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ABSTRACT As vision and language processing techniques have made great progress, mapless-visual

navigation is occupying uppermost position in domestic robot field. However, most current end-to-end

navigation models tend to be strictly trained and tested on identical datasets with stationary structure, which

leads to great performance degradation when dealing with unseen targets and environments. Since the targets

of same category could possess quite diverse features, generalization ability of these models is also limited

by their visualized task description. In this article we propose a model-agnostic metalearning based text-

driven visual navigation model to achieve generalization to untrained tasks. Based on meta-reinforcement

learning approach, the agent is capable of accumulating navigation experience from existing targets and

environments. When applied to finding a new object or exploring in a new scene, the agent will quickly learn

how to fulfill this unfamiliar task through relatively few recursive trials. To improve learning efficiency and

accuracy, we introduce fully convolutional instance-aware semantic segmentation and Word2vec into our

DRL network to respectively extract visual and semantic features according to object class, creating more

direct and concise linkage between targets and their surroundings. Several experiments have been conducted

on realistic dataset Matterport3D to evaluate its target-driven navigation performance and generalization

ability. The results demonstrate that our adaptive navigation model could navigate to text-defined targets

and achieve fast adaption to untrained tasks, outperforming other state-of-the-art navigation approaches.

INDEX TERMS Mapless-visual navigation, semantic segmentation, text-driven, model-agnostic meta-

learning.

I. INTRODUCTION

Nowadays substantial researches have been carried out in

mapless robot navigation field. Agents governed by goal-

based tasks are specifically designed to navigate only depend-

ing on visual information with little prior knowledge of the

environment, resulting in less system cost and power con-

sumption. In addition to image processing, mapless visual

navigation requires agent to interact with the environment

efficiently, where deep reinforcement learning method has

been adopted. In recent studies, DQN [1]and A3C [2], con-

sidered as the most representative RL algorithms, are widely

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Wang .

used in navigation field to realize interactive process. Based

on such end-to-end learning mechanism, navigation model

is enabled to eliminate errors accumulated from traditional

engineering projects, such as extracting visual features, mak-

ing map, identifying object location and planning path. The

performance of thewhole system can be greatly improved and

maintained.

However, a great challenge is still existing in recent

DRL-based navigation studies [3]. Since DRL models are

considered to be black-box models with unalterable struc-

ture, they have made quite poor performance in generaliza-

tion. As a model is well trained for a specific task, it can

be hardly implemented to other targets or environments.

Although some works have been proposed on generalizing
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pre-trained models to unfamiliar tasks, such as target-driven

network [4], dueling network [5], context grid [6] and multi-

view representation learning [7], these methods fail to make

full use of previous experience and guarantee their stability

when dealing with novel experiments. To tackle this chal-

lenge, rather than setting up multi-tasking network or other

similar approaches to improve compatibility, we introduce

meta-learning mechanism and enable our navigation model

to integrate its prior experience with new cognition obtained

from the current task. After exploring appropriate amount of

episodes in training environments, the agent is allowed to

learn and adapt in untrained environment as parameters of

its model altered. Avoiding over-fitting to the new task, This

adaption requires no further explicit supervision but a few

interaction with novel surroundings.

In this study, a novel text-driven visual navigation model

has been proposed to accomplish untrained navigation tasks

in novel environment. In our model, Images observed by

agent and text-defined target are considered as inputs of this

DRL network, with the actor-critic network [8] outputting

sequences of action. To construct more direct and convenient

connection between target and current states of the agent,

we introduce Fully Convolutional Instance-aware Semantic

Segmentation(FCIS) [9] andWord2vec [10] as preprocessing

tools so as to encode visual observation and text-defined goal

into vectors with semantic relatedness. After preprocessing

phase, visual features and semantic features are embedded

corresponding to a siamese deep reinforcement learning net-

work [11], providing decision-making basis. Benefitting from

such network, our self-adapting learning approach, which is

derived fromModel-Agnostic Meta-Learning (MAML) [12],

[13], can promote initial parameters rapidly reaching val-

ues which are most susceptible to variation of tasks. When

dealing with new tasks these parameters proceed to con-

verge by exploring in the new environment, until the model

finally achieves adaption. Unlike conventional DRLmethods,

we remove the rigid boundary between training phase and

testing phase: agent can learn experience via interaction with

current scene and keeps modifying its network parameters

during the whole process.

The proposed model has been performed on Matterport3D

dataset [14], which includes a great many RGB images of

indoor scenes and has been widely applied for both theoretic

and practical engineering researches. Several experiments

have been designed to evaluate the target-driven navigation

performance and generalization performance of this model.

We also compare our model with other current approaches to

assess the limit of its capability.

II. RELATED WORK

A. DRL NAVIGATION

Recently learning-based navigation has become a hot

topic in the visual navigation field. Unlike traditional

map-based navigation methods [15]–[17] or SLAM-based

techniques [18]–[20], deep reinforcement learning method

doesn’t require a global map of current environment to

support navigation decisions. The combination of visual

information and DRL mechanism can implicitly accom-

plish engineering projects such as localization, mapping,

and path planning in end-to-end manner, with envi-

ronment information embedded in network parameters.

Ye-Hoon Kim et al. [21] propose an end-to-end navigation

method to extract visual features directly from images by

the camera, which greatly reduces the power consumption

and computational time. The experiment is performed in an

office scene with a simplified DRL model, achieving satis-

fying results. In order to acquire reliable sequence of actions

towards goals, Saurabh Gupta et al. [22] propose Cognitive

Mapper and Planner, a novel neural architecture for robot

navigation. This architecture maintains a metric belief of the

world and crucially utilizes a hierarchical version of value

iteration to plan paths to distant goals. Zhu et al. [4] address

target-driven navigation problem using a novel deep siamese

actor-critic network, which takes target image as input in

addition to scene image, providing compatibility for diverse

targets.

B. VISION AND LANGUAGE

Since the targets of same category can possess quite diverse

features, many studies have taken context vocabulary or

instructions into consideration to define goals in visual

navigation tasks. Dipendra Misra et al. [23] proposes a

fusion model which maps raw visual observations and text

input to actions for instruction execution. All the images

embedded with texts are processed by LSTM and CNN to

jointly reason about actions in an 2D block environment.

Wu et al. [24] presents embodied agents in a simple maze

world and task them to complete a series of instructions.

As semantic segmentation is critical to understanding the

contents in images, various convolutional neural networks

have been brought into field to perform pixel-wise segmen-

tation. Noha Radwan et al. [25] presents a vision-based nav-

igation control strategy for a wheeled robot traveling outside,

with input images segmented according to object category to

generate moving trajectory. Our work utilize FCIS network

and Word2vec model to construct more efficient connection

between targets and environmental observation.

C. META LEARNING

More recently, various meta-learning mechanisms have

become much more popular as depending on which learning

models can solve new learning tasks using only a small

number of training samples. Finn et al. [12], [13] intro-

duces Model Agnostic Meta Learning (MAML) which uti-

lizes stochastic gradient descent optimization to achieve fast

adaption to novel tasks. This approach can be construed as

learning a good parameter initialization to make sure the

model works well with only a few gradient updated. Gupta

et al. [26] puts forward a meta-learning approach to augment

the decision policy with structured noise, by which the agent

is urged to adapt after a few episodes with variability limited.
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FIGURE 1. The core running procedure of FCIS network. ROIs(region of
interest) are generated by RPN(Region Proposal Network) to achieve
pixel-wise classification.

However, fewmeta-learning approaches have been applied in

visual navigation field due to great computational cost from

repetitive exploration. Bengio et al. [27] proposes a Memory-

based Parameterized Skills Learning (MPSL) model for map-

less visual navigation. These parameterized skills can be

learnt to instruct agent behaviour for untrained tasks, facilitat-

ing task-domain generalization. Unlike this work, our model

adopts Model Agnostic Meta Learning method to maintain

good performance in unfamiliar experiments, realizing scene-

domain generalization.

III. TEXT-DRIVEN VISUAL NAVIGATION MODEL

In this section, we will formally give a thorough introduction

of our adaptive text-driven navigation model. The primary

goal of this work is to develop an end-to-end visual navigation

model which can navigate to designative destination based on

text-defined targets and visual observation. On this founda-

tion, this study provides new insights into improving general-

ization ability of DRLmodel in navigation field. Accoding to

MAML-based training mechanism our proposed model holds

a significant advantage that it not only accumulates experi-

ence from training data, but also further learns local knowl-

edge of novel tasks. After a few exploration of novel scenes,

agent can achieve fast adaption by accurately accomplishing

navigation tasks with great chance. The problem formulation,

network structure and adaptive learning method of this model

are thoroughly illuminated in the following parts.

A. PROBLEM FORMULATION

As the objective of our work is to obtain the shortest path on

which agent moves from current location to its target, inter-

active process is considered as partially observable markov

decision process(POMDP) [28], which can be formulated as

a tuple (O, A, D, R). Observations O={OT ,OV }, including

text-defined target OT and observed images of current state

OV , is reconfigured as the input of DRL model to create

compact connection between states and goals. According to

decision policy, agent navigates with sequence of actions

A={a1, a2, . . . , an}, where a presents action space, contain-

ing 3 discretized actions: moving forward,turning the camera

by 30 degrees in left/right direction. Since in Matterport3D

environment agent can consistently travel in the entire house

rather than teleport from one room to another, a set of reach-

able viewpoints Pt + 1 ⊆ V are retrieved to choose next

view point vt + 1 ∈ Pt + 1 to move. To ascertain Pt + 1,

a weighted undirected graph of viewpoints in the scene could

be constructed as G =< V ,E >. In this case the next

viewpoint is given as:

Pt + 1 = {vt }
⋃

{vi ∈ V | < vt , vi >∈ E
∧
vi ∈ Ct }, where

vt represents current viewpoint and Ct represents camera

view scale.

In order to minimize the trajectory length to the desti-

nation, the reward R : O → R is designed as follows:

if an action is taken, agent obtains reward -0.1; if agent

reaches the target, reward 10 is received. At every time

step t , agent instantly selects an action a from the action

set A. The exploring process terminates once agent reaches

its target, or a maximum number of steps have been fin-

ished. Considering generalization tests involved, we define

a series of scenes S={S1, S2, . . . Sk} and target object class

G={G1,G2, . . .Gm}. Each task is denoted by τ by such

tuple τ=(S,G), with groups of scenes disjointed for the train-

ing tasks Ŵtrain and the testing tasks Ŵtest . The action-

value function Q could be learnt across training and testing

tasks, with network parameters continuously updated, until

the model generalizes to the final task.

B. NETWORK STRUCTURE

Our network structure is established as a deep reinforcement

learning framework for visual navigation as figure 2 illustrat-

ing, similar to the target-drivenmodel Zhu et al. [4] proposed.

Unlike Zhu’s work, in this article, we put forward an attached

image-processing step FCIS to convert current observation

input OV into semantic segmentation input OS , where each

pixel has been assigned with a one-hot semantic class id.

We also take word vectors looked up through Word2vec as

the substitute for target image to be consistent with semantic

segmentation vectors of observed image. Compared to previ-

ous embedded states, these preprocessed image and text can

be more directly, concisely combined in lower dimensional

field. Details of proposed network are described as follows.

1) ResNet50

For the visual feature extraction, we use the same

ResNet50 [29] network adopted in [4] to process RGB frames

received as the observation stream. This network gets access

to the model with the last FC layers removed to ensure

necessary information retained. All the parameters of the

network keep frozen during both training and testing phase

as they are pre-trained on ImageNet. After processing four

previous frames of each state, it outputs an 8192-d feature

as the description of current visual observation. These visual

features are then passed to a fully-connected(FC) layer with

ReLU activation and finally a 512-d feature is obtained.

2) FCIS NETWORK

Fully Convolutional Instance-aware Semantic Segmenta-

tion(FCIS)network is introduced for instance-aware semantic
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FIGURE 2. Our DRL-based network architecture. Compared to [4] we use FCIS and Word2vec model to extract semantic features and establish more
efficient connection between goal and environment.

segmentation, by training a classifier to predict each pixel’s

likelihood score of the pixel belongs to some object category.

Figure 1 shows the brief phase of semantic segmentation

process. As different semantics may presented by the same

pixel, in the FCIS, a large number of ROIs (Region of Interest)

are assembled to the image to produce pixel-wise score maps.

For each pixel in a ROI, it starts by detection: if it attaches to

an object bounding box or not, and then examine whether it is

surrounded by an object instance’s boundary. Two classifies

are trained as two 1 × 1 conv layers to obtain two sets

of scores, fusing into position-sensitive inside/outside score

maps to perform object segmentation and classification.

In our work, FCIS network is also pre-trained with param-

eters remaining unchanged. When the agent arrives to a new

viewpoint, four previous frames are delivered into the FCIS.

After filtered by non-maximum suppression (NMS) with an

intersection-over-union (IoU, 0.3 by default), the remaining

ROIs calculate their foreground masks by averaging scores

of each map and weighted by classification scores, assigning

one-hot semantic class id to each pixel. The output of FCIS

network is fed into 4-layer convolutional net to acquire a 512-

d feature vector for further processing with target encoding

feature.

3) TARGET ENCODING

Compared to other image-depending navigation models such

as [30], We choose natural language information to define the

target instead of visual information to construct semantic rela-

tion between observation and goals. Word2vec [10] model

has been implemented as another preprocessing part paral-

lelled with FCIS, converting texts that define target objects

into specific word vectors. Unlike one-hot code, these vectors

are trained by context with semantic relatedness encoded.

We adopt Spacy toolkit to extract embedding word vector,

receiving 300-d feature per word class. As figure 2 shown,

these features are then sent into a FC layer that outputs 512-

d feature consistent with the output of ResNet50 and FCIS

network.

4) ACTOR-CRITIC NETWORK

As the fusion layer generates the 512-d joint representation

from 1536-d concatenated embedding of visual and semantic

features (figure 2), Such combination of visual and textual

modalities is then transferred into an actor-critic network

which contains two FC layers, exporting three policy outputs

and one value output. The Advantage Actor-Critic mecha-

nism(A3C) [31] is adopted to run models in a multi-threading

manner. All the gradients are back-propagated from the actor-

critic network’s outputs back to the upper layers, trained with

a shared RMSProp optimizer of learning rate 7 × 10−4.

C. MAML BASED LEARNING METHOD

With regard to DRL-based navigation problem, DRL model

trained with specific tasks provides poor performance while
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Algorithm 1 Adaptive Learning: Meta-Training Phase

Require: α, β: step hyperparameters

Require: N : termination hyperparameters

1: Randomly initialize θ

2: n ⇐ 0

3: while n 6= N do

4: Sample batch of tasks τiεŴtrain
5: for all τi do

6: Sample K trajectories D = x1, a1, . . . , xm using fθ
in τi

7: Evaluate ∇θℓτi (fθ ) using Equation (2)

8: Compute adapted parameters with gradient descent:

θ ′ = θ − α∇θℓτi (fθ )

9: Sample trajectories D′
i = x1, a1, . . . , xm using f ′

θ in

τi
10: end for

11: Update θ ⇐ θ − β∇θ6τiℓτi (f
′
θ ) using Equation (2)

12: end while

Algorithm 2 Adaptive Learning: Meta-Adapting Phase

1: for min-batch of tasks τjεŴtest do

2: θ ′′ ⇐ θ

3: while not converged do

4: Sample trajectoriesD′′ = x1, a1, . . . , xm using f ′′
θ in

τj
5: Evaluate ∇θℓτj (f

′′
θ ) using Equation (2)

6: Update θ ⇐ θ − α∇ ′′
θ ℓτj (f

′′
θ )

7: end while

8: end for

implemented by new settings such as unfamiliar targets or

environments. Gradually it becomes essential for DRL-based

navigationmodels improving their compatibility, bymeans of

generalizing to various kinds of tasks. Unlike scene-specific

layers proposed by Zhu and parameterized skills extracted by

Liu, the foundation of our learningmethod lies in recentmeta-

learning algorithm, where model trained by meta-learner can

receive new experience from untrained tasks. A thorough

explanation of our MAML-based learning procedure is per-

formed in the following part.

1) MAML LEARNING

The meta-learning approach we relied on is based on the

MAML algorithm [32]. MAML defines that each task τ ∈

Ŵtrain is allocated with meta-training dataset Dtr and meta-

validation dataset Dval. Considering image classification

problem, MAML model aims to assign image class labels to

each image in Dval according to training examples of each

class in Dtr , and get tested by unfamiliar tasks in Ŵtest . The

learning objective function of the MAML is presented as:

min
∑

τ∈Ŵtrain

ℓ(θ − α∇θℓ(θ,Dtr),Dval) (1)

where ℓ is loss function of network parameters θ . The main

purpose is to learn parameters θ that offers great initialization

for fast adaptation to untrained datasets. In our work, we put

forward a navigation-specific self-adaptive learning mecha-

nism derivated out of MAML learning.

2) ADAPTIVE LEARNING APPROACH FOR VISUAL

NAVIGATION

In this article we propose a self-adaptive learning approach

to learn proper network parameters that make rapid progress

in generalizing to novel scenes without overfitting, such that

slight changes in the parameters will generate great modifi-

cation on the loss function along the direction of the gradient

of that loss. Since traditional MAML technique is basically

applied in image classification field, our method is designed

as a modified version of MAML with an approapriate inte-

gration of screening training data and calculating related

loss, which guarantees the sufficiently similar distribution

of training and testing tasks. The whole running procedure

can be divided to two phases: meta-training phase and meta-

adapting phase.

In the meta-training phase as Algorithm 1 outlines,

we aim to learn a primary model presented by parametrized

function fθ with parameters θ and a loss function of fφ with

step-size hyper-parameters α, β,N . After collecting batches

of tasks τi from training datasets, specifically accomplished

by randomly selecting navigation tasks in numerous scenes

of the same kind, we sample K trajectories Di using fθ in τi,

as the decision policy mapping from states Xt to actions at at

each timestep t . Each RL task involves transition distribution

qi(Xt+1|Xt , at ) and the loss function ℓτi corresponding to the

reward R, which takes the form:

ℓτi (fφ) = −Ext ,at fφ ,qτi [
∑

t=1

Ri(xt , at )] (2)

Then the adapted parameters θ ′ computed with gradient

descent are deployed separately to sample new trajectories

D′
i. With all τi processed, our primary adaptive model can be

configured as parameters θ updated shown in line.

In the meta-adapting phase, Algorithm 2 shows when

testing dataset(untrained task) appears, mini-batch of tasks

τj ∈ Ŵtest are sampled, while agent performs several explo-

ration episodes by choosing actions according to the primary

model. As parameters θ further updated to θ ′′, our model

achieves adaption in the novel environment. Generally the

core concept of this work is managing K rollouts from fθ ,

tasks τi and related rewards Ri(xt , at ) as prior knowledge for

fast adaption on untrained tasks τj.

Due to unknown dynamics, the expected reward is gen-

erally not differentiable, leading to policy gradient meth-

ods for estimation of model optimization. It is worthwhile

mentioning that in the meta-training phase, the value of

hyper-parameter N plays an important role for model mod-

ification since it decides whether the primary trained model

acquires adequate prior knowledge without overfitting to

training datasets. However, hand-crafted N according to

experience proves to be rigid and imprecise, highly depending

on preliminary work. To solve this problem, we design a
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FIGURE 3. A. Agent performs adaptive phase of an navigation task (navigate to sink) in the entire house constructed by Matterport3D. The initial position
is in the nearby corridor yet agent can only observe walls and doors, exploring all the rooms attached. The adaptive trajectory appears to be shambolic. b.
Agent performs adaptive phase in the detached area–bedroom(red circle). With relevant visual information observed, agent can navigate to the target
with less redundant moves as the adaptive trajectory shows.

combined optimization method to obtain appropriate value

of hyper-parameters with details illustrated in experiment

section.

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENT SETUP

We configure our model into realistic scenes from Matter-

port3D dataset [14] to perform navigation tasks and compare

its performance with other works. Matterport3D environment

consists of 10800 panoramic views from 194400RGB images

in 90 scenes with 7189 paths sampled from its navigation

graphs. Compared to common synthetic datasets utilized

by other works, Matterport3D shows more complex scenes

with multiple objects and surfaces, presenting many chal-

lenges including occlusion, scale variations, lighting varia-

tions, etc. According to dataset scale, navigation tasks (targets

in scene) are selected as follows: (1) bedroom: bed, lamp

and plant. (2) bathroom: toilet, sink and shower. (3) kitchen:

microwave, fridge and bowl. (4) living room: television,

sofa and table. For each scene type 5 scenes are chosen for

training and 2 scenes for testing. We consider the action

space A=moving ahead, rotating left, rotating right, while

the horizontal rotation achieves in increments of 30 degrees.

A navigation episode is supposed to completed if the tar-

get instance described by text input is within the field of

view and the agent arrives at its nearest viewpoint, or it has

taken 10000 actions failing to find target.

While agents running in the realistic environments con-

structed by Matterport3D dataset, an severe issue has

appeared. Each house included in the dataset is greatly over-

size for our navigation tasks and agents may be trapped in

a task-irrelevant area or just confusingly wandering around

as their sights are covered with walls, doors and branching

corridors which can hardly provide agents with supports for

navigation decisions (Fig.3 a). In most cases agents may

exploring almost every viewpoints not only in the training

phase bus also in the adaption phase, resulting in extremely

low efficiency for task accomplishment. Here we split the

houses in the dataset into specific areas according to scene

types(bedroom/bathroom/kitchen/living room), for example,

the bedroom area circled in the vertical view (Fig.3 b), to offer

agents more opportunities to capture valuable observation

information rather than interference factors.

For fair comparison with other baseline models, we select

metrics presented by [25] which are well adopted by other

navigation algorithms. The Success Rate (SR) is defined as:

SR = 1/N

n∑

t=1

Si (3)

While the Success weighted by Path Length (SPL) is

defined as:

SPL = 1/N

n∑

t=1

Sili/max(li, ei) (4)

where N is the total amount of running episodes. Si is

designed as a binary vector indicating the success of the i-th

episode(if the i-th episode is a success, Si = 1; else 0). li is

the length of shortest path between the initial position and

any instance of the target object and ei is the length of current

episode. All the lengths in these metircs are considered as

the number of the actions taken. The length of shortest path

is at least 5(l >= 5). Considering our model demanding

the meta-adapting phase for achieving maturity, these two

metrics start to be calculated after 100 episodes in the meta-

adapting phase.
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FIGURE 4. Convergence curves of all competing methods based on
target-driven navigation tasks.

B. TARGET-DRIVEN NAVIGATION PERFORMANCE

We first evaluate the basic target-driven navigation perfor-

mance by performing navigation tasks with other baselines,

to ensure that the basic navigation accuracy has no negative

influence on generalization ability. In this case our model

only retains its network while disabling MAML-based adap-

tive learning phase. As shown in figure 4, the convergence

curves of proposed model and baselines are presented, which

illustrates the episode-depending change of action sequence

guiding to find specific target. In this graph the x-axis indi-

cates the amount of training episodes and y-axis indicates the

number of actions taken. We compare our proposed model

with three other models:

Random: Agent randomly selects an action based on a

uniform distribution at each timestep.

Shortest Path: Agent is implemented with scene map and

A* algorithm [33] and designed to navigate along the shortest

path.

CVPR Target-Driven baseline: Model’s architecture is

similar to ours, but the goal and current state are illuminated

by images.

Under the benchmark of Shortest Path, some text-defined

targets cannot be successfully navigated due to the random-

ness of initial state of agent. It remains challenging for learn-

ing method to make the mean length consistent with the

shortest path. However, our model has still given a quite

great performance just like CVPR Target-Driven baseline

over Random in average number of taken actions, hence

it can be well applied to familiar goals and environments.

It can observed that the convergence of our optimal solution

is reached after 10k training episodes, demonstrating its reli-

ability in target-driven navigation.

C. GENERALIZATION PERFORMANCE

To achieve fast adaption to unfamiliar goals or scenes in the

houses constructed by Matterport3D, we train and test the

navigation model according to our proposed self-adaptive

learning method as Section III.C described. In the meta-

training phase we randomly select 5 navigation tasks of

each scene type ( bedroom/kitchen/livingroom/bathroom )to

compose task set τ1 ∼ τ4. From each task set 20 tra-

jectories D1 ∼ D20 are sampled to compute the loss

function ℓτ1 ∼ ℓτ4 and the parameters θ of meta-trained

model are further obtained through N-based(500) itera-

tive processes. In the meta-adapting phase testing tasks

can be divided into three categories due to different

scenarios:

(1) navigating to untrained target in seen environment;

(2) navigating to trained target in unseen environment;

(3) navigating to untrained target in unseen environ-

ment.

The meta-trained model constantly explores with novel

goals or running environments allocated, until parameter θ

finally converged to optimal value θ ′′.

Figure 5 shows an example of the learning curves in

the meta-adapting phase. In this case the testing task is

set as scenario 1: navigating to untrained target in seen

environment. In the meta-training phase the agent navigates

in 5 room instances, for example bedroom 01 ∼ 05, of each

scene type. For each scene type the agent’s goal remains the

same. In the meta-adapting phase the agent needs to find

the same target but in two unfamiliar room instances. The

result shows that our model achieves primary convergence

within average 50k exploring steps on trained navigation

goals in all unfamiliar bedroom/kitchen/living room envi-

ronments. Such performance is exceedingly superior to that

of blank model, which completely retrains the model in the

novel scenes with average 300k - 600k steps to converge.

Hence, benefitting from previous learnt experience, our pro-

posed model can be efficiently generalized to find the same

target in new scenes. However, in neither new bathroom

scenes model converges within a million steps. The cause

of such failure may lies in model partial overfitting to the

training scenes or the significant spatial distinction existed

between training and testing environment. It may implic-

itly reveals that the generalization performance of meta-

learning based model can be constrained by differentiated

characteristics of training/testing datasets, such as room lay-

out, illumination condition or even initial position of each

episode.

We further evaluate our model by performing navigation

tasks in all three scenarios with other state-of-art models.

Besides from Random and CVPR Target-driven Baseline

mentioned in Section IV.B, several effective models are sup-

plemented into experiment for comparison. All the new test-

ing models are described as follows:

MPSL: In this model agent learns parameterized skills to

instruct agent behaviour for untrained tasks, facilitating task-

domain generalization [27].

BRM: Model takes the form of a probabilistic relation

graph over semantic entities, producing sub-goals and a goal-

conditioned locomotion module for control [34].
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FIGURE 5. For each scene type we use 5 scenes for training and 2 scenes for testing, with the navigation target fixed. Here shows the steps-depending
learning curves of testing phase in new scenes of four types. X-axis indicates the number of exploring steps taken; Y-axis indicates mean trajectory length
of current model.

TABLE 1. Comparison results of SPL and success rate for all models.

GCN: Agent uses graph convolutional networks for incor-

porating the prior knowledge to predict the actions, achieving

improvement in generalization to unseen scenes [35].

Our(vis): Our(vis) is the our model using images for indi-

cating observation and target. All the images are processed

by ResNet50 [36] instead of FCIS and Word2vec to acquire

visual features.

Our(oh): Our(oh) is the our model using not word vectors

received form Word2vec, but one-hot code [37] to represent

navigation target. Other network structure remains the same.

Our(loc): Our(loc) corresponds to our model presented in

this article, but trained and tested by room instances of one

specific scene type.

Our(glo): Our(glo) is the our model presented in this

article, trained and tested by room instances of all four scene

types.

The navigation performances in all three scenarios of these

testing models are summarized in Table 1 in terms of SPL and

Success Rate(Suc.rate). It can be seen that the best results

are received from our integral models(Our(loc)&Our(glo)),
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which outperform the current state-of-the-art with large mar-

gins. Most notably, the success rate of Our(loc) has risen to

average 30% to 40%, almost 25% increase than GCN. The

reason for this can be explained by the limitation of struc-

tural design and operating mechanism in contrast models.

Compared to our approach, Random and CVPR are all non-

adaptive models that could always get stuck under inexpe-

rienced circumstances, with senseless action taken. MPSL

abstracts task features only depending on navigation targets,

resulting in poor performance when dealing with unseen

environments. For BRM and GCN, all the mappings learnt

from visual features and semantic features could be quite

unstable as the appearance of targets and scenes changing.

Results demonstrate that our maml-based learning method

could compatibly comprehend complex characteristics of dif-

ferent scenes and targets, bringing about effective adaption to

novel tasks.

For ablation studywe design and test Our(vis) andOur(oh).

These models differ from proposed approach in the data pre-

processing phase. For our(vis) we remove semantic features

in the model, using visual features abstracted from observa-

tion/target images to create mappings. For Our(oh) we try

another target encodingmethod where each word vector loses

semantic association with each other. As results shown in

Table 1, the success rate of both models generally decrease

(27% in Our(vis) and 36% in Our(oh)), which supports our

hypothesis that incorporating semantic features and related-

ness into the state could be an efficacious way to obtain

experience generalized to a larger scale.

Our(loc) can be considered as an scene-exclusive version

of Our(glo). According to four types of scenes we train

different Our(loc) models, most of which have made better

performance than Our(glo). This could be explained by the

fact that when training based on all scene types, Our(glo)

may reach to an over-fitting situation that it becomes well-

trained for one specific scene type, failing to find targets in

other types of scenes. The evidence could be found in the data

of Scenario 2 (navigating to trained target in unseen environ-

ment) in Table 1. Our(glo) obtains its highest success rate as

42.1% in kitchen, while in bedroom/livingroom/bathroom it

only attains half accuracy.

It is also worth mentioning that, in the third sce-

nario(navigating to untrained target in unseen environment)

agent fails to localize the target object in a relative high

success rate as it has achieved in other scenarios. In most of

failure cases, the agent may remain static or wander around

a specific area, which could not be simply explained by

over-fitting or lack of collision information. Through analysis

of discrepancy in these experiments, the reason for drop of

performance could be attributed to the increasing dimension-

ality of generalization. Dealing with both unknown tasks and

unfamiliar environment brings aboutmore imprecise recogni-

tion about mapping relation between targets and its semantic

surroundings. Great richness of details among scenes leads

to the fact that experience learned from specific task can

hardly make sense in others. To solve the problem, we may

FIGURE 6. Comparison of Bayesian optimization method’s time
consumption with our Grid-Search method.

be devoted into datasets sampling with modest similarity and

discuss model’s performance in future work.

D. HYPER-PARAMETER OPTIMIZATION

Notably, as mentioned in the previous section, hyper-

parameters appear to be extremely important in our study

since they determine how fast model learns and how long

model should be trained during meta-training phase. For

example the value of hyper-parameter N makes great sense

in adjusting model maturity and avoiding over-fitting to the

training datasets. In the machine learning field usually hyper-

parameters are configured in manual setting based on simple

empirical analysis, determined in a computationally efficient

manner. Although a few parameter tuning methods have also

been introduced into hyper-parameters optimization, such as

bayesian optimization [38], SMAC [39] and ParamILS [40],

resulting in more precise results, these approaches appear

to be inefficient and impractical as the training and testing

datasets grow in size, in this case the tedious interacting

process proceeds.

Consequently, to achieve higher performance with rela-

tively few computational cost, we design a hyper-parameter

tuning method according to Grid Search [41] to obtain appro-

priate combined value of N , α and β. This method is per-

formed in the bathroom-specific generalization experiment to

preliminarily determine hyper-parameters, and then applied

in all-scenes experiments. Figure 6 shows the comparison

Bayesian optimization method’s time consumption with our

Grid-Searchmethod. The result demonstrates that the runtime

of both hyper-parameter tuning approaches grows gradually

as the amount of scene types included in datasets increases,

and Grid-Search based method requires less time to obtain

available hyper-parameter values. Although Bayesian opti-

mization method proves to be more efficient than Grid-

Search, the iteration process restricts it from parallel training.

In contrast our Grid-Search based approach could perform

multi-thread processing, with a great deal of time consump-

tion reduced. Compared to other hand-crafted or trial-and-

error approaches, our grid-searchmethod turns out to bemore

applicable for navigation tasks.
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V. CONCLUSION

In this article, we proposed an vision-language adaptive

navigation model to enable agent generalizing to untrained

navigation tasks. Our network structure is constructed on the

basis of DRL method, which provides appropriate actions

according to visual observation and text-defined target. The

integration of FCIS network and word vector obtained from

Word2vec precisely creates mapping from visual features

to semantic features. A novel self-adaptive learning method

based on MAML has been proposed to achieve fast adap-

tion to unfamiliar tasks through the meta-adapting phase.

To evaluate proposed model’s performance, several experi-

ments with three scenarios have been conducted. As results

illustrated, our model could accomplish target-driven navi-

gation tasks and generalizing to untrained ones with higher

success rate than other models of existing researches. How-

ever, the performance still appears to be much worse than the

human level, which is probably because that our approach

is hardly to be adjusted to accumulate experience in the

perfectly efficient way, and also some vital information such

as depth has been ignored. In future work we will focus

on further decoupling the meta-training phase to improve

the generalization ability of current model across tasks and

scenes.
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