∣

r0

, (5.2)

where D stands for d/dr and β = −k/m is the helix angle.
Stewartson & Leibovich (1987) emphasize that the direction defined by the third

term in (5.2) coincides with the direction of zero rate-of-strain vector. Hence,
expression (5.2) states that the most unstable wavenumber pairs (k, m) are aligned
along the zero rate-of-strain direction.

At any radius r0, it is then possible to let k and m both go to infinity with β = −k/m

fixed and determined by (5.2). According to Leibovich & Stewartson (1983), the growth
rate σ (r0) then tends to

σ 2(r0) =
2Uθ (rDUθ − Uθ )

(

U 2
θ /r2 − (DUθ )

2 − (DUx)
2
)

(rDUθ − Uθ )2 + r2(DUx)2

∣

∣

∣

∣

∣

r0

. (5.3)

This function reaches a maximum σmax at r0 = rc, thereby corresponding to a helix
angle β of the wavevector given by (5.2) evaluated at rc. Figure 9 depicts the evolution
of σmax(q), rc(q) and β(q) for the base flow (2.3) and for the Batchelor vortex. As
shown by Leibovich & Stewartson (1983) and readily seen in figure 9, this centrifugal
instability mechanism is not active once q >

√
2 for the Batchelor vortex since rc and

σmax both vanish for q =
√

2. By contrast, for the swirling jet under consideration, it
is seen that the growth rate increases linearly with the swirl q . The most unstable
helix angle increases gradually whereas the localization of the eigenmodes rc(q) barely
changes.

One should note that the characteristics of this generalized centrifugal instability
of Leibovich & Stewartson (1983) and Ludwieg (1960) are qualitatively and even
quantitatively similar at moderate swirl for both models. Negative large values of
the azimuthal wavenumber are therefore destabilized by the generalized centrifugal
instability and are relatively insensitive to the details of the velocity profiles. This
generality is remarkable and explains why the Batchelor vortex is able to capture
instability features of many low-swirl flows. At larger swirl values, the temporal
instability properties become specific to each profile.

In order to verify that the inviscid mechanism of Leibovich & Stewartson (1983)
drives the instability of model I, we have represented in figure 10 the computed growth
rate ωm,i for q =1.2 and all m � −2 as a function of the helix angle β = −k/m, instead
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Figure 9. Influence of the swirl parameter q on the maximum asymptotic growth rate σmax

predicted by Leibovich & Stewartson (1983) (solid line), the corresponding radius rc (dashed
line) and the most unstable helix angle β (dotted line) respectively for the model I screened
swirling jet (heavy lines) and the Batchelor vortex (thin lines).

�

�
m, i

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

Figure 10. Model I growth rate ωm,i as a function of helix angle β = −k/m for q = 1.2 and
various values of m in the range −18 � m � −2.

of k as in figure 7. All curves from m = −5 to m = −18 then reach a maximum for
the same value of β close to 0.92, as predicted by the Leibovich & Stewartson (1983)
asymptotic theory.

Since the computed growth rates are affected by viscosity, modes with large
wavenumbers are seen to be quenched, in contrast with the inviscid asymptotic
theory. Nonetheless, the maximum growth rate for m = −5 and β near βmax = 0.92 is
close to 0.78, which compares favourably with the predicted inviscid value of 1.1. The
analysis of the influence of viscosity is postponed to § 7.
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Figure 12. Model I growth rate ωm,i as a function of helix angle β = −k/m for q =1.6 and
various values of m in the range −18 � m � −2.

Leibovich & Stewartson’s (1983) analysis also predicts that the eigenfunctions are
peaked in the vicinity of a critical radius rc. For q = 1.2, figure 11 depicts contours
in the (y, z)-plane of the axial velocity eigenfunction pertaining to the m = −5 mode
at k = kmax

−5 ∼ 4.9, i.e. β ∼ 0.95. The typical shape of a ring mode is obtained, which
presents a sharp peak near r−5 = 1 in close agreement with the theoretical prediction
rc(q = 1.2) = 1. Similar results hold when q =1.6 as seen in figure 12.
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Figure 13. Spatio-temporal development of the impulse response wavepacket in model I for
a swirl parameter q = 1.2 and Re= 667. The amplitude Am(vg, t) is plotted as a function of the
group velocity vg = x/t on a semi-log plot at different times t =18, 21, 24, 27, 30. (a) m= −2;
(b) m= −3. Note that the m= −2 mode is absolutely unstable.

6. Absolute/convective instability

6.1. Spatio-temporal evolution of the wavepacket

In a first step, the advection parameter is set to a =0 and we focus on the spatio-
temporal evolution of the wavepacket pertaining to different azimuthal wavenumbers
m. Two characteristic examples of the time evolution of the impulse response on
spatio-temporal rays x/t = vg are depicted in figures 13(a) and 13(b) at a swirl setting
q = 1.2 for m = −2 and m = −3 respectively. The amplitudes Am(vg, t) are represented
as a function of the group velocity vg = x/t on a semi-log plot at different times.
Note that we do not resort to the Hilbert transform, as explained in § 4. Therefore
the properties of the positive helical mode m =+2 (resp. m = +3) remain hidden by
the more unstable negative helical mode m = −2 (resp. m = −3).

It is seen that the wavepacket only grows in a range [v−
m; v+

m], where v−
m and v+

m are
the group velocity of the trailing and leading edges of the wavepacket respectively. The
sign of the trailing-edge velocity is of fundamental importance. When it is positive,
the instability is convective, i.e. unable to withstand the advection as in figure 13(b)
for m = −3. When it is negative, the instability is absolute: the wavepacket grows in
place and ultimately contaminates the entire medium as in figure 13(a) for m = −2.

The corresponding spatio-temporal growth rates σm(vg), as defined in table 3,
are plotted in figure 14 for q =1.2 and all azimuthal wavenumbers in the range
−11 � m � 0. At q = 1.2, negative helical modes of order as high as m = −17
are also unstable but for clarity we deliberately restrict the study to modes in the
aforementioned range. Each σm(vg) curve in figure 14 contains all the information
characterizing the spatio-temporal growth of the wavepacket. Its extent is delimited
by the rays v−

m and v+
m of zero growth rate.

As explained in Delbende et al. (1998), the top of the curve coincides with the
maximum temporal growth rate and it is reached on a ray of group velocity

vmax
m =

dωm,r

dk

(

kmax
m

)

. (6.1)

For instance for the mode m = −5, the maximum growth rate is σmax
−5 =0.77 in perfect

agreement with the temporal growth rate ωmax
−5,i = 0.78 in figure 10. The corresponding
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Figure 14. Spatio-temporal development of the wavepacket in model I for a swirl parameter
q = 1.2 and Re= 667. The growth rate σm(vg) is represented as a function of the ray group
velocity vg = x/t for values of m ranging from m= −11 to m= 0.

ray vmax
−5 = 0.57 compares well with the group velocity calculated in the strictly

temporal framework dω−5,r/dk(kmax
−5 ) = 0.55. The bumps on figure 14 correspond

to branch switchings.
It is customary to define the absolute growth rate according to

ω0,m,i ≡ σm(vg = 0), (6.2)

i.e. it is the growth rate at zero group velocity. The sign of the absolute growth
rate provides an alternative criterion to determine the nature of the instability. If
negative, it points to a convective instability, if positive, to an absolute instability.
There is only one absolutely unstable mode in figure 14: m = −2. The m = −2 mode is
therefore expected to contaminate the entire medium, thereby giving birth to a global
mode which will beat at the absolute frequency ω0,−2,r and the absolute wavenumber
k0,−2,r . We have found that at incipient absolute instability (ωm,i =0) k0,−2,r = 0.1
and ω0,−2,r = −0.35 for q = 1.05 and Re = 667. These are the footprints of a negative
helical mode rotating in time in the same direction as the underlying flow. These
results are compared to the experimental observations of Billant et al. (1998) and
Loiseleux & Chomaz (2003) in § 7. For reference, all curves kr (x/t) and ωr (x/t) are
given in figure 15 in the unstable range from m = 0 to m = −11.

6.2. Absolute/convective instability properties in (a, q) parameter plane

In absolute/convective instability analysis the free-stream velocity is known to play
a crucial role. In the remainder of the study, the advection parameter a is therefore
varied. Since the absolute growth rate

ω0,m,i(a, q) ≡ σm(vg = 0; a, q) (6.3)

entirely determines the convective or absolute nature of the instability, the curve
ω0,m,i(a, q) = 0 in the (a, q) parameter plane is of fundamental importance in that
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Figure 15. Distribution of (a) km,r (vg) and (b) ωm,r (vg) for model I at a = 0,
q = 1.2 and Re =667.

it delineates the convective from the absolute instability domain. As pointed out in
Delbende et al. (1998), one of the main advantages of the impulse response method
is that one can deduce the absolute/convective nature of the instability for arbitrary
values of the external flow parameter a solely from a single numerical computation
for zero external flow (a = 0). More precisely, Galilean invariance yields

ω0,m,i(a, q) = σm(vg = 0; a, q) = σm(vg = −a; 0, q), (6.4)

which expresses that, at a given azimuthal wavenumber m and swirl setting q ,
the boundaries a−

m(q) and a+
m(q) of the absolutely unstable domain are respectively

the opposites of the velocities v+
m and v−

m of the leading and trailing edges of the
wavepacket for zero free-stream velocity.

In order to determine the overall stability properties, the various absolute/
convective transition curves ω0,m,i = 0 are overlaid in figure 16 for m ranging from
m = −11 to m = 0. Curves corresponding to modes less than m = −11 are not included
for clarity since they are all contained within the m = −11 curve and nested one inside
the other. They do not therefore modify the outer CI/AI boundary. Open symbols
refer to explicit calculation points whereas the minimum of each curve denoted by a
solid circle has been extrapolated from the variations of the maximum spatio-temporal
growth rate σmax

m with the swirl parameter q .
For all azimuthal wavenumbers except m = −2, the absolutely unstable zone lies in

the left half-plane a < 0, which implies that counterflow is a prerequisite for absolute
instability. As q is increased, the extent of the AI range gradually widens for all
unstable m. In contrast to the study of the Batchelor vortex, the modes do not
restabilize at large swirl parameter values, due to the persistence of the azimuthal
shear and centrifugal instabilities. But a stronger statement can be made: in the limit
q = ∞, the base flow effectively reduces to a pure screened vortex without axial flow
at infinite Reynolds number. The absence of axial flow and the unbroken symmetry
x → ∞ make it absolutely unstable. It can therefore be concluded that the region of
absolute instability remains open for large q .

In the zero swirl case (q = 0), absolute instability for wakes (a � −0.5) is due to
the m = −1 mode (note that at q = 0, the m =+1 and m = −1 modes have identical
properties as discussed in § 5) and only a small amount of counterflow a > −0.98 is
necessary. This result is in excellent agreement with that of Monkewitz (1988), once



Mode selection in swirling jet experiments 245

–1.4 –1.2 –1.0 –0.8 –0.6 –0.4 –0.2 0 0.2
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

a

q

Coflow Counterflow Coflow

JetsWakes

Figure 16. Regions of convective (shaded) and absolute (unshaded) instability in the (a, q)
parameter plane for the screened model I swirling jet profile at Re= 667. Thin lines indicate
AI/CI transition curves for each azimuthal wavenumber m ranging from m= −11 to m= 0.
Open symbols denote calculation points. Solid symbols have been extrapolated.

properly rescaled: according to his analysis, for N = 3 at Re= 667, which corresponds
to a Reynolds number of 333 in Monkewitz’ study, the wake is convectively unstable at
a = −1 (Λ = −1) but absolutely unstable at a = −0.95 (Λ = −1.1). For jets (a � −0.5),
the axisymmetric mode m =0 is the first mode to become absolutely unstable at a
counterflow a = −0.15. The instability of the zero coflow jet (a = 0) for N =3 is
therefore convective at Re= 667 in complete agreement with the result of Monkewitz
& Sohn (1988) according to whom, for infinite Reynolds number and N → ∞, the
round jet becomes absolutely unstable for a < −0.12 (Λ = 1.315).

As q increases, the AI range widens and the critical transitional mode for absolute
instability may change. For wakes, the transitional mode remains m = −1. Wakes
without counterflow (a = −1) undergo a transition to AI for qc = 0.08 . This is
analogous to the Batchelor vortex, for which the transition takes place at q = 0.13
(see Delbende et al. 1998) for the mode m = −1. The predominance of the m = −1
mode seems to be a very robust feature of most swirling wake models studied in the
literature.

In the case of jets with counterflow (−0.5 < a < 0), the transitional mode stays at
m = 0 for small q but it is soon replaced by m = −5. As q is further increased, the
transitional mode varies from m = −6 to m = −7 until, for a swirl value of q =1, the
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Figure 17. Effect of the Reynolds number on Model I temporal instability at q =1.2. The
growth rate ωm,i(k) is plotted as a function of axial wavenumber k. (a) Re= 333; (b) Re= 1333;
compare also with figure 7.

m = −2 mode becomes the ‘most absolute’. At q = 1.05, m = −2 becomes absolutely
unstable at a = 0 and it is above this critical swirl setting that jets with coflow become
absolutely unstable. As q continues to increase, the m = −2 mode becomes more
strongly absolute, even in the presence of coflow.

In contrast to the Batchelor vortex (Delbende et al. 1998; Olendraru et al. 1999;
Olendraru & Sellier 2002), the model I screened swirling jet presents a well-defined
transition from convective to absolute instability as the swirl parameter is increased
above q = 1.05 through the mode m = −2. Higher-order modes (m = −3, −4...) all
present the same behaviour with a transition on the jet side taking place close to
a = −0.03 in the range 0.6 � q � 1.6.

In the case of the Rankine vortex with plug axial flow (Loiseleux et al. 1998),
absolute/convective instability transition curves in the (a, q) parameter plane and
pertaining to different negative azimuthal wavenumbers are closed on the high-q
side. However, the overall absolutely unstable domain remains open for large q ,
since azimuthal modes of arbitrarily high order remain unstable in the absence of a
shear-layer length scale.

7. Effect of the Reynolds number

As argued in § 5.6, modes with arbitrary large wavenumbers and the appropriate
k/m ratio have the same growth rate as predicted by the inviscid asymptotic theory of
Leibovich & Stewartson (1983) but they are expected to be quenched in the presence
of a finite viscosity. As a complement to figure 7(a), figure 17 depicts the temporal
instability curves of model I and a swirl setting q = 1.2 for two other Reynolds
numbers Re = 333 and Re = 1333. At Re =333 (figure 17a), modes with m < −12 are
stabilized and the most unstable mode is found to be m = −4. In contrast, modes as
high as m = −27 (out of the plotted range) are unstable at Re= 1333 and the most
unstable mode is m = −8 (figure 17b).

The influence of viscosity is further analysed in figure 18 where the maximum
growth rate σmax

m that occurs at a value of k denoted kmax
m (of order mβmax) for all

unstable m � −2 is plotted as a function of the square of the total wavenumber
k2

tot = m2 + kmax2

m at q = 1.2 and for three different Reynolds numbers. Figure 18 show



Mode selection in swirling jet experiments 247

�
m, i
max

0 200 400 600 900 1000 1200

0.2

0.4

0.6

0.8

1.0

k 2
tot

–1/333 –1/667

–1/1333

Figure 18. Model I maximum growth rates ωmax
m,i corresponding to all unstable azimuthal

wavenumbers m � −2 as a function of the square of the total wavenumber k2
tot = m2 +kmax2

m for
q = 1.2 for three different Reynolds numbers: Re =333 (�), Re =667 (�) and Re= 1333 (+);
−1/Re slopes are also displayed.

(a) Re\m 0 −1 −2 −5

333 −0.86 −1.33 −1.27 −1.02
667 −0.87 −1.38 −1.29 −1.05

1333 −0.89 −1.40 −1.30 −1.07

(b) Re\m 0 −1 −2 −5

333 −0.10 −1.09 −0.00 −0.03
667 −0.09 −0.09 +0.02 −0.03

1333 −0.09 −0.09 +0.05 −0.03

Table 4. Influence of the Reynolds number on the wavepacket edges at q = 1.2, model I for
several azimuthal modes m. (a) Amount of minimal coflow parameter a to trigger AI for
wakes. (b) Amount of minimal coflow parameter a to trigger AI for jets.

that the growth rates decrease in proportion to −k2
tot/Re. This scaling law may be

explained by the balance between the inviscid asymptotic growth rate (5.3) and the
viscous dissipation. Since the eigenmode is assumed to vary slowly in the radial
direction the dissipation may be estimated from the bulk contribution of the viscous
term (1/Re)∇2 ∼ (1/Re)(k2 + m2).

Regarding spatio-temporal stability, the analysis of Olendraru & Sellier (2002) on
the Batchelor vortex has shown that increasing the Reynolds number tends to only
slightly increase the size of the AI range, once the Reynolds number is larger than a
few hundred. The same trend is found here and the differences for all azimuthal modes
and Reynolds numbers Re = 333, 667 and 1333 are found to remain extremely small.
For this reason the critical advection parameters corresponding to AI/CI transition
are now given only for a few modes m =0, −1, −2 and −5.

The necessary amount of counterflow a to trigger absolute instability is listed in
table 4 for some representative helical modes m = 0, −1, −2 and −5 and for the same
swirl setting as previously, q = 1.2. Table 4(a) refers the wakes (a < −0.5) whereas
table 4(b) refers to jets (a > −0.5).

The main obervations of Olendraru & Sellier (2002) are confirmed for the present
screened swirling jet model I: the extent of the absolutely unstable a-range is enlarged
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Figure 19. Model II temporal instability at q = 1.16: (a) growth rate ωm,i(k) as a function of
axial wavenumber k; (b) frequency ωm,r (k) as a function of k.

as the Reynolds number is increased. On the wakeside (a < −0.5), the threshold a-
values decrease with Re whereas they increase on the jet side. All these variations are
however very weak, i.e. less than a few percent of the typical velocity Uc − U∞. The
results obtained for Re = 667 in the previous section are therefore generic and apply
with minor modifications to other Reynolds numbers.

8. Mode selection: comparison with experiment

We have performed three impulse response simulations for the model II base flow
(2.5) with an axial velocity spike at q =0.82 (S = 0.68), q = 1.16 (S = 0.92) and q = 1.48
(S = 1.08). As illustrated in figure 19 at q = 1.16, the temporal stability results are
found to be only weakly affected in comparison to the model I flow (2.3a–c) without
a spike (see figure 7 at q = 1.2). Note that the growth rate envelopes are qualitatively
similar but that the most unstable azimuthal mode may differ: m = −4 for model II
and m = −5 for model I.

The corresponding spatio-temporal analysis for these three model II cases
is summarized in figure 20 which only displays the transition curves of three
representative helical modes. On the wake side (a � −0.5), the m = −1 mode is critical
for both models, the transition curve of model II being slightly shifted towards the
coflow region to the left. On the jet side (a � −0.5), the m = −1 transition curves are
identical for both models. For m = −2 the absolute domain is slighty narrower and
the transition for zero coflow jets (a = 0) is shifted a few percent towards higher q .
Still, both models behave very similarly and only mode m = −2 becomes absolutely
unstable in the absence of counterflow (a � 0). Finally, the absolutely unstable
domain of mode m = −5 is almost unaffected on both the wake and jet sides. It
may therefore be concluded that the simpler model I flow does indeed capture the
dominant spatio-temporal features of the instability. The axial velocity overshoot is
seen to have a negligible impact. Model I has the advantage that it decouples the
vortex from the jet through a single parameter q which proves to provide a very good
approximation to the instability characteristics of the more intricate experimental
flow.

We now proceed to compare the spatio-temporal properties pertaining to model
II with the pre-breakdown dynamics in swirling jets observed by Billant et al.
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Figure 20. Convective/absolute instability transition curves m= −1(�), −2(�), −5(�) for
model II screened swirling jet at Re= 667 (lines with symbols). For comparison, corresponding
curves from figure 16 are also displayed for model I (lines without symbols).

(1998). According to figure 16 for model I, zero coflow jets (a = 0) undergo a
convective/absolute instability transition for the critical swirl level q = 1.05, for which
the absolute wavenumber is found to be k0,−2,r = 0.1 and the real absolute frequency
is ω0,−2 = ω0,−2,r = −0.35. Provided one assumes the unsteady pre-breakdown state to
be triggered and sustained by a front at the convective/absolute instability location
(see the introduction for a discussion), then it inherits ω0,−2 and k0,−2,r as its frequency
and wavenumber respectively. The analysis then predicts that the unsteady structure
takes the form of a negative m = −2 helical mode wih a pitch 2π/k0,−2,r × 1/|m| =31
radii and a period q/|ω0,−2| =3.3 times the rotation period of the swirling base flow.
Furthermore, following the discussion in § 3, this helical mode rotates in the same
direction as the underlying swirling jet. In the experiment of Billant et al. (1998), for
q =1.3 and Re =666, the pre-breakdown structure consists of a double helix winding
in the same direction as the background rotation† with a pitch of the order of 8
jet radii. With regard to the temporal variations, we note that Billant et al. (1998)
fail to detect any time evolution of the double helix while Loiseleux & Chomaz
(2003) report that at Re =1490 and S = 0.86 the helix rotates extremely slowly in
time in the same direction as the swirl with a period close to 3 times the background
rotation period, in good qualitative agreement with the present theoretical results (3.3
times). As discussed in the introduction, real swirling jets are non-parallel. In such
cases, predictions of the global mode characteristics based solely on local absolute
properties (in the present study at a station close to the inlet) are only qualitative
since non-parallel effects are no longer negligible and may modify the growth rate and

† It should be emphasized that the flow rotation around the jet axis in the experiment of Billant
et al. (1998) is considered to be positive according to a left-hand rule with respect to the jet direction.
In order to follow the convention adopted in the present study it should therefore be regarded as
negative. In view of the symmetry relation discussed in § 3, their m = +2 mode is an m = −2 mode
according to the right-hand rule. Independently of the convention chosen, it winds in the same
direction as the underlying flow rotation.
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the frequency, although they are not expected to affect the azimuthal mode selection.
An estimate of these second-order effects would require the precise knowledge of the
basic flow, which is not available from the experiment since nonlinear transfers are
present further downstream due to the saturation of the instability.

9. Conclusions and discussion

The main result of the study concerns mode selection in the pre-breakdown stage
of swirling jets dynamics. According to §§ 6 and 7, the swirling jet selects as a
self-sustained mode a double helix m = −2 helical mode which becomes absolutely
unstable above the critical swirl level q = 1.05. A temporal analysis alone is incapable
of selecting such a mode. It predicts that m = −5 exhibits the largest temporal growth
rate, a mode which is not observed experimentally. It is the absolutely unstable
nature of m = −2 which allows its emergence from the background noise. This finding
is based on the spatio-temporal instability properties of the velocity profiles close
to the nozzle exit. It implies that this station acts as a wavemaker for the entire
flow. It remains to be established that a nonlinear global mode may indeed exist
on the spatially developing swirling jet, with a front located at the inlet, in the
same spirit as the theoretical investigations of Couairon & Chomaz (1999). Because
of the non-parallelism of the flow, second-order effects are not negligible and the
agreement between theory and experiment remains somewhat qualitative: though
the azimuthal symmetry of the dominant mode is precisely predicted and the frequency
of the double helix as well as the threshold swirl value are in the right range, the
wavenumber prediction is poor however. This is not only a consequence of non-
parallel effects; it is known from the theory that the wavenumber is determined by
nonlinear effects and therefore intrisically varies along the stream.

A recent theoretical investigation by Yin et al. (2000) has demonstrated that the
absolute instability of the Batchelor vortex with a wake (a � −0.5) succeeds in
accounting for the m = −1 helical structure experimentally observed downstream of
vortex breakdown by Garg & Leibovich (1979). In particular, the dominant Strouhal
number in the wake of vortex breakdown is correctly predicted as well as the winding
in the opposite direction to the underlying swirling motion (see § 3 for a justification
of this last property). All existing studies reveal that the most absolutely unstable
mode in swirling wakes is m = −1, whatever basic profiles are used. It is a robust
feature of swirling wake dynamics. However, double helices (m = −2) have also been
observed for sufficiently high swirl in the lee of the breakdown bubble in recent
three-dimensional direct numerical simulations of vortex breakdown in a semi-infinite
domain by Ruith & Meiburg (2002).

All these conclusions imply that absolute/convective instablity concepts appear to
be successful in predicting the unsteady structure of swirling flows, whether they are
in a pre-breakdown stage (m = −2) or in full breakdown configuration (m = −1). They
fail, however, to explain the onset of vortex breakdown, which does not appear to a
rise from a local instability but rather from an overall modification of the basic flow.

The temporal instability analysis has revealed that a large range of negative
helical modes (winding with the underlying swirl) become and remain unstable
as swirl is increased. In the specific case of screened swirling jets, three instability
mechanisms have been identified which are associated with axial shear, azimuthal
shear and centrifugal forces. It is the latter, in its generalized form for helical
disturbances in swirling jets, which appears to explain the temporal mode
selection. Furthermore, the instability characteristics (growth rate, wavenumbers
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and eigenfunction) at large azimuthal wavenumber |m| have been shown to agree
remarkably well with the analytical predictions of Leibovich & Stewartson (1983).
This generalized instability mechanism is active for all continuous velocity profiles and
its comparison with the Batchelor model explains why the temporal characteristics
of the instability at moderate values of the swirl parameter are similar for both
models despite their differences. This concerns only temporal instability however and
not absolute/convective transition that involves lower azimuthal modes and other
mechanisms, in which the screening effects seem essential and the use of realistic
velocity profiles mandatory. In closing, it is worth emphasizing that the double helix
configuration is observed not only in the screened swirling jet experiments of Billant
et al. (1998) upon which the present study is based, but also in swirling flows through
confined tubes (Sarpkaya 1971; Escudier et al. 1980).

I. Delbende and P. Billant are warmly acknowledged for stimulating discussions and
P. Huerre for helpful suggestions and constant encouragement. The work is supported
by the French Ministry of Defence under grant No. 99 001004707588 and by IDRIS
(CNRS) for computational facilities under project No. 020174.
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