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A Mode-Sum Prescription for Vacuum Polarization in Even Dimensions

Peter Taylor∗

Center for Astrophysics and Relativity,
School of Mathematical Sciences,

Dublin City University, Glasnevin, Dublin 9, Ireland

Cormac Breen†

School of Mathematical Sciences,
Dublin Institute of Technology,
Kevin Street, Dublin 8, Ireland

(Dated: September 4, 2017)

We present a mode-sum regularization prescription for computing the vacuum polarization of a
scalar field in static spherically-symmetric black hole spacetimes in even dimensions. This is the
first general and systematic approach to regularized vacuum polarization in higher even dimensions,
building upon a previous scheme we developed for odd dimensions. Things are more complicated
here since the even-dimensional propagator possesses logarithmic singularities which must be reg-
ularized. However, in spite of this complication, the regularization parameters can be computed
in closed form in arbitrary even dimensions and for arbitrary metric function f(r). As an explicit
example of our method, we show plots for vacuum polarization of a massless scalar field in the
Schwarzschild-Tangherlini spacetime for even d = 4, ..., 10. However, the method presented applies
straightforwardly to massive fields or to nonvacuum spacetimes.

I. INTRODUCTION

One particularly important approximation to a full
theory of Quantum Gravity is semi-classical gravity,
which is the treatment of quantum fields interacting with
a classical spacetime metric via the semi-classical Ein-
stein equations

Gab = 8π〈Tab〉. (1)

Though there has been considerable debate on how ex-
actly to interpret these equations, here we will have in
mind the computation of the one-loop quantum correc-
tion about a particular fixed classical background. In this
interpretation, the source-term on the right-hand side is
the expectation value of the quantum stress-energy ten-
sor operator for a particular field in a particular quan-
tum state, where the stress-energy tensor operator is
obtained by taking the classical expression for stress-
energy for whatever fields are being considered and pro-
moting the non-gravitational fields to operators. This
procedure can also be adapted to gravitational pertur-
bations about a fixed classical metric. This quantiza-
tion procedure immediately leads to problems, namely
that the source term after quantization is quadratic in
an operator-valued distribution and hence divergent. A
formal prescription to regularize the stress-energy ten-
sor, the point-splitting scheme, dates back to DeWitt and
Christensen [1, 2]. Effectively, the prescription amounts
to considering the stress-tensor evaluated at two nearby
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spacetime points and then subtracting a parametrix that
encodes all the geometrical divergences in the coincident
limit. This problem is already there in Minkowski space-
time where the familiar normal-ordering cure is equiva-
lent to the point-splitting scheme applied to flat space-
time. In curved spacetime, however, there is no preferred
vacuum state and hence a normal ordering procedure
cannot be adopted.

The Christensen-DeWitt point-splitting scheme offers
a formal resolution to the problem of regularization, but
it does not inform how to compute regularized quan-
tities in practice. Applying the point-splitting scheme
in a way that is amenable to numerical evaluation has
proven extremely difficult. The first significant break-
through in this direction was the seminal work of Can-
delas and Howard [3] who computed regularized vac-
uum polarization for a scalar field in the Schwarzschild
black hole spacetime. Despite serious drawbacks, includ-
ing its crucial dependence on WKB methods (which are
problematic in the Lorentzian sector and generally ill-
behaved near horizons) and lack of numerical efficiency,
the Candelas-Howard approach has remained more or less
the standard prescription for several decades.

In Ref. [4], we derived a new regularization scheme
that was both conceptually clearer and much more ef-
ficient than the Candelas Howard approach. There are
several other advantages, among them is the fact that
the method is mostly agnostic to number of dimensions.
This is quite remarkable given that the severity of the
singularities to be regularized increases with the num-
ber of dimensions. In that paper, we treat only the vac-
uum polarization of scalar fields in odd dimensional static
spherically-symmetric spacetimes. In this paper, we ex-
tend the method to even dimensions also. Things are
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more complicated in even dimensions since the Feynman
Green function possesses logarithmic singularities. We
illustrate the power of the method by showing results for
vacuum polarization for a scalar field in Schwarzschild-
Tangherlini spacetimes with d = 4, 6, 8, 10. So efficient is
the evaluation that the plots shown are generated on a
standard laptop computer and are accurate to approxi-
mately 8-10 decimal places with only a few tens of modes.
We note also that there is no conceptual obstacle to ex-
tend the methods presented in this series of papers to
the computation of the regularized stress-energy tensor,
though the calculations are much more involved.

Finally, apart from presenting this new method for
even dimensions, the results presented for Schwarzschild-
Tangherlini spacetimes are the first exact numerical re-
sults for vacuum polarization on the exterior of higher
even-dimensional black hole spacetimes in the literature,
at least as far as the authors are aware. There has been
some work on regularized vacuum polarization and regu-
larized stress-energy tensors in higher dimensions in the
literature, but the focus has not been on computing ex-
act quantities in a particular spacetime of interest but
rather on general properties, expansions of the singular
two-point function or approximations (see Refs. [5–9] for
example).

II. THE EUCLIDEAN GREEN FUNCTION

We consider a quantum scalar field on a static, spher-
ically symmetric black hole spacetime of the form

ds2 = −f(r)dt2 + dr2/f(r) + r2dΩ2
d−2, (2)

where dΩ2
d−2 is the metric on Sd−2. Assuming the field is

in a Hartle-Hawking state, we can adopt Euclidean tech-
niques to simplify the problem. In particular, performing
a Wick rotation t→ −i τ results in the Euclidean metric

ds2 = f(r)dτ2 + dr2/f(r) + r2dΩ2
d−2. (3)

It can be shown that this metric would possess a conical
singularity unless we enforce the periodicity τ = τ +
2π/κ where κ is the surface gravity. This discretizes the
frequency spectrum of the field modes which now satisfy
an elliptic wave equation

(�−m2 − ξ R)φ = 0, (4)

where here and throughout � is the d’Alembertian oper-
ator with respect to the Euclidean metric, m is the scalar
field mass and ξ is the constant that couples the scalar
to the gravitational field. The corresponding Euclidean
Green function has the following mode-sum representa-
tion

G(x, x′) =
κ

2π

∞∑
n=−∞

einκ∆τ
∞∑
l=0

(l + µ)

µΩd−2
Cµl (cos γ)gnl(r, r

′)

(5)

where µ = (d−3)/2 and Ωd−2 = 2πµ+1/Γ(µ+1), Cµl (x) is
the Gegenbauer polynomial and γ is the geodesic distance
on the (d−2)-sphere. The radial Green function satisfies[

d

dr

(
rd−2f(r)

d

dr

)
− rd−2

(n2κ2

f(r)
+m2 + ξ R(r)

)
−rd−4l(l + d− 3)

]
gnl(r, r

′) = −δ(r − r′). (6)

The solution can be expressed as a normalized product
of homogeneous solutions

gnl(r, r
′) = Nnl pnl(r<)qnl(r>), (7)

where pnl(r) and qnl(r) are homogeneous solutions which
are regular on the horizon and the outer boundary (usu-
ally spatial infinity), respectively. We have adopted the
notation r< ≡ min{r, r′}, r> ≡ max{r, r′}. The normal-
ization constant is given by

NnlW{pnl(r), qnl(r)} = − 1

rd−2f(r)
, (8)

where W{p, q} denotes the Wronskian of the two solu-
tions.

Now, computing the vacuum polarization involves tak-
ing the so-called coincidence limit x′ → x of the Eu-
clidean Green function. However, the mode-sum expres-
sion (5) does not converge in this limit reflecting the fact
that the Green function satisfies a wave equation with
a delta distribution source. In order to make the coinci-
dence limit meaningful, we must regularize the mode-sum
in a way described in the remainder of this paper.

III. THE SINGULAR PROPAGATOR

In the point-splitting approach to computing the reg-
ularized vacuum polarizations in the Hartle-Hawking
state, one subtracts an appropriate two-point function
from the Euclidean Green function and then one takes
the coincidence limit x′ → x. Of course, in order for
this to be meaningful, the short-distance singularities in
the Green function and in the two-point function that
one subtracts must cancel. This is guaranteed if the two-
point function is chosen to be a parametrix for the scalar
wave equation, that is, if we subtract a two-point func-
tion GS(x, x′) that satisfies

(�−m2 − ξ R)GS(x, x′) = δ(x, x′) + S(x, x′) (9)

where δ(x, x′) is the d-dimensional covariant delta dis-
tribution and S(x, x′) is an arbitrary smooth biscalar.
There are other constraints on GS(x, x′), the most impor-
tant of which is that it must depend only on the geom-
etry via the metric and its derivatives. This guarantees
that the divergences in the semi-classical equations are
renormalizable [10]. These criteria still only fix GS(x, x′)
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up to the addition of an arbitrary smooth biscalar that
depends functionally only on the geometry. So a choice
must be made. Here, we adopt the Hadamard regulariza-
tion prescription (see, e.g., [6]), i.e., we define our singu-
lar propagator to be a Hadamard parametrix (or rather
a one-parameter family of parametrices). In even dimen-
sions, this is given by

GS(x, x′) =
Γ(d2 − 1)

2(2π)d/2

{
U(x, x′)

σ(x, x′)
d
2−1

+ V (x, x′) log(2σ/`2)

}
.

(10)

The biscalar σ(x, x′) is the world function with respect to
the Euclideanized metric. The parameter ` is a length-
scale required to make the argument of the log dimen-
sionless. The biscalars U(x, x′) and V (x, x′) are smooth
and symmetric in their arguments. For a scalar field,
U(x, x′) satisfies the wave equation

σ(�−m2 − ξ R)U = (d− 2)σa∇aU
− (d− 2)U ∆−1/2σa∇a∆1/2, (11)

where σa ≡ ∇aσ and ∆(x, x′) is the Van Vleck Morrette
determinant. Assuming the Hadamard ansatz for a series
solution

U(x, x′) =

d
2−2∑
p=0

Up(x, x
′)σp, (12)

it can be shown that each coefficient Up(x, x
′) satisfies

(p+ 1)(2p+ 4− d)Up+1 + (2p+ 4− d)σa∇aUp+1

− (2p+ 4− d)Up∆
−1/2σa∇a∆1/2

+ (�−m2 − ξ R)Up = 0, (13)

with boundary condition U0 = ∆1/2. The biscalar
V (x, x′) satisfies the homogenous wave equation

(�−m2 − ξ R)V (x, x′) = 0, (14)

and since it is symmetric, it is also a solution with respect
to the wave operator at x′. The Hadamard ansatz for
V (x, x′),

V (x, x′) =

∞∑
p=0

Vp(x, x
′)σp (15)

can be substituted into (14) to obtain a sequence of re-
cursion relations for Vp:

(p+ 1)(2p+ d)Vp+1 + 2(p+ 1)σa∇aVp+1

−2(p+ 1)Vp+1∆−
1
2σa∇a∆

1
2

+(�−m2 − ξ R)Vp = 0, (16)

along with the boundary condition

(d− 2)V0 + 2σa∇aV0 − 2V0∆−
1
2σa∇a∆

1
2

+(�−m2 − ξ R)U d
2−2 = 0. (17)

Subtracting the Hadamard parametrix formally reg-
ularizes the Euclidean Green function. However, most
of the difficulty in the calculation is how to subtract
this in a way that the coincidence limit can be taken
in a meaningful way and such that the resultant expres-
sion is numerically tractable. The problem is that the
divergences in the mode-sum representation of the Eu-
clidean Green function manifest as the non-convergence
of that mode-sum at coincidence, while the divergence in
the Hadamard parametrix is explicitly geometrical. One
must attempt to express the Hadamard parametrix as a
mode-sum of the same form as the Euclidean Green func-
tion and then subtract mode-by-mode. This is the crux of
the regularization problem in QFT in curved spacetime.

In order to attain the desired mode-sum representa-
tion of the Hadamard parametrix, we must expand in a
judiciously chosen set of variables. Now, the world func-
tion possesses a standard coordinate expansion which to
lowest order is simply σ = 1

2gab∆x
a∆xb +O(∆x3). Fol-

lowing Ref. [4], we eschew this standard expansion and
instead assume an expansion of the form

σ =
∑
ijk

σijk(r)wi∆rjsk (18)

where

w2 =
2

κ2
(1− cosκ∆τ), s2 = f(r)w2 + 2r2(1− cos γ).

(19)

We will refer to w and s as “extended coordinates” and
we will formally treat these as O(ε) ∼ O(∆x) quantities.
Substituting this into the defining equation σaσ

a = 2σ
and equating order by order uniquely determines the
coefficients σijk(r). To leading order, we simply have
σ = 1

2ε
2(s2 + ∆r2/f) + O(ε3), where we insert explicit

powers of ε as a book-keeping mechanism for tracking
the order of each term. Analogous expansions may be
assumed for Up(x, x

′) and Vp(x, x
′),

Up(x, x
′) =

∑
ijk

u
(p)
ijk(r)εi+j+kwi∆rjsk

Vp(x, x
′) =

∑
ijk

v
(p)
ijk(r)εi+j+kwi∆rjsk, (20)

and substituting these into (13) and (16) determines the

coefficients u
(p)
ijk(r) and v

(p)
ijk(r), respectively.

Combining (18) and (20) gives a series expansion for
the Hadamard parametrix in terms of the expansion pa-
rameters w, s and ∆r. This type of computation is
ideally suited to a symbolic computer package such as
Mathematica. Since we are ultimately interested in the
coincidence limit, let us simplify by taking the partial
coincidence limit ∆r = 0, then it can be shown that the
Hadamard parametrix possesses an expansion of the form
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U

σ
d
2−1

+ V log(2σ/`2) =

d
2 +m−2∑
i=0

i∑
j=0

D(+)
ij (r)ε2i−2µ−1 w2i+2j

s2µ+2j+1
+

d
2 +m−2∑
i=1

i∑
j=1

D(−)
ij (r)ε2i−2µ−1 w2i−2j

s2µ−2j+1

+ log(ε2 s2/`2)

m−1∑
i=0

i∑
j=0

T (l)
ij (r)ε2is2i−2jw2j +

m−1∑
i=1

i∑
j=0

T (p)
ij (r)ε2is2i−2jw2j +

m−1∑
i=1

m−1−i∑
j=0

T (r)
ij (r)ε2is−2j−2w2i+2j+2

+O(ε2m log ε). (21)

The coefficients D(±)
ij (r) are those that come from ex-

panding the direct part of the Hadamard parametrix
U/σd/2−1 in the extended coordinates w and s, while the
coefficients Tij(r) are those coming from the tail part
V log σ. We further divide the tail coefficients into three

types, T (l)
ij which are those terms in the expansion of the

tail that contain a logarithm, T (p)
ij are those terms in the

tail which are polynomial in s2 and w2, and T (r)
ij which

are those terms in the expansion of the tail which are ra-
tional in s2 and w2 (unlike the polynomial terms, these
are not ordinary integrable function near coincidence).

There is a degeneracy in what we label as the T (p)
ij terms

since we can absorb some of the log(`2)T (l)
ij terms into

a redefinition of the T (p)
ij coefficients. This is simply re-

lated to the well-known ambiguity that arises due to our
freedom to add factors of the homogeneous solution V
to the Green function, which is also crucially related to
the trace anomaly. Regardless, Eq. (21) is our conven-
tion for how these coefficients are defined. For a massless
scalar field in the d = 6 Schwarzschild-Tangherlini space-
time, we give explicit expressions for these coefficients
in Tables II-IV. For higher even dimensions, the expres-
sions are too large to be useful in print-form, however,
a Mathematica Notebook containing the expressions for
arbitrary metric function f(r) is available online [11].

Apart from the existence of log singularities, another
important distinction in the even-dimensional case is that
there are terms that are polynomial in both cosκ∆τ and
cos γ. This is a result of the fact that only even powers
of w and s arise in the expansion. This significantly sim-
plifies matters since we recall that we desire mode-sum
representation of the parametrix in a basis of Fourier
frequency modes and Gegenbauer polynomials, and this
implies, for example, that if we expand a polynomial in
cos γ in terms of Gegenbauer polynomials Cµl (cos γ) in-
volves only a finite number of terms. Or put another way,
there is no large l contribution coming from terms that
are polynomial in cos γ. Similarly, there are no large n
contributions from terms that are polynomial in cosκ∆τ .
This implies that it is redundant to decompose terms in
the Hadamard parametrix that are polynomial in both
cosκ∆τ and cos γ since they cannot improve the con-
vergence of the resultant mode-sum, since they do not
contribute for large l and n. In Eq. (21), terms involv-
ing coefficients D(−)

ij for j ≥ d/2 − 1 and terms involv-

ing the coefficients T (p)
ij are polynomial in cosκ∆τ and

cos γ and hence need not be expressed as a mode-sum,
but rather kept in closed form. Moreover, since we are
eventually interested in the coincidence limit, only the ze-

roth order polynomial survives, i.e., the D(−)
ij term with

i = j = d/2− 1. Hence we may re-express (21) as

U

σ
d
2−1

+ V log(2σ/`2) =

d
2 +m−2∑
i=0

i∑
j=0

D(+)
ij (r)ε2i−2µ−1 w2i+2j

s2µ+2j+1
+

d
2 +m−2∑
i=1

min{i, d2−2}∑
j=1

D(−)
ij (r)ε2i−2µ−1 w2i−2j

s2µ−2j+1

+ log(ε2s2/`2)

m−1∑
i=0

i∑
j=0

T (l)
ij (r)ε2is2i−2jw2j +

m−1∑
i=1

m−1−i∑
j=0

T (r)
ij (r)ε2is−2j−2w2i+2j+2 +D(−1)

d
2−1, d2−1

(r)

+O(ε2m log ε), (22)

where we have ignored terms that are polynomial in w2

and s2 which vanish at coincidence. There is a slight
abuse of notation here since these polynomial terms are
lower order than the O(ε2m log ε) terms that we are also
ignoring in the small ε expansion, but as explained above,

the point is that the polynomial terms do not contribute
to either the overall answer nor the speed of convergence.
Hence they can be safely ignored.

The lowest order truncation of this series that captures
all the singular terms is for m = 0, however, it is gener-
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ally useful to keep higher-order terms which can greatly
improve the convergence properties of the mode-sum ex-
pression for the regularized Green function. More specifi-
cally, if we subtract only the m = 0 terms from the Green
function (in a procedure explained in the next section),
then the resultant regularized Green function is conver-
gent, since we have captured all the divergences, but in
the coincidence limit the convergence is only conditional.
This implies that the order in which the mode-sum is
performed matters and is actually tied to the order in
which we take coincidence limits (see Ref. [12] for a dis-
cussion of this point). In the present context, the order in
which the limits are taken is already fixed by our choice
of w and s, since it is not possible to take s → 0 with-
out first taking w → 0. This implies that the n-sum
ought to be summed first to get the correct answer. In
the standard coordinate approach, one can take ∆τ → 0
independently from γ → 0 and whichever limit is taken
first, the corresponding sum ought to be performed first.

For example, if we take ∆τ → 0 first, then the Fourier
frequency sum is the inner sum of the resultant mode-
sum expression. Returning to our approach, if we fur-
ther include the m = 1 terms then all the terms we are
ignoring formally vanish in the coincidence limit. How-
ever, the convergence of the mode-sum is still relatively
slow and a high-accuracy calculation can be computa-
tionally expensive. It is therefore prudent to include still
higher-order terms in the Hadamard parametrix, even
though these terms formally vanish, their inclusion serves
to speed the convergence of the mode-sum, at least in
principle. In practice however, including very high-order
terms becomes prohibitively slow simply because there
are so many terms to compute in the decomposition of
the Hadamard parametrix. We find that including terms
up to m = 2 or m = 3 is the most computationally effi-
cient. In what follows, we take m = 2 for concreteness,
which gives

U

σ
d
2−1

+ V log(2σ/`2) =

d
2∑
i=0

i∑
j=0

D(+)
ij (r)ε2i−2µ−1 w2i+2j

s2µ+2j+1
+

d
2∑
i=1

min{i, d2−2}∑
j=1

D(−)
ij (r)ε2i−2µ−1 w2i−2j

s2µ−2j+1

+ log(ε2s2/`2)

1∑
i=0

i∑
j=0

T (l)
ij (r)ε2is2i−2jw2j + T (r)

10 (r)ε2is−2w4 +D(−)
d
2−1, d2−1

(r) +O(ε4 log ε),

(23)

where again we have ignored the terms that are polyno-
mial in w2 and s2. An important point to emphasize here
is that we have maintained a point-splitting in multiple
directions in this expression. It is, of course, tempting
to simplify this expression by choosing only one direc-
tion in which to point split and if this direction was a
Killing direction, then the resultant parametrix would be
very simple indeed. This is the procedure that practically
all other regularization schemes adopt. Our perspective,
which is a major departure from the standard one, is that
employing this freedom to point split in any direction
too early in the calculation actually hinders rather than
helps. Recall that what is actually needed is a mode-by-
mode subtraction of the physical Green function (rep-
resenting the propagation of a quantum field in some
quantum state) minus the Hadamard parametrix (which
captures the local ultra-violet behaviour of the Green
function) and this mode-by-mode subtraction arises most
naturally if we split in multiple directions. This will be
shown in the next section where an explicit mode-sum
decomposition for the Hadamard parametrix is derived.

IV. MODE-SUM REPRESENTATION OF THE
HADAMARD PARAMETRIX

We wish to decompose the terms of the Hadamard
parametrix (23) in terms of Fourier frequency modes and
multipole moments. If this can be achieved then a mode-
by-mode subtraction for the regularized Green function
is feasible. We will consider the direct and tail parts
separately.

A. Regularization Parameters for the Direct Part

In this section, we decompose terms of the form
w2i±2j/s2µ±2j+1 and invert to compute the regulariza-
tion parameters. The derivation here is very similar to
that needed to compute regularization parameters in ar-
bitrary odd dimensions [4], except that the parameter
µ = (d − 3)/2 is now half-integer. As in [4], the start-
ing point is to assume a Fourier frequency and multipole



6

decomposition of the form

w2i±2j

s2µ±2j+1
=

∞∑
n=−∞

einκ∆τ
∞∑
l=0

(2l + 2µ)Cµl (cos γ)

×
[d]

Ψ
(±)
nl (i, j|r), (24)

which we try to invert to determine the regularization

parameters
[d]

Ψ
(±)
nl (i, j|r). With x = cos γ, multiplying

both sides by e−in
′∆τ (1 − x2)µ−

1
2Cµl′ (x) and integrating

gives

[d]

Ψ
(±)
nl (i, j|r) =

κ

(2π)2

22µ−1Γ(µ)2l!

Γ(l + 2µ)

∫ 2π/κ

0

∫ 1

−1

w2i±2j

s2µ±2j+1

× e−inκ∆τ (1− x2)µ−
1
2Cµl (x) dx d∆τ,

(25)

where we have used the completeness relations∫ 2π/κ

0

e−i(n−n
′)∆τd∆τ =

2π

κ
δnn′ ,∫ 1

−1

(1− x2)µ−
1
2Cµl (x)Cµl′ (x) dx =

21−2µπ Γ(n+ 2µ)

(l + µ) l! Γ(µ)2
δll′ .

(26)

We perform the x integration above by employing the
identity [13]∫ 1

−1

(1− x2)µ−1/2Cµl (x)

(z − x)µ±j+1/2
dx

=
(−1)j

√
πΓ(l + 2µ)(z2 − 1)∓j/2

2µ−3/2l!Γ(µ)Γ(µ± j + 1/2)
Q±jl+µ−1/2(z), (27)

to obtain

[d]

Ψ
(±)
nl (i, j|r) =

κ

(2π)2

2i
√
π(−1)jΓ(µ)

κ2i±2jr2µ±2j+1Γ(µ+ 1
2 ± j)

×
∫ 2π/κ

0

(1− cosκt)i±je−inκt(z2 − 1)∓j/2Q±j
l+µ− 1

2

(z)dt,

(28)

with

z = 1 +
f2

κ2r2
(1− cosκt). (29)

As already mentioned, for even d ≥ 4, the parameter
µ = (d−3)/2 is always half-integer, implying that µ− 1

2 ∈
N. In particular, we note that since l + µ − 1

2 + j is
a positive integer, the associated Legendre function of
the second kind appearing in the integral representation
of the regularization parameters above is always well-

defined. Also, for the D(−)
ij (r) terms, the largest value

that j can assume is d/2 − 2 and hence l + µ − 1
2 − j

cannot be a negative integer and the right-hand side of
(28) remains meaningful. We focus first on the former

case of computing the
[d]

Ψ
(+)
nl (i, j|r) terms. Using the fact

that

(z2 − 1)−j/2Qjν(z) =
(−1)j

2j(1− cosκt)j

(1

η

∂

∂η

)j
Qν(z),

(30)

where

η ≡
√

1 +
f(r)

κ2r2
, (31)

we arrive at

[d]

Ψ
(+)
nl (i, j|r) =

κ

(2π)2

2i−j
√
πΓ(µ)

κ2i±2jr2µ+2j+1Γ(µ+ 1
2 + j)

×
(

1

η

∂

∂η

)j ∫ 2π/κ

0

(1− cosκt)ie−inκtQl+µ− 1
2
(z)dt.

(32)

In order to perform the integral we must factor out the
time dependence from the Legendre function, which may
be achieved by employing the addition theorem [14],

Qν(z) = Pν(η)Qν(η) + 2

∞∑
p=1

(−1)pP−pν (η)Qpν(η) cos p κt,

(33)

whence the time integral reduces to

∫ 2π/κ

0

(1− cosκt)ie−inκt cos pκt dt =

√
π

κ

[
2ii!Γ

(
i+ 1

2

)
(−1)n−p

(i+ p− n)!(i− p+ n)!
+

2ii!Γ
(
i+ 1

2

)
(−1)p+n

(i− p− n)!(i+ p+ n)!

]
.

(34)

The factorials in the denominator imply that there is a fi-
nite number of integer p for which the integral is nonzero.
In particular, the first term on the right-hand side of (34)
is nonzero only for |p − n| ≤ i while the second term is
nonzero for |p + n| ≤ i. The range is further restricted
in our case since p ≥ 1 and hence the sets of integers
p for which the first and second terms are nonzero are
p ∈ {max(1, n− i), n+ i} and p ∈ {max(1,−n− i), i−n},
respectively. An equivalent expression for (34) in terms
of a sum of Kronecker deltas is easily derived. Putting
these together, we obtain
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[d]

Ψ
(+)
nl (i, j|r) =

22i−j−1(−1)ni! Γ(i+ 1
2 )Γ(µ)

πκ2i+2jr2µ+2j+1Γ(j + µ+ 1
2 )

(
1

η

d

dη

)j {Pl+µ− 1
2
(η)Ql+µ− 1

2
(η)

(i− n)!(i+ n)!

+

i+n∑
p=max{1,n−i}

P−p
l+µ− 1

2

(η)Qp
l+µ− 1

2

(η)

(i+ p− n)!(i− p+ n)!
+

i−n∑
p=max{1,−n−i}

P−p
l+µ− 1

2

(η)Qp
l+µ− 1

2

(η)

(i+ p+ n)!(i− p− n)!

}
. (35)

We turn now to the
[d]

Ψ
(−)
nl (i, j|r) terms. Again, the derivation is analogous to the odd-dimensional case presented

in Ref. [4] so we omit much of the details. Briefly, making use of the identity

(z2 − 1)j/2Q−jν (z) =

j∑
k=0

(−1)k

2j+1

(
j

k

)
(2ν + 2j − 4k + 1)

(ν − k + 1
2 )j+1

Qν+j−2k(z) (36)

in (28) gives

[d]

Ψ
(−)
nl (i, j|r) =

κ

(2π)2

2i−j
√
π(−1)jΓ(µ)

κ2i−2jr2µ−2j+1Γ(µ+ 1
2 − j)

j∑
k=0

(−1)k
(
j

k

)
(l + µ+ j − 2k)

(l + µ− k)j+1

×
∫ 2π/κ

0

(1− cosκt)i−je−inκtQl+µ− 1
2 +j−2k(z)dt. (37)

We now proceed as above: we apply the addition theorem (33) to isolate the time-dependence, and integrate using
(34). The result is

[d]

Ψ
(−)
nl (i, j|r) =

22i−2j−1(−1)n+j(i− j)!Γ(i− j + 1
2 )Γ(µ)

πκ2i−2jr2µ−2j+1Γ(µ+ 1
2 − j)

j∑
k=0

(−1)k
(
j

k

)
(l + µ+ j − 2k)

(l + µ− k)j+1

×
{
Pl+µ− 1

2 +j−2k(η)Ql+µ− 1
2 +j−2k(η)

(i− j − n)!(i− j + n)!
+

i−j+n∑
p=max{1,n−i+j}

P−p
l+µ− 1

2 +j−2k
(η)Qp

l+µ− 1
2 +j−2k

(η)

(i− j + p− n)!(i− j − p+ n)!

+

i−j−n∑
p=max{1,−n−i+j}

P−p
l+µ− 1

2 +j−2k
(η)Qp

l+µ− 1
2 +j−2k

(η)

(i− j + p+ n)!(i− j − p− n)!

}
. (38)

Eqs. (35) and (38) are the regularization parameters
for the direct part of the scalar two-point function in a
static spherically symmetric spacetime in arbitrary even
dimensions.

B. Regularization Parameters for the Tail

In this section, we derive regularization parameters for
the tail terms in the Hadamard parametrix. Recall that
we divided the tail term into subcategories depending on
whether there was a logarithm, whether the terms were
polynomial in s2 and w2 or whether they were rational
(generalized) functions of w2 and s2. We have already
explained that the polynomial terms do not need to be
expressed as a mode-sum, even if they were, the sums
would be finite and hence offer no advantage in improving
the convergence of the mode-sum expression for the vac-
uum polarization. The only rational term coming from

the tail term in the parametrix at the order being consid-
ered is a term of the form w4/s2. This type of term has
in fact already been considered since it shows up in the

direct part corresponding to the coefficient D(−)
ij (r) with

i = d
2 , j = d

2 − 2. Thus, the corresponding regularization

parameter is given by (38) with i = d
2 , j = d

2 − 2. Equiv-

alently, we could simply absorb the term T (r)
10 (r) into the

direct part in (23) by the redefinition

D̃(−)
d
2 ,

d
2−2

(r) = D(−)
d
2 ,

d
2−2

(r) + T (r)
10 (r). (39)

Hence, the only remaining terms in the tail that need
to be considered are those that involve a log, i.e., those
of the form log(s2/`2) s2i−2jw2j . As before the starting
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point is to assume an expansion of the form

s2i−2jw2j log

(
s2

`2

)
=

∞∑
n=−∞

einκ∆τ
∞∑
l=0

(2l + 2µ)Cµl (cos γ)

×
[d]
χnl(i, j|r).

(40)

Using the completeness relations (26), we can invert to
get the double integral representation for the regulariza-

tion parameters:

[d]
χnl(i, j|r) =

κ

(2π)2

22µ−1Γ(µ)2l!

Γ(l + 2µ)

∫ 2π/κ

0

∫ 1

−1

w2j e−inκ∆τ

× log(s2/`2)s2i−2j(1− x2)µ−
1
2Cµl (x) dx d∆τ.

(41)

For the angular integral, we wish to find a useful expres-
sion for the integrals of the form∫ 1

−1

log(z − x) (z − x)k(1− x2)µ−
1
2Cµl (x) dx, (42)

where k = i− j ∈ N and we remind the reader that z > 1
is given by Eq. (29).

There are several ways one might proceed, for example, one could attempt to differentiate (z − x)λ with respect to
the exponent and then take the limit λ→ i− j. This indeed can be done but is needlessly complicated for all but a
handful of low l-modes. Instead, we start with the Rodrigues’-type formula for the Gegenbauer polynomials [14]

Cµl (x) =
(−1)l(2µ)l

2ll!(µ+ 1
2 )l

(1− x2)
1
2−µ

dl

dxl

[
(1− x2)µ+l− 1

2

]
. (43)

Substituting this into Eq. (42) and integrating by parts l times gives

∫ 1

−1

log(z − x) (z − x)k(1− x2)µ−
1
2Cµl (x) dx =

(2µ)l

2ll!(µ+ 1
2 )l

∫ 1

−1

Blk(z, x)(1− x2)l+µ−
1
2 dx, (44)

where

Blk(z, x) =


(−1)k+1k!(l − k − 1)!(z − x)k−l l > k

(−1)l(k − l + 1)l(z − x)k−l
{

log(z − x) + ψ(k + 1)− ψ(k + 1− l)
}

l ≤ k.
(45)

We note that in our case, k = i − j will be a small number and hence all but the lowest-lying l-modes will satisfy
l > i − j. In fact, to compute the regularized Green function up to O(ε4 log ε) requires only the k = 0, 1 modes and
hence all l ≥ 2 will be given by the more simple expression for Blk above. In this case, the integral in Eq. (44) is
expressible in terms of the Legendre function of the second kind,

∫ 1

−1

log(z − x) (z − x)k(1− x2)µ−
1
2Cµl (x) dx = (−1)µ−

1
2 2µ+ 1

2
k!

l!
(2µ)lΓ(µ+

1

2
)(z2 − 1)

1
2 (µ+k+ 1

2 )Q
−µ−k− 1

2

l+µ− 1
2

(z),

for l > k. (46)

Hence, substituting this result into (41) and using some standard identities involving Gamma functions gives

[d]
χnl(i, j|r) =

κ

(2π)2
(−1)µ−

1
2 (i− j)!(2r2)i−j

√
π2µ+ 1

2 Γ(µ)

∫ 2π/κ

0

w2j e−inκ∆τ (z2 − 1)
1
2 (µ+ 1

2 +i−j)Q
−µ−i+j− 1

2

l+µ− 1
2

(z)d∆τ

for l > i− j.
(47)

Note that the terms involving the arbitrary length-scale log(`2) vanishes for l > i− j. To perform the time integral,
we again adopt Eqs. (36) and (33) to factor out the time dependence in terms of exponentials, in much the same way
we did for the regularization parameters of the direct part. The result for the regularization parameters for the log
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terms with l > i− j is

[d]
χnl(i, j|r) = (−1)n+µ− 1

2
22j−1r2i−2jΓ(µ)(i− j)!j!Γ(j + 1

2 )

π κ2j

µ+ 1
2 +i−j∑
k=0

(−1)k
(
µ+ 1

2 + i− j
k

)
(l + 2µ+ i− j − 2k + 1

2 )

(l + µ− k)µ+ 3
2 +i−j

×
{
Pl+2µ+i−j−2k(η)Ql+2µ+i−j−2k(η)

(j − n)!(j + n)!
+

j+n∑
p=max{1,n−j}

P−pl+2µ+i−j−2k(η)Qpl+2µ+i−j−2k(η)

(j + p− n)!(j − p+ n)!

+

j−n∑
p=max{1,−n−j}

P−pl+2µ+i−j−2k(η)Qpl+2µ+i−j−2k(η)

(j + p+ n)!(j − p− n)!

}
,

for l > i− j.
(48)

For the l ≤ i − j modes, we have not found it most convenient to proceed as above, mainly because the integral
(44) is not easily performed in terms of known functions, let alone performing the additional time integral in Eq. (41).
Instead, we rewrite (41) succinctly by adopting Eqs. (44)-(45) and expressing in terms of a derivative with respect to
the exponent,

[d]
χnl(i, j|r) =

κ

(2π)2

√
πΓ(µ)(2r2)i−j(−1)l

2lΓ(µ+ l + 1
2 )

( 2

κ2

)j[ d
dλ

∫ 2π/κ

0

(1− cosκt)je−inκt

×
∫ 1

−1

(1− x2)l+µ−
1
2 (λ+ 1− l)l(z − x)λ−l

(2r2

`2

)λ−i+j
dx dt

]
λ=i−j

. (49)

The x-integral here can be performed in terms of Olver’s definition [15] of the associated Legendre function of the
second kind. Unlike the usual definition of the Legendre function, Olver’s has the advantage that it is valid for all
values of the parameters. In particular, we have∫ 1

−1

(1− x2)l+µ−
1
2 (z − x)λ−ldx = (z2 − 1)

1
2 (µ+λ+ 1

2 )2l+µ+ 1
2 Γ(l + µ+

1

2
)Q−µ−λ−

1
2

l+µ− 1
2

(z), (50)

where Qµν (z) is Olver’s Legendre function of the second kind defined by the Hypergeometric series

Qµν (z) =

√
π

2ν+1 zµ+ν+1
(z2 − 1)µ/2F

(
1
2µ+ 1

2ν + 1
2 ,

1
2µ+ 1

2ν + 1; ν + 3
2 ; 1

z2

)
(51)

with F(a, b; c; z) the regularized Hypergeometric function. Whenever µ+ν is not a negative integer, Olver’s definition
is related to the standard one by

Qµν (z) =
e−µπ iQµν (z)

Γ(µ+ ν + 1)
. (52)

Employing (50) in (49) results in

[d]
χnl(i, j|r) =

κ

(2π)2

√
π2µ+ 1

2 Γ(µ)(2r2)i−j(−1)l
( 2

κ2

)j[ d
dλ

(λ+ 1− l)l
(2r2

`2

)λ−i+j ∫ 2π/κ

0

(1− cosκt)je−inκt

× (z2 − 1)
1
2 (µ+λ+ 1

2 )Q−µ−λ−
1
2

l+µ− 1
2

(z)dt

]
λ=i−j

for l ≤ i− j. (53)

Now, one can in principle, perform the derivative with respect to λ (see, for example, [16] for derivatives of associated
Legendre functions with respect to the order) and subsequently perform the integral here to obtain series expansions
in terms of products of Legendre functions. The resultant expressions are extremely complicated so we take the more
pragmatic approach of simply performing the integral above numerically, which presents no difficulty. Moreover, these
numerical integrals are only needed for l = 0, 1 at the order being considered, and hence there is no loss of efficiency
in the calculation as a result of not using a closed-form representation.

C. The Hadamard Parametrix

Combining the results of the previous subsections, the
mode-sum representation of the Hadamard parametrix

for a scalar field in a static spherically symmetric even-
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dimensional spacetime is (ignoring terms that do not con-
tribute in the coincidence limit and henceforth setting the
book-keeping parameter ε to unity)

GS(x, x′) =
Γ(d2 − 1)

2(2π)d/2

∞∑
l=0

(2l + 2µ)Cµl (cos γ)

∞∑
n=−∞

einκ∆τ

×
{ d

2∑
i=0

i∑
j=0

D(+)
ij (r)

[d]

Ψ
(+)
nl (i, j|r)

+

d
2∑
i=1

min{i, d2−2}∑
j=1

D(−)
i,j (r)

[d]

Ψ
(−)
nl (i, j|r)

+ T (r)
10 (r)

[d]

Ψ
(−)
nl (d2 ,

d
2 − 2|r) +

2∑
i=0

i∑
j=0

T (l)
ij (r)

[d]
χnl(i, j|r)

}

+
Γ(d2 − 1)

2(2π)d/2
D(−)

d
2−1, d2−1

(r), (54)

where
[d]

Ψ
(±)
nl (i, j|r),

[d]
χ nl(i, j|r) are given by Eqs. (35),

(38), (48) and (53). This is the main result. It allows
one to numerically compute the regularized vacuum po-
larization in arbitrary even dimensions in an extremely
efficient way. We describe this calculation for a massless
scalar field in the Schwarzschild-Tangherlini spacetimes
in the following section.

V. VACUUM POLARIZATION IN
SCHWARZSCHILD-TANGHERLINI

SPACETIMES

In this section we outline the numerical implementa-
tion of the regularization scheme described above to the
calculation of the vacuum polarization for a scalar field
in the Hartle-Hawking state on the background of even-
dimensional Schwarzschild-Tangherlini black hole space-
times. In Schwarzschild coordinates, the Schwarzschild-
Tangherlini metric takes the form (2) with

f(r) = 1−
(rh

r

)d−3

. (55)

These coordinates are singular at r = rh which corre-
sponds to the black hole horizon. For simplicity, through-
out the remainder of this section, we work in units where
rh = 1, so that all lengths having numerical values are in
units of the event horizon radius. That implies, for ex-
ample, that the surface gravity κ = 1

2f
′(rh) = 1

2 (d−3) =
µ. We also choose the lengthscale ` in the Hadamard
parametrix to satisfy ` = 1. Now, the regularized vac-
uum polarization for a scalar field in the Hartle-Hawking
state is defined by the coincidence limit of the difference
between the Euclidean Green function and the Hadamard
parametrix,

〈φ2〉reg = lim
x′→x

{
G(x, x′)−GS(x, x′)

}
. (56)

It is clear that to compute the vacuum polarization in this
context requires two ingredients: first, a mode-sum ex-
pression for the Euclidean Green function which includes
accurate numerical data for the radial Green function,
see Eqs. (5)-(7), and second, a mode-sum representation
for the Hadamard parametrix which we have derived in
detail in the previous section.

A. Mode-Sum Calculation

As mentioned, in order to calculate the vacuum polar-
ization we must first calculate the radial Green function
(7) which is a normalized product of homogeneous so-
lutions pnl(r) and qnl(r) to Eq. (6) satisfying boundary
conditions of regularity on the horizon and at infinity,
respectively. For f(r) given by (55), solutions cannot in
general be given in terms of known functions and must
be solved numerically, with the exception of the zero fre-
quency modes which are

p0l(r) = Pl/(d−3)(2r
d−3 − 1)

q0l(r) = Ql/(d−3)(2r
d−3 − 1), (57)

where Pν(z) and Qν(z) are Legendre functions of the first
and second kind, respectively. For the remaining modes,
their numerical calculation is outlined in detail in the
companion paper [4], so the details will be omitted here.

Equipped with both accurate numerical evaluation
of the radial modes for the Euclidean Green function
and explicit closed-form expressions for the regulariza-
tion parameters, we are now in a position to calcu-
late the vacuum polarization 〈φ2〉reg in even-dimensional
Schwarzschild-Tangherlini spacetimes. We present re-
sults for d = 4, 6, 8, 10. Though results for d = 4 are
long-established [3], we include our results here as a non-
trivial check against the tabulated data in [3]. For the
higher even dimensions, to the best of our knowledge,
these are the first exact results for vacuum polarization
on the entire exterior Schwarzschild-Tangherlini geome-
tries.

First, in order to make the mode-by-mode subtraction
more transparent, it is useful to simplify the notation by
defining

gS

nl(r) =
Ωd−2

2κ

Γ(d2 − 1)

(2π)
d
2−1

{ d
2∑
i=0

i∑
j=0

D(+)
ij (r)

[d]

Ψ
(+)
nl (i, j|r)

+

d
2∑
i=1

min{i, d2−2}∑
j=1

D(−)
i,j (r)

[d]

Ψ
(−)
nl (i, j|r)

+ T (r)
10 (r)

[d]

Ψ
(−)
nl (d2 ,

d
2 − 2|r)

+

2∑
i=0

i∑
j=0

T (l)
ij (r)

[d]
χnl(i, j|r)

}
, (58)
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whence the mode-sum of the Hadamard parametrix can
be more succinctly expressed as

GS(x, x′) =
κ

2π

∞∑
l=0

(2l + 2µ)

Ωd−2
Cµl (cos γ)

{
gS

0l(r)

+2

∞∑
n=1

cosκ∆τ gS

nl(r)

}
+

Γ(d2 − 1)

2(2π)d/2
D(−)

d
2−1, d2−1

(r). (59)

In arriving at this form we have also made use of the
invariance of gS

nl(r) under the n→ −n, a symmetry that
is immediately obvious from the explicit expressions for
the regularization parameters. The radial part of the Eu-
clidean Green function also possesses this discrete sym-
metry and can be written in an analogous way. Hence,
substituting (59) and (5) into the definiton (56), and us-
ing the fact that the Gegenbauer polynomials evaluated
at coincidence are

Cµl (1) =

(
2µ+ l − 1

l

)
, (60)

yields the following expression for the regularized vacuum
polarization

〈φ2〉reg =
κ

2π

∞∑
l=0

(2l + 2µ)

Ωd−2

(
2µ+ l − 1

l

){
g0l(r)− gS

0l(r)

+ 2

∞∑
n=1

(gnl(r)− gS

nl(r))
}

+
Γ(d2 − 1)

2(2π)d/2
D(−)

d
2−1, d2−1

(r).

(61)

This double-sum is now rapidly convergent and amenable
to numerical evaluation. More specifically, when terms
up to and including O(ε2) are included in the decompo-
sition of the Hadamard parametrix, as is the case in this
paper, the convergence of the inner sum over n can be
shown numerically to be O(n−d−3) for each value of d
under consideration (see Fig. 1 for plots of convergence
for d = 6). Of course, in principle, any order of conver-
gence can be achieved by decomposing higher and higher
order terms in the Hadamard parametrix.

Below, we present plots of 〈φ2〉reg in the exterior region
of a Schwarzschild-Tangherlini black hole space-time for
d = 4, 6, 8, 10. Recall that we are working in units where
the black hole event horizon has been set to unity. In Fig.
2 we present the results for all dimensions. This is fol-
lowed by a series of individual plots for each dimension,
in Fig. 3. From the plots, we might conjecture that for d
= 6, 10,..., the vacuum polarization is rapidly increasing
from a negative value at the horizon out to some turning
point, before decreasing and eventually approaching its
value at infinity. For the alternate even dimensions 8,
12,.., the vacuum polarization decreases rapidly from a
positive value at the horizon to some turning point, be-
fore slowly increasing and eventually asymptoting to its
value at infinity. A similar pattern of alternating dimen-
sions of the same parity having similar shape graphs was
seen in the odd-dimensional case also [4].

FIG. 1. Log plots showing convergence over n in the mode
sums expression. The red line represents log(n7|gnl(r) −
gS
nl(r)|) where we have not included the O(ε2) terms in
gS
nl(r) (setting m = 1). The plot shows that the difference
gnl(r)− gS

nl(r) scales like n−7 for large n. The green line rep-
resents log(n9|gnl(r)− gS

nl(r)|) where we have included O(ε2)
terms (setting m = 2) . The plot shows that the difference
scales like n−9 for large n.
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FIG. 2. Plot of the regularized vacuum polarization for a
massless scalar field in the Hartle-Hawking state in the ex-
terior region of a Schwarzschild-Tangherlini black hole as a
function of r for spacetime dimensions d = 4, 6, 8, 10. We
have set rh = ` = 1. The plot markers represent the grid
points at which 〈φ2〉reg was numerically calculated.

Another consistency check of our numerical implemen-
tation is to compare our graphs with the known values for
the vacuum polarization at the horizon and infinity. In
the latter case, the fact that Schwarzschild-Tangherlini
spacetime is asymptotically flat implies that, as r →∞,
〈φ2〉reg ought to approach the value of the regularized
vacuum polarization for a thermal scalar field in flat
spacetime at the Hawking temperature T = κ/2π, which
is given by:

〈φ2〉Mreg =
κd−2Γ

(
d
2 − 1

)
2d−1π3d/2−2

ζ(d− 2), (62)

where ζ(s) is the Riemann zeta function. This agree-
ment as r → ∞ can be seen in Fig. 3. Moreover, the
rate at which 〈φ2〉reg approaches its flat spacetime value
increases with the number of spacetime dimensions.



12

●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1 2 3 4
0.0000

0.0010

0.0015

0.0020

●●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●
● ● ● ● ●

0.5 1.0 1.5 2.0

-0.0004
-0.0003
-0.0002
-0.0001

0.0001
0.0002

●
●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.1 0.2 0.3 0.4 0.5-0.001

0.001
0.002
0.003
0.004
0.005
0.006

●
●

●

●

●

●
●

●
● ● ● ●

0.05 0.10 0.15 0.20

-0.08
-0.06
-0.04
-0.02

0.02

d = 4

d = 6

d = 8

d = 10

r � rh

h�2ireg h�2ireg

h�2ireg h�2ireg

r � rh

r � rh

r � rh

FIG. 3. Separate plots of the regularized vacuum polarization for a massless scalar field in the Hartle-Hawking state in the
exterior region of a Schwarzschild-Tangherlini black hole as a function of r in various even dimensions. We have set rh = ` = 1.
For d = 6, 8 and d = 10 the plot markers represent the grid points at which we numerically evaluate 〈φ2〉reg, while for d = 4 they
represent the tabulated results of [3]. Comparison of the tabulated data with the graph for d = 4 shows excellent agreement.
The dashed lines are the asymptotic values given by Eq.(62).

Turning now to the comparison with (quasi-)analytic
expressions for the vacuum polarization on the horizon.
In many cases, the Green function near the horizon,
and hence the vacuum polarization, can be computed
in closed-form since only the n = 0 mode contributes.
Even in the cases where explicit closed-form represen-
tations are not available, one can derive simple integral
representations for the Green function by extending the
work of [17]. Moreover, analogous integral representa-
tions for the vacuum polarization can be obtained from
these which are straightforward to evaluate numerically.
Computing vacuum polarization on the horizon in this in-
dependent way and checking that these values smoothly
match with our first off-horizon values calculated using
the methods described in this paper offers another non-
trivial check of the validity of our results. In our plots
of 〈φ2〉reg, the first grid point is taken to be the value of
〈φ2〉reg exactly on the black hole horizon. The relevant
horizon values are given in Table I below (with rh = 1).
While the result for d = 4 is well-known [18] and straight-
forward to derive explicitly in closed form, to the best of
the authors’ knowledge this is the first instance where
a closed form result for d = 6 is given. The results for
d = 8 and d = 10 were calculated numerically using in-
tegral expressions that generalize the one given in [17].
The important thing to note is that in each of the plots
in Fig.(3), the value of 〈φ2〉reg at the first off-horizon

d 〈φ2〉reg at r = rh = 1

4
1

48π2

6
2γ + ln(3)

48π3
− 21

320π3

8 0.00539968702

10 -0.08070202480

TABLE I. Values of the renormalized vacuum polarization on
the event horizon of a Schwarzschild-Tangherlini black hole in
various even dimensions from d = 4, .., 10. The event horizon
is located at r = rh = 1.

grid point (which is calculated using the new method
described in this paper) matches up smoothly with the
horizon value (which is calculated using an independent
method). More than simply a check of the validity of our
method, this smooth matching further exhibits little or
no loss of accuracy/efficiency of the mode-sums very near
the horizon, that is, the method developed in this series
of papers results in mode-sums whose convergence prop-
erties are excellent across the entire exterior region. This
desirable property is not shared by the usual methods
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based on WKB techniques, where the convergence close
to the horizon breaks down. We feel that this uniformity
is a major advantage of our method.

Finally in Fig (4), we draw together the results from
this series of papers to present the vacuum polarization in
the exterior region of a Schwarzschild-Tangherlini black
hole spacetime for all spacetime dimensions d = 4, ..., 11.
We see that for d = 4 and d = 5 〈φ2〉reg remains pos-
itive in the entire exterior region, for d = 6 and d = 7
〈φ2〉reg is negative at the event horizon, it then increases
to a positive maximum value before limiting to its asymp-
totic value. For d = 8 and d = 9, the vacuum polariza-
tion is positive on the event horizon, it then decreases
to a minimum negative value before increasing again and
then approaches its asymptotic value. Lastly, for d = 10
and d = 11, 〈φ2〉reg is negative on the horizon, it then
increases to a maximum positive value before decreas-
ing and becoming slightly negative before limiting to its
flat space value. This grouping between neighboring di-
mensions appears to be a universal feature, though it is
unclear if it is a physically interesting one. If this type of
pairing persisted in the calculation of the stress-energy
tensor, perhaps it would be worth further investigation.

VI. CONCLUSIONS

We have extended the method presented in Ref. [4]
for computing vacuum polarization in odd dimensions
for a quantum scalar field in the Hartle-Hawking state
in static, spherically-symmetric spacetimes to the even-

dimensional case. These methods offer extremely pow-
erful tools for computing regularized vacuum polariza-
tion for fields propagating in static, spherically symmet-
ric spacetimes of any dimension. Computing regularized
vacuum polarization, even in four spacetime dimensions,
is historically a notoriously difficult and technical task.
The first successful regularization calculation of this type
was presented by Candelas and Howard for a scalar field
in a Schwarzschild black hole spacetime. Their method
is quite ingenious, relying on the application of WKB
techniques and converting one of the infinite series to a
contour integral using tools from complex analysis. How-
ever, after much endeavor and artfulness, one is still left
with expressions which are inefficient to compute nu-
merically. Moreover, the method fails completely near
the horizon. Despite these drawbacks, this approach
has more-or-less remained the standard one for several
decades. This is remedied here by presenting a system-
atic out-of-the-box solution that is more direct, concep-
tually clearer and much more efficient than the Cande-
las Howard approach. Moreover, the approach presented
here is mostly agnostic to number of dimensions, to the
mass of the field or to whether or not the spacetime is
vacuum. Our approach results in a mode-by-mode sub-
traction for the vacuum polarization that is very rapidly
converging, requiring only a few tens of l and n modes to
obtain approximately 8-10 decimal places of accuracy on
the entire exterior geometry. Finally, we conclude that,
in principle, these methods can be extended to the regu-
larized stress-energy tensor, to other types of fields and
to other vacuum states.
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[6] Y. Décanini and A. Folacci, Phys. Rev. D 78, 044025

(2008).
[7] R. T. Thompson and J. P. S. Lemos, Phys. Rev. D 80,

064017 (2009), arXiv:0811.3962 [gr-qc].
[8] J. Matyjasek and P. Sadurski, Phys. Rev. D 92, 044023

(2015).
[9] J. Matyjasek and P. Sadurski, Phys. Rev. D 91, 044027

(2015).

[10] R. M. Wald, Quantum Field Theory in Curved Spacetime
and Black Hole Thermodynamics (University of Chicago
Press, 1994).

[11] http://www.taylorexpansion.net.
[12] A. C. Ottewill and P. Taylor, Phys. Rev. D 82, 104013

(2010).
[13] H. S. Cohl, Integral Transforms and Special Functions

24, 807 (2013).
[14] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,

Series and Products (Academic Press, 2000).
[15] F. W. J. Olver, Asymptotics and Special Functions (Aca-

demic University Press, 1974).
[16] H. S. Cohl, Integral Transforms and

Special Functions 21, 581 (2010),
http://dx.doi.org/10.1080/10652460903445043.

[17] V. P. Frolov, F. D. Mazzitelli, and J. P. Paz, Phys. Rev.
D 40, 948 (1989).

[18] P. Candelas, Phys. Rev. D 21, 2185 (1980).

http://dx.doi.org/10.1103/PhysRevD.14.2490
http://dx.doi.org/10.1103/PhysRevD.29.1618
http://dx.doi.org/10.1103/PhysRevD.29.1618
http://dx.doi.org/10.1103/PhysRevD.94.125024
http://dx.doi.org/10.1007/s10714-007-0486-3
http://arxiv.org/abs/0705.1131
http://dx.doi.org/10.1103/PhysRevD.78.044025
http://dx.doi.org/10.1103/PhysRevD.78.044025
http://dx.doi.org/10.1103/PhysRevD.80.064017
http://dx.doi.org/10.1103/PhysRevD.80.064017
http://arxiv.org/abs/0811.3962
http://dx.doi.org/10.1103/PhysRevD.92.044023
http://dx.doi.org/10.1103/PhysRevD.92.044023
http://dx.doi.org/10.1103/PhysRevD.91.044027
http://dx.doi.org/10.1103/PhysRevD.91.044027
http://www.taylorexpansion.net
http://dx.doi.org/10.1103/PhysRevD.82.104013
http://dx.doi.org/10.1103/PhysRevD.82.104013
http://dx.doi.org/10.1080/10652469.2012.761613
http://dx.doi.org/10.1080/10652469.2012.761613
http://dx.doi.org/10.1080/10652460903445043
http://dx.doi.org/10.1080/10652460903445043
http://arxiv.org/abs/http://dx.doi.org/10.1080/10652460903445043
http://dx.doi.org/10.1103/PhysRevD.40.948
http://dx.doi.org/10.1103/PhysRevD.40.948
http://dx.doi.org/10.1103/PhysRevD.21.2185


14

d = 4

d = 6

d = 8

d = 10

h�2ireg

r � rh

0.02 0.04 0.06 0.08 0.10

-0.005

0.005

0.010

0.015

0.020

0.025

0.030

d = 5

d = 7

d = 9

d = 11

FIG. 4. Plot of the regularized vacuum polarization for a massless scalar field in the Hartle-Hawking state in the exterior region
of a Schwarzschild-Tangherlini black hole for spacetime dimensions d = 4, ..., 11. We have set rh = ` = 1.

D(+)
ij (r) coefficients for 6D Schwarzschild-Tangherlini

j = 0 j = 1 j = 2 j = 3

i = 0 4

i = 1
10

(
r3 − 1

)
3r8

− 1

6r11

(
9r11 − 9r8

+16r6 − 41r3 + 25
)

i = 2

1

12r16

(
9r11 − 18r9 − 9r8

+112r6 − 179r3 + 85
)

1

720r19

(
− 324r19 + 324r16

−1620r14 + 480r12 + 3645r11

−5216r9 − 2025r8 + 15036r6

−16425r3 + 6125
)

(r − 1)4

192r22

(
9r9 + 18r8

+27r7 + 27r6 + 27r5

+43r4 + 59r3 + 75r2

+50r + 25
)2

i = 3

1

8640r24

(
1944r19 − 6480r17

−1944r16 + 4680r15

+36315r14 − 69540r12

−55620r11 + 312416r9

+25785r8 − 587571r6

+493140r3 − 153125
)

− 1

161280r27

(
26244r27 − 26244r24

+165564r22 − 151200r20

−366849r19 + 26880r18

+1312416r17 + 201285r16

−649600r15 − 3361176r14

+4320736r12 + 3400110r11

−12376896r9 − 1200150r8

+17417980r6 − 11902225r3

+3163125
)

1

3840r30

(
972r30 − 1944r27

+5238r25 + 972r24

−1440r23 − 17901r22

+20928r20 + 20088r19

−2560r18 − 80436r17

−7425r16 + 30112r15

+131598r14 − 129344r12

−98400r11 + 273342r9

+27750r8 − 306925r6

+176000r3 − 40625
)

− (r − 1)6(r2 + r + 1)3

6912r33

(
9r7

+9r6 + 9r5 + 9r4 + 9r3

+25r2 + 25r + 25
)3

TABLE II. We list the Hadamard direct coefficients D(+)
ij (r) for the d = 6 Schwarzschild-Tangherlini spacetime. In the table,

we list all coefficients needed in the expansion of the Hadamard parametrix assuming we keep all terms up to and including
O(ε2). The horizon radius has been set to unity.
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D(−)
ij (r) coefficients for 6D Schwarzschild-Tangherlini

j = 1 j = 2 j = 3

i = 1 − 2

3r5

i = 2
4r6 − 11r3 + 7

4r13
59− 30r3

180r10

i = 3

1

576r21

(
108r14 − 360r12 − 297r11 + 3828r9

+189r8 − 10520r6 + 11077r3 − 4025
) (

r3 − 1
) (

588r6 − 3065r3 + 3325
)

2016r18
−42r6 − 325r3 + 321

1008r15

TABLE III. We list the Hadamard direct coefficients D(−)
ij (r) for the d = 6 Schwarzschild-Tangherlini spacetime. In the table,

we list all coefficients needed in the expansion of the Hadamard parametrix assuming we keep all terms up to and including
O(ε2). The horizon radius has been set to unity.

T (l)
ij (r) coefficients for

6D Schwarzschild-Tangherlini

j = 0 j = 1

i = 0 − 1

3r10

i = 1
5
(
3r3 − 5

)
36r15

−
5
(
r3 − 1

)
12r15

T (r)
ij (r) and T (p)

ij (r) coefficients for

6D Schwarzschild-Tangherlini

j = 0 j = 1

T (r)
1j −9r11 − 9r8 + 16r6 − 41r3 + 25

144r21

T (p)
1j − 1

36r15
5
(
r3 − 1

)
36r18

TABLE IV. We list the Hadamard tail coefficients T (l)
ij (r), T (r)

ij (r) and T (p)
ij (r) for a massless scalar field in d = 6 Schwarzschild-

Tangherlini spacetime. These are all the terms needed assuming we keep terms in the Hadamard expansion up to and including
O(ε2) terms. In d = 4, for a massless scalar field in Schwarzschild, we have that V ∼ O(ε4), and hence all of the Tij terms
would be zero at this order. As we can see, this is not true in the higher dimensional Schwarzschild-Tangherlini spacetimes.
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