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ABSTRACT Accurate channel models are essential to evaluate mobile communication system per-

formance and optimize coverage for existing deployments. The introduction of various transmission

frequencies for 5G imposes new challenges for accurate radio performance prediction. This paper compares

traditional channel models to a channel model obtained using Deep Learning (DL)-techniques utilizing

satellite images aided by a simple path loss model. Experimental measurements are gathered and compose

the training and test set. This paper considers path loss modelling techniques offered by state-of-the-art

stochastic models and a ray-tracing model for comparison and evaluation. The results show that 1) the

satellite images offer an increase in predictive performance by ≈ 0.8 dB, 2) The model-aided technique

offers an improvement of ≈ 1 dB, and 3) that the proposed DL model is capable of improving path loss

prediction at unseen locations for 811 MHz with ≈ 1 dB and ≈ 4.7 dB for 2630 MHz.

INDEX TERMS 5G Mobile Communication, Channel models, Wireless communication, Computer vision,

Machine learning, Supervised learning

I. INTRODUCTION

The fifth generation of mobile networks, 5G, seeks to expand

the current mobile architecture with densification of base

stations, also known as Heterogeneous UltraDense Network

(H-UDN), to offer improved capacity and coverage for users.

The densification results in low inter-site distances between

terminals and base stations. Such a decrease in distance al-

lows for improved radio conditions when operating at higher

frequencies. For instance, Millimeter Waves (mmWaves) is

expected to be an essential part of New Radio (NR) due to the

large quantity of available spectrum but suffers over longer

distances due to the increased path loss. The densification

requires a change to the classic cellular architecture of hav-

ing macrocells for coverage and capacity. A Heterogeneous

mindset is set to replace the classical mindset where smaller

base stations such as micro, pico, and even femtocells [1], [2]

manage user data and the macrocells manage control signals

and wide-area coverage. However, this approach poses a sig-

nificant challenge in terms of network management and de-

ployment strategies [3]. An essential element of planning and

deploying mobile communication systems is the modelling

of signal propagation and losses thereof. The task of such

propagation models is two-fold, 1. to predict propagation for

proposed deployment scenarios allowing evaluation before

practically deploying such solutions and 2. be capable of

improving the coverage and capacity of existing systems by

dealing with so-called coverage holes.

Through recent years, as more advanced transmission

technologies have made their way into mobile communica-

tion systems, more detailed channel modelling techniques

have been required. While stochastic models are computa-

tionally simple and fast while keeping satisfactory accuracy,

margins limit the predictive capabilities [4]. The rigid format

of stochastic models causes coarse and inaccurate propaga-

tion prediction for scenarios different from the originated

measurements. Such predictive inaccuracies result in calibra-

tion studies that seek to refit the empirically obtained models

to different propagation scenarios. Ray-tracing is another

method for accurately predicting the channel state given

a propagation scenario. Ray-tracing, however, has one big

draw-back it is computationally expensive and geographical

data exhaustive [5].

In the context of cellular planning and optimization, the

purpose and application of channel modelling are vast. The

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.2964103, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. A complex coverage situation requires complex channel models for coverage prediction. A Deep Neural Network is proposed utilizing satellite images

and position indicators for improved path loss prediction. The learned model can be queried using a satellite image and a position for the expected received power.

complexity of channel models is highly relevant to the spe-

cific planning phase. For instance, in greenfield deployments,

simple empirical path loss models are used. In urban set-

tings where coverage already exists, the deployment and

interference management increases in complexity, thus more

advanced channel models are required. Accurate channel

models are essential to evaluate future generation mobile

communication systems. Channel models have stringent re-

quirements and must consider a diverse selection of propaga-

tion scenarios to limit the need for time-consuming calibra-

tion and measurement studies.

Furthermore, cognitive networking is considered a neces-

sary and essential element of future solutions [6]. Cognitive

networking is expected to set forward tight requirements

on channel models, not only in terms of accuracy but also

in terms of computational performance. Thus, new channel

models that can offer improvements in both aspects are of

great interest. The primary focus of this work is the mean

received power under slow fading impairments such as shad-

owing. Thus, the focus is on improving channel models for

coverage modelling, where accurate link-budgets are essen-

tial.

A. CONTRIBUTIONS

In [7], Deep Learning (DL) is shown to be capable of infer-

ring radio quality parameters using satellite images and can

offer a metric of uncertainty using Bayesian approximation.

The aim and novelty of this paper are to investigate the

proposed DL method for radio propagation prediction and

compare them to existing methodologies. More specifically:

• We propose an improved model for path loss prediction

for use in mobile communication systems based on a

DL framework utilizing satellite imagery and position

indicators.

• We show how the proposed DL framework is capable

of inferring features from satellite images and thereby

produce improved prediction even in new/unseen envi-

ronments.

• We compare the prediction of path loss at unseen loca-

tions for the proposed DL method and state-of-the-art

channel models.

Stochastic models use an empirical-based path loss model.

Such models are obtained and based on interpolation of ex-

perimental measurements. Thus they are regression methods

that seek to predict a continuous value of path loss for a given

distance of transmission.

The DL proposed is also of the type regression. How-

ever, we show that by using automated feature extraction

of satellite images aided by a simple path loss model, we

can approximate the large-scale attenuation by learned latent

continuous variables. Furthermore, this achieves low data

complexity as compared to traditional ray-tracing methods.

It is thus interesting to compare the DL based models to

traditional channel models such as empirical-based and ray-

tracing-based.

B. STATE-OF-THE-ART

Mean path loss prediction has been subject to much research,

both in terms of accuracy but also complexity. It is relevant

to mention the latest empirical-based path loss models, as

documented in 3GPP TR 38.901 and ITU-R M. 2412 [8],

[9]. Single-slope distance path loss models characterize both

models, and the Large-Scale Parameters (LSPs) are deter-

mined by a Gaussian distribution, thus making them simple

and computationally fast.

To combat the rigid margins of the stochastic models,

Neural Network (NN) have been successfully demonstrated

to offer high performance and low complexity alternative

to predicting path loss for wireless communication systems.

The authors in [10] use inputs such as antenna separation dis-

tance, antenna height at both the transmitter and receiver, the

clearance of the terrain, and the angle hereof and vegetation

information. Most of such inputs are the result of features

engineering by, e.g., inspecting satellite images. The authors

in [11] document the use of NN with inputs such as clutter

height, at 1800 MHz, and demonstrate predicting in routes

different and not included in the training set. However, it

remains challenging to determine how inherently different

the routes used for testing are from the routes included in

the training set. Thus it is difficult to conclude that sufficient
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generalization is achieved. It is reasonable to assume that

extrapolation is partly achieved for unknown propagation

situations, which is not an ideal outcome. The primary reason

for this is the problematic aspect of quantifying parameters

(features) that are generalizable for radio propagation in the

majority of propagation scenarios. In other words, which

features should be engineered or selected to model radio

propagation impairments effectively. Several features have

a significant impact on the overall mean of path loss — for

instance, the height of the transmitter and the receiver and the

antenna separation. However, also impactful are large-scale

fading impairments caused by vegetation and buildings. Such

impairments are tricky to represent, i.e., engineer features for

since they require statistical knowledge of the propagation

scenario. For example, a feature to engineer could be the dis-

tance to the closest building. A comprehensive comparison

of features and engineered features for NNs can be found in

[12]. For frequencies below 1 GHz, features related primarily

to distance achieve the best performing NN. For frequencies

above 1 GHz, building and clutter related features have

a significant impact on the predictive capabilities of the

NN, related to the use of shorter wavelengths. It is well

documented that the performance of adaptive models such

as NN are limited by the features used [12], [13]. It is thus

relevant to investigate approaches for feature engineering to

improve predictive performance. Achieving generalization

using such approaches is essential and paramount; otherwise,

the trained models have little purpose. In this paper, we look

at Deep Learning-based methodologies for achieving such

properties.

DL has accelerated the field of Machine Learning (ML)

and has offered significant improvements to model accuracy.

The availability of raw data enables automated feature engi-

neering through deep and layered network structures. Several

authors have documented utilizing DL in Wireless communi-

cation and should be highlighted [14]–[16], however, to the

best of the author’s knowledge no one has utilized DL for

propagation modelling using satellite imagery as we propose

in this work.

C. PAPER OUTLINE

In Section II we introduce the basic principles of path loss

modelling. Additionally, we detail how a Deep Neural Net-

work (DNN) is used to learn a mapping function between

input features, such as distance, position, and satellite im-

ages, to a received signal strength parameter. Finally, the

proposed model architecture is described. In Section III, the

experimental setup is detailed along with the structure of

the finalized data set. Training of the DNN model and the

resulting experiments are detailed in Section IV along with

the best-found hyper-parameters. Additionally, in Section IV,

traditional channel modelling methods used for validation

and evaluation are explained. Results are presented in Sec-

tion V, and the work is discussed in Section VI. Finally, a

conclusion is presented in VII

Notation

Gtx Transmission power and gain
PL(d) Path loss
L(d) Link budget
X0 Gaussian noise with zero mean
σ Local variability
w Vector of adaptive weights
θ Hyperparameters
ǫ Observation noise
Btx Transmitter indicator
dlat,lon Distance in latitude and longitude
d 3D Distance
A Satellite Image as W ×H × C matrix
xn Single input vector
x Vector of input vectors
tn Single target/observation
t Vector of targets/observations

II. DEEP LEARNING FOR PATH LOSS PREDICTION

The curve-fit provided by traditional mean path loss models

are based on a theory of cause and effect, meaning the

intent is to find the best parameters that can explain the

observations. For instance, research has shown a single-slope

distance model (Eq. 1) is capable of describing mean path

loss satisfactory [17].

PL(d) = A+B log 10(d) +X0 (1)

Some values of A and B as a function of features (such

as frequency, transmitter height) have been found using in-

terpolation of obtained measurements. Additionally, LSP can

be modeled by a Gaussian distribution X0 (log-normal) with

mean zero and some σ denoting the local variability. Such a

path loss model does not consider fast variations and assumes

an average over samples obtained over a route with a length

equal to tens of wavelengths [18]. This approach is a contrast

to ML where the model is unknown. Machine Learning (ML)

provides an extensive toolbox of adaptive models that are

capable of learning representations and mapping functions.

Thus the goal of ML is not only to discover the best parame-

ters, but also the best model f(·). In this case, the best model

that represents the path loss.

Supervised ML has the objective of mapping and learn-

ing representations between features and observations. For

instance, how input relates to the outputs of a system. Dis-

covering essential features can be difficult, and most times, it

is difficult to formalize features. Such difficulties especially

arise when considering the geo-statistics of the propagation

area. A feature that adds useful information about buildings

and their height for predicting path loss, how would it best be

formalized? Would it be average building height in a straight

line between the transmitter and receiver? Such a feature, in

an urban scenario, would possibly be useless since multipath

fading and scattering are dominant [19]. So maybe the dis-

tance to the nearest building is more informative. In short,

it can be challenging to engineer useful and representative

features, which is why generalization of path loss prediction

is an issue. Performing regression-based prediction of path

loss can turn into a series of extrapolation models since the

geostatistics are difficult and time-consuming to formalize.
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DL provides with automated feature engineering through

complex and deep-layered structures. In this work, features

are learned from satellite images that can aid in predicting

the received power of mobile communication systems. Ge-

ographical coordinates and a simple path loss model assist

the model in the learning process. The selection of inputs are

based on the following intuition and hypothesis:

• Local coordinates - contains scenario-specific informa-

tion. Assists the model in deducing local propagation

characteristics, like bearing of the transmitter and inter-

ference sources.

• Satellite images - contains information of local variabil-

ity, e.g. large-scale fading impairments. Must be high

enough resolution to be able to observe buildings, vege-

tation, and other structures that influence the magnitude

of local variability.

A so-called Convoluted Neural Network (CNN) is used to

obtain useful features from satellite images. Such networks

use convolutions instead of regular multiplications. The aim

is to obtain a regression model that can predict signal strength

continuously; thus, the model is formalized as follows:

tn = y(xn,w, θ) + ǫ (2)

Where y is the function to learn, x is the input, w are the

adaptive weights, θ are the model hyper-parameters and ǫ is

Gaussian distributed noise. We measure the LTE-A reference

parameter, Reference Signal Received Power (RSRP), the

observation is tn = RSRP.

Different models and approaches can be used to learn

such a function y. The model hyper-parameters (related to

the complexity of the model) are tuned to the problem and

the data. In this work, we use methodologies related to NN.

Thus a hyper-parameter could, for instance, be the number of

layers used.

We furthermore define the input to the model as follows:

xn = [lat, lon,Btx, dlat, dlon, d, A] (3)

Where lat, lon are the geographical coordinates of the

receiver. Btx indicates the transmitter (the dataset contains

several transmitters). dlat, dlon denote the distance in the

latitude and longitude direction respectively between the

transmitter and the receiver. d denote the distance straight as

the crow flies. All distance metrics are features and are com-

puted based on the coordinates. A denote the corresponding

satellite image. Thus the model is tasked with learning RSRP

as a function of positions, distance, and satellite images.

A. DEEP NEURAL NETWORKS

NN, and in particular DNN, has proven to be useful in

many nonlinear mapping problems [20]. NNs is a linear

combination of basis functions which are transformed using

nonlinear activation functions. A two-layered NN has the

following form:

FIGURE 2. A cascaded structure of convolutional layers are used di. Each

layer consists of several basic operations, such as ReLU activation, Batch

normalization and max pooling. A linear set of weights is connected to the

output of d3.

yk(x,w) =
M
∑

j=1

w
(2)
kj h

(

D
∑

i=1

w
(1)
ji xi + w

(1)
j0

)

+ w
(1)
k0 (4)

Where yk is considered the k’th output. w are considered

the adaptive weights for both layers with size M and D

respectively, denoted (2) and (1). h(·) indicates the nonlinear

activation function. In this work, the Rectified Linear Unit

(ReLU) activation function is used. [21], [22].

A training set of inputs and observations are used to

find the adaptive weights. The observations are denoted tn
while the inputs xn. Given the training set, we thus seek

to minimize the error provided by the sum-of-squares error

function between the model output, given a set of weights,

and the observations.

E(w) =
1

2

N
∑

n=1

||yn(xn,w)− tn||
2 (5)

Minimizing the above cost function corresponds to maxi-

mizing the likelihood function given the targets have noise

that is Gaussian distributed. (E.g. ǫ in Eq. 2 is Gaussian

distributed.) This is a fair assumption given the distribution of

slow/large-scale variations (such as shadowing) are Gaussian

distributed [18]. Minimizing the cost function is done itera-

tively with the use of the error backpropagation algorithm. In

this work, the well known Adam optimizer is used [20]. Mini-

batch training is furthermore used to compute the gradient of

the cost function with respect to the weights for several data

points. To combat over- and underfitting, the model, is regu-

larized using standard principles such as batch normalization,

dropout layers, and weight decay [21].

B. IMAGE PROCESSING

In order to effectively deal with satellite images, convolu-

tional layers in the NN are used. The operation of convolu-

tions in combination with NN structures has revolutionized

image processing and gains hereof [23]. The operation of

convolution can be defined as

s(t) =

∫

x(a)w(t− a)da (6)
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In the context of CNN x is the input and w is the kernel. The

kernel is an adaptive filter that the network learns. Thus the

layer can be seen as a filter bank with adaptive taps. If the

training set contains representative examples, e.g., the image

is related to signal attenuation, the cascaded architecture of

these layers will result in useful latent features at the final

layer. In this work, i ∈ 0, 1, ..3 layers are used. Each layer

di consists of several basic operations used in CNN. As

illustrated in Fig. 2 a structure of 2D convolutions, nonlinear

transformations (ReLU), batch normalization and maximum

pooling is sequentially used. A linear set of weights is added

as an output layer. The architecture and the depth of the

layers, and the kernel sizes used are detailed in Section IV.

C. TRAINING ARCHITECTURE

NN and DNN are universal approximators, and can be shown

to be capable of approximating any continuous function

in R
n [21]. The challenge remains in tuning such models

and their hyper-parameters to achieve state-of-the-art perfor-

mance. The search for such hyper-parameters is computa-

tionally expensive and is a major bottleneck in the training of

deep models. The idea of introducing a residual path loss into

the proposed model is similar to the work carried out in [24]

where increased performance is observed training the model

not only on the data but also using a simple physics model

to assist in learning. The intuition here is that the model

is tasked with learning the correction of the observations

to the simple physics model. Such a learning task is easier

and simpler than learning all possible explanations for all

observations. It has been shown in [25] that expert knowl-

edge (model-aided learning) can be embedded into wireless

systems for optimization. Additionally, such hybrid-based

models have shown to be effective for path loss prediction

as documented in [26].

In this work, the proposed DL model uses a simple path

loss model for assisting in the learning process. More specif-

ically, we define the output of the simple path loss model

as an estimated link budget, thus L(d) = PL(d) + Gtx,

where Gtx is the estimated transmission power and related

gain. The UMa_B model is used as a path loss model,

and the link budget estimate is given as an input to the

DNN. Furthermore, it is added to the output of the DNN,

as illustrated in Fig. 3. In other words, the model is to learn a

+

FIGURE 3. A simple path loss model is used in combination with a deep

neural network. The DNN is thus tasked with learning a correction of a

received power estimation. The structure of the DNN can be seen in Fig. 4

FIGURE 4. The DNN consists of a convolutional part, dealing with satellite

images, and a regular dense NN dealing with the continuous features and

inputs. The output of each module is added and condensed into several

sequentially connected layers

correction of the estimated path loss produced by the simple

path loss model. Thus we can define

y(xn,w, θ) = z([xn, L(d)],w, θ) + L(d) (7)

Where z(·) is the DNN as detailed in the section below.

D. DEEP NEURAL NETWORK ARCHITECTURE

The proposed model z(·) consists of two NN and a CNN.

The CNN is tasked with processing the satellite images,

and a NN for managing engineered features and positional

locators. The model concatenation can be observed in Fig. 4.

Additional dense layers are added in sequence to the output

of the CNN and the NN, termed NN2. One layer is used for

adding the outputs of CNN and the NN. The sequentially

used layers are added for enabling latent features to be a

function of weighted positional locators and image features.

This layer is directly connected to an output layer. The size

of the layers and the overall architecture can be observed in

Table 1 and 2.

III. EXPERIMENTAL SETUP

The campus area of the Technical University of Denmark

was selected for conducting measurements as it consists of

suburban and urban characteristics such as abundant vegeta-

tion and condensed collections of 3 tall story buildings with

very different building materials. Fig. 5 shows a map of the

measurement area.

A. RADIO MEASUREMENTS

Radio measurements were obtained using a Rohde &

Schwarz (R&S) TSMW [27]. The hardware equipment is

used along with the ROMES software from R&S [28],

which is commonly used for drive testing. The area where

measurements have been conducted can be seen in Fig. 5.

A GPS module is integrated allowing for synchronization

between radio measurements and GPS coordinates. The radio

measurements were focused on downlink LTE-A frequencies

in bands 20 and 7, more specifically EARFCN 6350 and

2850, which corresponds to frequencies 811 Mhz and 2630

MHz, respectively. Three base stations in the campus area

were selected for the study. Transmitting from the same

position, but with different configurations. PCI 64 and 65 are

VOLUME 4, 2016 5
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FIGURE 5. Measurement area where drive tests have been performed. The

area is split into a training and test area. Measurements from the training area

are used for the training set, while the measurements from the test area are

used for the test set. The route used for training is not visualized.

both operating at band 20 but considered two sectors of a cell

site, while PCI 302 is operating at 2630 MHz and considered

a single sector. 20 MHz of bandwidth is considered.

ROMES offers a parallelized capture of radio measure-

ments, allowing for up to 32 independent measurements,

each synchronized with GPS positioning. Roughly 14 km

of road was driven, and a measurement was taken approx-

imately every 2-4 ms. The speed of the vehicle was kept

constant on longer stretches of road, thus approximated

equal distance between measurement points. Parking lots

and turning areas resulted in a reduced distance between

measurements.

The resulting dataset (for both training and testing) was

thus of size ∼ 60000 data points. The route used for testing

is highlighted in Fig. 5. The bearing of 811 MHz cell resulted

in fewer drive-able roads than the bearing of the two cells of

2630 MHz, which is the reason for fewer data points above

1100m.

B. SATELLITE IMAGES

Satellite images have, in recent years, been accessible with

close to no cost. Even high-resolution satellite images can be

obtained for free through services such as Mapbox [29]. For

r

FIGURE 6. The images are rotated according to the position of the

transmitter. Down/South in the image is towards the transmitter.

each GPS position (and thus radio measurement), a satellite

image is obtained. Given the number of radio measurements,

the same amount of satellite images is required. For this

work, the static image rest API from Mapbox was used. The

only pre-processing of the satellite images done was a rota-

tion. The images were rotated according to the transmitter.

More specifically, the direction of the transmitter is always

down/south in the images. The bearing (the rotation angle)

was computed using the GPS coordinates of the known

measurements. Thus the centre of the corresponding satellite

image is the GPS position. An example of this is seen in

Fig. 6. The rotation of the images is primarily based on the

intuition behind propagation, e.g., if the link state is Line-of-

Sight (LOS), the majority of the signal propagation is given

in a direct and straight line as the crow flies. A Mercator

zoom level of 17 was chosen for each image. This constitutes

0.75 meter/pixel, thus the area covered by the satellite images

of size 256 × 256 pixels is roughly ∼ 185 × 185 m [30].

Such a zoom level enables a clear indication of buildings,

vegetation, and roads. This also means that nearby measure-

ments have significant similar images causing an overlap of

the area covered. The intuition here is that large-scale fading

has a decorrelation distance. e.g., nearby spatial positions

experience a similar magnitude of, for instance, shadowing.

Thus the overlap of the satellite images is to increase the

magnitude of latent features able to explain such large-scale

fading impairments.

Each measurement is mapped to an image of resolution

256 × 256 × 3 (three colour channels, RGB) producing the

final dataset.

C. DATASET

The route illustrated in Fig. 5 is used for testing and remains

unseen during training. The size of the test route is ∼ 7000
samples, meaning the remainder 60000−7000 = 53000 was

using for training. A training/validation split of 75:25 was

selected.

The complete and final dataset is a combination of both en-

gineered features and obtained satellite images, as detailed in

Eq. 3. A few features have been engineered, such as distance

to the transmitter in both latitude and longitude direction.

The transmitters have been denoted using a binary one-hot

6 VOLUME 4, 2016
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FIGURE 7. Examples of augmentation. Top row are satellite images rotated

according to the transmitter but without transformation/augmentation applied.

The bottom row is with transformation, thus the original images are

augmented.

encoding to separate information from different transmitters

at identical positions. The dataset can be found at [31].

IV. MODEL TRAINING AND VALIDATION

The model is implemented with the framework Pytorch

[32], which enables easy use of NN methodologies and

error minimization using back-propagation. The source

code for the model and the dataset can be found here:

https://github.com/jakthra/PathLossPredictionSatelliteImages.

Experiments were conducted for most hyper-parameters

such as dropout probability, layer sizes, the minibatch size,

the regularization magnitude (L1 and L2). The experiments

were conducted using a random search (not exhaustive) of the

hyper-parameters. Such a search entails sampling the hyper-

parameters using a uniform distribution [33].

Data augmentation has been used for improving general-

ization, thus minimizing the gap between training error and

test error. A random affine transformation is used, which

keeps the centre of the image invariant but rotates and

shears the image randomly. An example of such can be

observed in Fig. 7. Random rotation of ±20 degrees has

been used, with a ±10 degree of shear. Data augmentation

furthermore increases the size of the dataset as it produces

many copies of the same measurement, but offers slightly

different input images. Data augmentation is applied at every

training iteration by applying a random transformation of

the original image. Several epochs of training thus result in

several training examples, with different transformations, of

the original input image.

Additionally, the conversion to grey-scale, e.g., one chan-

nel instead of 3, offered improved generalization. A batch

size of 30 was used, along with a weight decay of 0.0028.

A learning rate scheduler was furthermore used, stepping the

learning rate with a factor of 10 if no improvement on the test

set is observed for several epochs. More details are available

in the Github repository.

The final architecture of the model, as proposed in Fig. 4

are detailed in Table 1 and Table 2. In the remainder of this

section, we describe and detail the ray-tracing and empirical

model used for validating and evaluating the trained model.

CNN

Input ch. 1

No. of convolutions [200, 100, 50, 25, 12, 1]

Activation ReLU

Kernel size [(5,5), (3,3), (3,3), (3,3), (2,2), (2,2)]

Max pooling 2

Padding 2

Stride 1

TABLE 1. Architecture of the CNN used for processing satellite images as

detailed in Fig. 4

NN

Layer size [200, 200]

Activation ReLU

NN2

Layer size [200, 16, 1]

Activation ReLU

TABLE 2. Architecture of the sub-models considered in the final model

architecture.

A. RAY-TRACING

Ray-tracing requires GIS data such as radar data. This data is

relatively inexpensive (if not able for free); however, obtain-

ing updated newly scanned datasets can be expensive. If the

datasets are too old, it does not constitute a fair reflection of

the propagation environment. Urban environments are espe-

cially prone to outdated datasets since frequent construction

is common. The authors in [34] highlight this by showing the

poor resulting accuracy when not maintaining and updating

GIS data. Additionally, the authors in [35] show that a sig-

nificant improvement for path loss prediction (indoor) can be

achieved by managing how the rays are launched depending

on the receiver locations.

A ray-tracing model of the University Campus was con-

structed using a procedure as follows:

1) Obtained LIDAR scans of University Campus with a

Transmitter location

Measurement route

Vegetation areas

FIGURE 8. The route used for drive-testing is imported into a ray-tracing

model, where buildings of the area have been imported using LIDAR and

known vegetation areas are approximated.
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FIGURE 9. 25 Propagation paths for a single receiver point simulated by Remcom Wireless Insite. The polygon faces in the simulation define the propagation paths

and are furthermore limited to a maximum of 25 paths. The 25 most likely propagation paths are computed for all ∼ 60000 data points.

resolution of ∼ 4.5 points per m2 [36]

2) Obtained footprints of buildings in the study area from

OpenStreetMap [37]

3) Open-source software QGIS was used to extract vector

shapes of buildings and their respective height.

4) Vector shapes and terrain data was added to the 3D

model in the ray-tracing software. In this case, the

Remcom ray-tracing solution was used [38]

5) Approximations of materials and their permittivity

were defined along with transmitter and receiver con-

figurations.

The above procedure produces a 3D model of the University

campus. The position of measurements for 811 and 2630

MHz were imported to the model and simulated. The re-

sulting dataset offers received power at measured locations

according to the defined 3D model. Such an approach al-

lows for a direct comparison of ray-tracing and experimen-

tal measurements. We have previously shown in [39] that

state-of-the-art empirical path loss models achieve similar

performance, and in some cases, outperform, that of an

implemented ray-tracing model. In this work, the ray-tracing

model is evaluated concerning LSP.

Remcom Wireless Insite [38] is used as the ray-tracing

engine, and the properties of the simulation environment can

be observed in Table 3. The number of paths is limited to

25, propagated from a standard half-wave dipole antenna

array. The antennas in the ray-tracing engine were modelled

to approximate the configuration of the measured cells and

the respective sectors. The transmission power is set to 43
dBm with a sectorized SISO antenna definition (120 degrees

of bearing with three sectors). The antenna is placed at the

height of 30 m. The permittivity of the building materials

(Concrete/Brick) is 4.4 to 5.3 F/m. A full 3D ray-tracing

approach is used, accelerated by a GPU. Thus the number of

faces define the overall complexity. The number of successful

paths vary from Rx point to Rx point, and is determined by

the number of faces present in the simulation environment.

Reflections 6

Diffractions 1

Area Size 14 km2

Number of buildings 3917

Number of faces 16563

Building material Concrete/Brick

TABLE 3. Properties of the ray-tracing model implemented in Remcom.

An example of the computed propagation paths can be ob-

served in Fig. 9 for a single receiver point.

B. EMPIRICAL PATH LOSS MODELS

The general parameter generation of 3GPP 38.901 and ITU-

R M. 2412 consists of similar steps and input parameters.

The path loss models used for the 3GPP 38.901 and ITU-R

M.2412 are similar and are based on one same studies with

small differences. In short, ITU-R M.2412 offers 2 channel

models A and B, each for different propagation scenarios

such as urban, suburban, or rural. The latter of the models

(B) is identical to that of 3GPP 38.901. Thus, we refer to

Urban Macro (UMa)_A as the definition in ITU-R M.2412

and UMa_B as the definition in TR 38.901 by 3GPP. Fig. 10

shows the predictive capability of the UMa_B along with the

measurements conducted.

V. RESULTS

We compare the predictive performance of the proposed

modelling technique with traditional modelling approaches

on the forementioned test set. The error in terms of Root-

Mean-Squared-Error (RMSE) (lower is better) can be ob-

served in Fig. 11. The final obtained model utilizing satellite

images is thus seen to offer a performance increase (of ≈ 1
dB for 811 MHz, and ≈ 4.7 dB for 2630 MHz) compared to

the traditional approaches.

We compare the different learned models as follows; 1) a
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FIGURE 10. Experimental measurement of RSRP for 811 and 2630 MHz as a

function of distance. The path loss model UMa_B is shown for both

frequencies.
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FIGURE 11. RMSE comparison of the proposed method to traditional

modelling techniques. The standard deviation σ for the different experiments

of training the DNN model is shown as errorbars.
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FIGURE 12. RMSE comparison of each modelling approach. A fully

data-driven model (without the simple path loss model), and the proposed

method without satellite images is included for reference.
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FIGURE 13. Example of the test error with and without data augmentation

applied (shown in solid). The training error is shown as the dashed line for

both approaches.

data-driven approach (no path loss model, thus no correction

to be learned), where both images and features are utilized.

2) a model using only features and 3) The full model where

both images and features are used. These are compared in

Fig. 12. A performance increase is observed when including

images to the finalized model, as opposed to just utilizing

the engineered features. By including images, an increase

in predictive performance is observed to be ≈ 0.8(±0.2)
dB. This illustrates the improved generalization by including

images to the model. The model-aided approach, where the

model is tasked with learning a correction factor, offer an

increase in the predictive performance of ≈ 1(±0.15) dB

for both 811 and 2630 MHz. Additionally, the data-driven

approach is more prone to over/underfitting as highlighted

by the increased σ. It was observed during training that

data augmentation is necessary and effective for reducing

the overfitting properties of the model during training. An

example of the test and training error with and without data

augmentation can be observed in Fig. 13. It can be seen that

a severe overfit is present if no data augmentation is applied.

This is observed by the test error diverging from the training

error, also known as the generalization gap. This was reme-

died in [7] using regularization hyperparameters. However,

data augmentation in combination with tuned regularization

parameters has since shown to be the better performing

approach.

The distribution of the learned correction of the trained

model is observed in Fig. 14. The distributions are Gaussian-

shaped, which corresponds to the distribution of large-scale

fading. The model has thus learned that the correction is

Gaussian distributed around the mean predicted power by the

simple path loss model. The slight offset of the distributions

from having a mean zero illustrates an offset in calibrating

the simple path loss models. The correction distribution thus

indicates the need for re-calibrating by ≈ 4 dB for 811 MHz,

and ≈ −3 dB for 2630 MHz. It is important to note that

no prediction improvement was found by re-calibrating the

VOLUME 4, 2016 9
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FIGURE 14. Histogram of path loss correction for RSRP given by the model

for 811 and 2630 MHz on the test set.
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FIGURE 15. Distribution of RSRP for 811 (a) and 2630 (b) MHz on the test

set and the model output.

distributions to have mean zero.

The distributions of both the model output and the mea-

surements are shown in Fig 15. A significant better distribu-

tion fit (visually) is observed for 2630 MHz than 811 MHz.

For 811 MHz (Fig. 15a), a cluster of measurements seem to

be difficult to predict (at around -95 dBm).

VI. DISCUSSION

The satellite images offer much information, and the entirety

is not necessarily relevant for radio performance prediction,

especially at lower frequencies. The use of such images

results ultimately in a model that is harder to train since

the latent features obtained by the CNN might be sparse

and, to some extent, memorization of the training data. The

use of other information sources such as LIDAR scans seem

appropriate and might offer an improved level of information

to predict the propagation of radio waves. Furthermore, a

timeline of images is required to consider the influence of

seasonal changes on radio propagation, for instance, the

leaves on trees.

Finally, given the size of the training set, it is believed that

simplistic satellite images or even just vectorized maps might

offer comparable or even improved results. This approach

will also require less complicated model selection techniques

which will thus lead to reduced training time. Finally, more

experimental data is required to validate and assess the per-

formance of the proposed method. The results provided in

this work does indicate the use of satellite images enable

interpolation between unseen areas and measurements, thus

presenting a generalization of signal attenuation at higher

frequencies.

The optimization of Hyper-parameters, for instance, the

number of convolutional layers and their respective size,

is challenging. Deep Learning models have many hyper-

parameters and doing a systematic grid search for each is

not feasible in terms of training time. Obtaining a better

choice of hyper-parameters, than documented in this paper,

is a possibility. The completed hyper-parameter optimization

and thus model selection procedures of this work consist of

300 experiments and is considered the most time-consuming

aspect of obtaining such a solution. For such reasons compar-

ing complexity can be tricky. We experienced roughly 240

minutes of training time. For comparison, we experienced

roughly 120 minutes for producing ray-tracing results for

the test route, e.g. the approximately 7000 data points. Both

accelerated with a GPU Nvidia 1080 Ti. Predicting the test

route using the DL model was completed in ∼ 3 minutes.

We argue that a reduction of the overall data complexity is

achieved while improving the prediction accuracy, as satellite

images and the features used are simple and easy to obtain.

In terms of model complexity, it is difficult to argue that any

gains have been achieved. These gains suffer significantly

due to expensive model selection experiments. The model

selection and training of the model can, in principle, only

be done once, due to the improved generalization properties

of including images. If done so, the model complexity lies

only in the prediction time and the memory required, both of

which, is significantly lower than a ray-tracing approach.

Future work will be invested in obtaining a dataset that is

decoupled from the campus area, as has been used for train-

ing. A difference in building placement and overall architec-

ture could have a significant impact on the test performance

of the system. However, this remains to be tested. The dataset

and model have been made public and can be downloaded for

free. Any extension to either the model architecture, hyper-

parameters or the dataset is welcomed.

VII. CONCLUSION

Accurate path loss prediction with improved generalization

using satellite images can be achieved with the use of convo-

luted neural networks. A gain of ≈ 1 dB has been achieved

at 811 MHz, and ≈ 4.7 dB at 2630 MHz, compared to tradi-

tional modelling techniques such as ray-tracing and empirical

models. Additionally, utilizing a simple path loss model to

assist the neural network with learning offer improved pre-

dictive performance with a gain of ≈ 1 dB. Including satellite

images increase the predictive performance additionally by

≈ 0.8 dB. Additionally, we conclude that the complexity

of such deep neural networks is primarily associated with

model selection principles and the run-time hereof. Finally,

the proposed approach would benefit from an increase in

data, as to quantify the generalization achieved by including

metadata such as satellite images.
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Acronyms

Notation Description

CNN Convoluted Neural Network.

DL Deep Learning.

DNN Deep Neural Network.

H-UDN Heterogeneous UltraDense Network.

LOS Line-of-Sight.

LSP Large-Scale Parameter.

ML Machine Learning.

mmWave Millimeter Wave.

NN Neural Network.

NR New Radio.

R&S Rohde & Schwarz.

ReLU Rectified Linear Unit.

RMSE Root-Mean-Squared-Error.

RSRP Reference Signal Received Power.

UMa Urban Macro.
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