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We present a model system that behaves as a measurement apparatus for quan- 

tum systems should. The device is macroscopic, it interacts with the microscopic 

system to be measured, and the results of that interaction affect the macroscopic 

device in a macroscopic, irreversible way. Everything is treated quantum 

mechanically: the apparatus is defined in terms of its (many) coordinates, the 

Hamiltonian is given, and time evolution follows Schr6dinger's equation. It is 

proposed that this model be itself used as a laboratory for testing ideas on the 
measurement process. 
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1. I N T R O D U C T I O N  

The devices by which quantum measurements are implemented tend to be 

complicated: Geiger counters, droplets in cloud chambers, cats. By con- 

trast, the usual language for the analysis of such experiments is starkly 

abstract: Hilbert spaces for both measured coordinate and apparatus; 

sometimes the only recognition of the complexity of the apparatus is the 

use of capital letters for its state vectors. Few of the many papers of the last 

60 years on quantum measurement theory have attempted to model the 

measurement process as it occurs within the apparatus, that is, how the 
microscopic signal of the measured object is promoted to macroscopic con- 

sequence. To us it seems that such a project is part of the general program 

of statistical mechanics and that steps toward understanding the measure- 

ment process should be formulated within that framework. This is true 

not only of theories where states of the measurement apparatus are 

given paramount importance, (1 3) but even where modifications of the 
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Schr6dinger equation are proposed (4~ and one has the burden of showing 

that this leads to measurable consequences. 

1.1. Br ie f  R e s u m ~ o f  Earl ier  W o r k  

In 1972 Hepp (5~ proposed a number of models of the measurement 

process in the course of an article in which the infinite-volume (thermo- 

dynamic) limit was shown to play an important role in the measurement 

process. One of these models, now known (6) as the Hepp-Coleman model, 

consists of a particle passing an infinite row of noninteracting up spins, 

each of which it kicks over (in a slightly contrived way; the integral of the 

potential is restricted to a certain precise value). Because the spins do not 

interact, the passing particle must affect each of the apparatus spins. This 

model therefore does not attempt to introduce the features needed to 

promote the microscopic to the macroscopic. This model has been 

criticized by Bell (6)'3 for other reasons. 

An older model by Green (8) shares with the Hepp Coleman model 

the feature that the particle to be measured interacts with every degree 

of freedom of the apparatus. This model has the advantage, however, 

that special values of a potential need not be used. Green introduces 

metastability on a particle-by-particle basis. The x and y coordinates of 

each apparatus particle are maintained in disequilibrium and the presence 

of the system to be measured allows relaxation. 

Van Kampen (9) has recently suggested that the decay of a single atom 

is a model of a measurement. His calculations are similar to those in the 

Wigner-Weisskopf description of decay and he makes use of the infinite 

number of degrees of freedom of the electromagnetic field to show in what 

way a measurement disturbs the object measured and leads to irrever- 

sibility. We believe it would be useful to elaborate his model further at both 

temporal ends. For the case of successful detection, the final state consists 

of outgoing photons. To consider this a complete measurement, we would 

want to see the photon absorbed and its presence amplified and registered 

in an apparatus that is itself macroscopic. His initial state consists of an 

individual atom and as such also requires some tethering to the macro- 

scopic world. Again, the details of this tethering, for example, the residual 

3 Bell's criticism appears to rely on the construction of an observable that depends on a large 
number of "apparatus" variables in a precise and coherent way. The nonexistence of this 
kind of observable seems to us to be one of the tenets of the traditional justification for 
treating the density matrix as effectively diagonal. See, for example, Gottfried (7) or the 
discussion in ref. 2. Perhaps one could view Bell's criticism in the following way: If Hepp's 
analysis has indeed solved the measurement problem, then we should also learn from that 
analysis why it is forbidden to consider certain observables. 
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position uncertainty, are part of the micro-macro connection that a 

complete measurement model would provide. 

The model that Zimanyi and Vladar (1~ have proposed seems to us a 

great step forward, both in appreciation of the problem and in explicitness 

of the apparatus. They make the point that symmetry breaking is an essen- 

tial feature of the measurement process. (See also ref. 11.) We would 

rephrase this. Amplification is the essential feature and symmetry breaking 

is one way to achieve amplification. (There are other ways; for example, the 

strong electric fields in a Geiger counter.) In any case, they provide a 

model where symmetry breaking does do the job. The symmetry breaking 

is related to the phase transition one gets from 1/r 2 one-dimensional poten- 

tials and which was used to great advantage by Caldeira and Leggett. (12) 

The 1/r 2 potential, however, has certain drawbacks. It is weak in a 

variety of senses, not the least of which is the difficulty one has in proving 

its existence and salient properties. (13) Time correlations decay with power 

laws rather than with the more definitive exponentials. It seems to us that 

the phase transitions that play a role in practical measurements are more 

robust. Consider a cloud chamber. A particle passes through a container of 

supercooled gas, that is, a gas slightly on the metastable side of a first- 

order phase transition. Through a microscopic perturbation (ionization) a 

critical droplet forms. The liquid gas dynamics now takes over and the 

droplet grows to observable size without further help from the passing 

particle. O n e  has the same general principles operating that Zimanyi and 
Vladar require, but now in the context of a simpler and sharper phase 

transition. 

2. T H E  M O D E L  

As indicated, our goal is to model the measurement-process amplifica- 

tion by means of a phase transition along the lines proposed by Zimanyi 

and Vladar. But we choose our model to be a caricature of a first-order 

transition. It turns out that the resulting calculations are fairly standard 

and combine techniques on phase transitions and decay that have been 

common knowledge for 30-50 years. 

The apparatus consists of a ring of L (quantum) spins coupled to one 

another by ferromagnetic nearest-neighbor forces. Although L is large, the 

temperature T is low enough for the correlation length to be much larger 
than L, so that effectively the system has a first-order phase transition. 4 A 

magnetic field h is turned on and the spins initially arranged so that all of 

4 Since the correlation length is exp(2J/kT) (in our notation below), this is not a stringent 
requirement, even for mesoscopic L. 
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them are in the unfavorable direction with respect to this field. That is, they 

are in a metastable state, h is such that a single spin flip is not energetically 

favorable, but a double flip (of adjacent spins) is. In the language of 

nucleation theory, the critical droplet size is between one and two. 5 

The idea behind the operation of this apparatus is that the system to 

be detected (henceforth to be called the "atom") passes near the ring of 

spins and this passage will tend to flip one of the spins. With this spin 

flipped, the spontaneous flipping of one of its neighboring spins would 

create a larger-than-critical droplet and the entire ring of spins would 

subsequently turn over in a domino-like fashion, more or less inexorably 

and irreversibly. In this way the microscopic action of a single atom on a 

single spin is promoted to macroscopic dimensions. The analogy to the 

nucleation of a critical droplet in a bubble chamber is clear, although also 

clear are the differences, most notably, in our opinion, the absence of trans- 

lational degrees of freedom for the atom. 

Implementation of the foregoing picture requires that the spins inter- 

act with background degrees of freedom that have the combined roles of 

maintaining thermal equilibrium and of carrying off the energy deposited 

by the atom and by the exothermic nucleation process. To this end, we 

introduce a collection of bosons, to be called phonons, that interact with 

the spins. For  simplicity each spin is given its own set of phonons; we have 

in mind that the spins are relatively far apart on the scale of the wavelength 

of the phonons whose coupling we use. This coupling will be taken to be 

weak. The phonons correspond to degrees of freedom of the substance 

within which the spins are embedded. 

The system we measure, the "atom," will also be taken to have two 

states, an excited state and a ground state. The atom is transported past a 

particular one of the spins. If the atom is in its excited state, we will take 

the effect of its proximity to be a large enhancement of the coupling 

between that spin and its phonon bath. If the atom is in its ground state, 
there is no such enhancement. Thus, the measurement can be looked upon 

as a determination of whether or not the atom is in its excited state or, 

alternatively, as a detector for the excited atom. 

5 For present purposes the restriction to one dimension is unimportant .  For two or three 

dimensions one can arrange for fields strong enough to have the critical droplet size lie 

between one and two spins flipped. Larger critical droplets (weaker fields) can also be 

considered, but  then estimates would be needed for the availability of various subcritical 

droplets. (For one dimension we are effectively assuming T low enough for no thermal 

droplets to be present.) Furthermore,  if one wishes to calculate the progress of droplet 

growth after it has exceeded critical size, this task is easy in one dimension, difficult in more 

than one. 
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A Hamiltonian embodying the features we have just described is 

L L 

H= - e  Z +h Z 
[ = 1  / = 1  k,,  

Okcr ,btk) 
k,l  

k 

(1) 

where 

I =  

a z i = I | 1 7 4  . . .  @az |  ... |  

a + l = I | 1 7 4  . . .  | | . . .  |  

J , h > O ,  

(az in / th  position) 

(a+ in lth position) 

~ , ,  (2 >~0,  y ( t ) = O ( T - t ) O ( t )  

(2) 

and the operators subscripted by A act on the atom's coordinates. We next 
relate the terms in H to the model described above in words. The coupling 
t e r m - J Y ~ a a  is suitable for a nearest-neighbor, one-dimensional, 
ferromagnetic ( J > 0 )  quantum spin system. Modulo L addition for the 
subscripts of azt corresponds to the system's being a ring. Our convention 
for the sign of the magnetic field term (h • ~r) corresponds to having the 
spin-down state as the ground state. The free phonon term (~cob*b)  

describes L identical boson systems and the interaction term (Z ~ba+ b + 
adjoint) has each of them coupled in the same way to its particular spin. 
The excited state of the atom is separated by 2(2 from its ground state 
((20"zA). Finally, the atom couples to spin number 1 only (this could be 
generalized 6) and it does so for a fixed time T, our picture being that the 
translational degrees of freedom of the atom carry it past spin number 1. 
Our results should not be sensitive to the exact form of 7(t). We leave the 
details of the k dependence of co~, ~bk, and c k unspecified. 

We show that with appropriate initial conditions our model evolves 

6 Spin n u m b e r  1 is the one it happens  to pass near. In principle,  it could  have  come close to 

any  of them. In t roduc t i on  of the a tom ' s  pos i t ion  coord ina tes  would  a l low our  model  to be 

genera l ized so as to allow, in a na tu ra l  way, any  of the spins to interact  wi th  the atom. 
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the way a measurement apparatus should. Several calculations are in order. 
Primarily, we calculate the transition rate for the following process: 

atom:xcited 

all spi+ns up J 

phonons in vacuum ] 
state or nearly so / 

/ a t o m  in g+ound state~ 

' /  all spi+ down / 

\ phonons carry off ] 
\ extra energy / 

(3) 

This will be a measurement in which the measured system (the atom) is 
changed by the measurement. The pointer is the collective state of the L 
spins. One could imagine the phonons also acting as the pointer, but we 
will not find that necessary. 

Besides the transition rate for (3), other processes and rates should be 
considered. Among them are (a) What is the rate for spontaneous reversal 
of (3) with or without the presence of the atom? (b) False positives: What 
is the rate for (3) in the absence of the excited atom? We perform a series 
of calculations to answer these and other questions. 

2.1. Time Spent with Spin Down; 
Perturbation of the Spin-Up State 

Suppose that initially all the spins are up and no phonons are excited. 
The atom is not present. Because of the spin phonon coupling, the system 
develops an amplitude for being found with a single spin flipped; alter- 
natively stated, the metastable state of H (in the sense of Wigner-Weisskopf 
theory) closest to the (all-) spin(s)-up eigenstate of the unperturbed 
(r = 0, c = 0) Hamiltonian has an admixture of spin-down amplitude. The 
two formulations are solved in essentially the same way. 

2.2. Single-Spin Dynamics 

To lowest approximation, the essential problem is that of a single spin 
in the background of its up-pointing neighbors. The validity of this 
approximation will be examined below. The reduced Hamiltonian H 1 for 
the single-spin dynamics is 

Hl=(_2J+h)a.+~ ookbkb +~(r ) (4) 
k k 

Our basis of quantum states is ]+k, k',...), the first index referring to the 
spin state, subsequent indices indicating the labels of excited phonons. For 
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doubly excited phonon modes the index will be written twice. It will be 

-b 'I ,* r+) ,  convenient not to normalize the basis so that, e.g., ]+kk ' ) -  k~k, 
whether k = k' or not. 

2.3. No Phonons 

The state I -  ) (no phonons) is an eigenstate of H ~ with eigenvalue 

2 J -  h and, if taken as an initial condition, will remain unchanged. For this 

state, however, the approximation in which its neighbors remain up is not 

good, since the coupling term holding them there no longer exists. 

2.4. Zero/One Phonons 

The state p+ ) mixes with I - k )  (all k), but no phonon states with 

more than one phonon enter by virtue of the form of the coupling: Drop- 

ping from + to - creates a phonon, but going back to + destroys one. 

The general time-dependent wave function takes the form 

I~,(t)) = f ( 0  1 + ) + ~  g~(t) I - k )  (5) 
k 

Schr6dinger's equation (with h = 1) implies 

~= - W f  +~O,  gk (6) 
k 

i~k = ( W +  cok) gk + ~b*f (7) 

where we have defined W - 2 J - h .  It is instructive first to examine the 

eigenvalue structure of H 1 for this (invariant) subspace. Replace iO/Ot by E, 

solve (7) for gk, substitute in (6), and divide by f to obtain the following 

equation for E: 

E+ w = Z  10kl2 
k E -  (W+ cok) 

(8) 

Suppose there are N discrete phonon levels and ~b is small. Take W > 0; this 

will be soon be seen to be the requirement that the critical droplet be 

greater than one. Graphical analysis of Eq. (8) reveals the following: There 
is a level with E slightly below - W. There are N -  1 levels falling between 
successive values of W +  coj. There is one level with E >  W +  coN. (We take 

COl < co2 < ""  < CON-) Ultimately, irreversibility will be obtained through a 
continuum limit for {cok}, but at this stage it is easier to work with discrete 

levels. In the course of deriving (8), one can also obtain the eigenfunctions 
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and one finds immediately that the eigenfunction for the eigenstate with 

E ~ - W  consists mainly of the state 1+ ) with O(q~) corrections for the 

I - k )  amplitudes. To lowest nontrivial order 

E-- - W - ~ 2 W + c o  k (9) 

To study the time dependence of I~(t)) ,  we use the Laplace transform 

f(s) = ~ dt e-S~f(t) [-and correspondingly for ~k(s)], so that (7) and (6) 

become 

O*f(s) 
~ ( s )  = (lo) 

is-- W-co  k 

f(s) = i Iis + W -  
I~12 7 -~ i 

i s -  W-cokJ =-D(s) 
(11) 

where we have used the initial conditions mentioned above, f ( 0 ) =  1, 

gk(0) = 0. Thus, 

Z fa + ico ds e st 

f ( t ) = 2 r c  , _ ~  D(s) (12) 

with e chosen to the right of all zeros of D(s), which in this case [-since D(s) 
vanishes for is �9 Spectrum of H ]  means e = any positive number. There are 

thus two classes of contributions to f,  that from the pole at is = Eo ~ - W  
and that from the other poles, is> W+co~. To estimate the relative 

amount of time spent in l - k )  states (for all k) we calculate the large-t 

behavior of 1 - If(t){ 2. For  small q~, large number 7 of co~, and W not too 

small, f will be given by the first contribution alone, since the other terms 

will cancel against each other. The magnitude of f can thus be obtained by 

looking at the residue of D l(s) at -lEo. To lowest nontrivial order of 

perturbation theory (second), we write 

D(s)--is + W -  ~ [~bk[: [is+ W -  2W-cok] -1 (13) 

so that the residue for the pole near is + W =  0 is given through 

D ( s ) ~ ( i s + W ) [ l + ~  (2W---~ok)2 j l ~ b ~ 1 2  ] 

7 Peculiarities in the time dependence can arise from subtle interplay of the {co}. For discus- 
sion of various such interplays, see refs. 14 and 15. The latter reference lists studies of 
Hamiltonians having the same general structure as our H1. 
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It follows that 

l _ t f l z ~ d ~  I~k[2 
(2 W +  (Dk) 2 

(14) 

This, incidentally, is the same answer one would get by looking at the 
norm squared of the coefficient of I + ) in the E ~ - W eigenfunction. 

The requirement that W =  2 J - h  > 0 arises in doing the integral (12). 
For W< 0 (actually, W +  a)l < 0) the root of D(s) associated with a large 
coefficient for 1+ ) is found within the spread of the co's. We will later (for 
the two spin-flip case) deal with this in detail, but for now we merely men- 
tion that this means that the spin-down configuration is of lower energy 
even for a single spin flip. Then Eq. (12) describes the decay from spin up 
to spin down and going to the continuum limit, the formula (x+_ i e ) - l =  
P(1/x)  g-i~a(x) (for e > 0) gives the lifetime (through i~6) and energy shift 
(through P). 

2.5. O n e / T w o  Phonons 

For each k, the state [ + k )  mixes with all states [ - k ' k " ) ,  as well as 
with other [ + k ' )  states. The general time-dependent state is 

]O(t)) =~ gk(t) l+k)  + ~, hkk,(t)[-kk') 
k k,  lc' 

(15) 

where we make the convention for the k, k' sum that each pair (including 
k = k') occurs just once, irrespective of order. The function hkk, is taken to 
be symmetric. Schr6dinger's equation implies 

i~k = ( - W+ cok) g~ + Z h**,Ok,(1 + akk') (16) 

i /~kk '=(W+ook+COk ' )hkk '+q~gk '+~ ,gk - - f kk , (bkgk ,  (17) 

We again perform a Laplace transform and impose the initial conditions 
gk(0) = 6kk0, hk~,(0) = 0. Equation (17) becomes 

[tkk,(S) = ~b~ gk" + 0 "  gk -- 6kk'q)* g~' (18) 
is -- ( W + c% + c% ) 

For the one/two-phonon case there is not the simplification that occurred 
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for the zero/one case and instead of the immediate solution we had earlier 
for f,  we find from (18) and the Laplace transform of (16) 

i6k~o= i s +  W--COk--~iS_(W+CO~+~Ok,). ~?k(S) 

O~ (19) 
i s -  ( w +  ~ + ~k,) 

We solve (19) by a perturbation expansion in the weak coupling ~b. To 
lowest order, gk( t )  = 6kko, SO that ~k(s) = akko/S to this same order. One can 
then obtain higher corrections to ~k(s) using Eq. (19). The energy level 
structure can be deduced in the same way. As before, we modify the 
Laplace transform equations to recover EO = HO results. Let is = E and 
drop the i6k~o on the left-hand side. The coefficient ~k(s) is replaced by 
6kko+ak  (ak0--0), so that we are perturbing about the state ]+k0) .  We 
also adopt the notation is' = E = e - W +  ~ok0. Equation (19) becomes 

O=Ic, AV(Dko__O.)k__ ~k~ g - [ ~ k ' [  2 
2 W +  COCo - co k - c%, 1 (akko + ak) 

~b,,(ae,k0 + ak,) (20) 
-~b~' ~ e -  2 W +  ink0- ink-  c~ ' 

To lowest order, the k = ko and k r ko equations imply, respectively, 

]q~k,I 2 (1 + ak'ko) 

a =  - ~  2 W + c o k  ' (21) 

ak = (22) 
(2W+ ook)(~o k - mko) 

Equation (21) should be compared to Eq. (9). In going to a continuum 
limit (number of phonon modes = N ~  ~ ) ,  ~b scales like 1 x/-N, while 
A ~ o ~ k + ~ - - ~ %  scales like 1/N. Thus, Eq. (22) has a sensible continuum 
limit. In passing, we note that the Hamiltonian H ' is bounded from below 
no matter how many phonons are present. This can be seen by writing 

x/~ok 
O" z 

(D e 
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Thus, if Z ]~bk]2/~o~ < co, the operator H l will be bounded from below by 

virtue of the positive definiteness of B*B for any B. 

The amount  of time spent with spin down for the one/two-phonon 

case is not substantially different from what it is for the zero/one case. The 

spin-down amplitude is bas ica l ly /~ , ,  and from Eq. (18) this is seen to be 

O((J/2W) (using is~ -W). Squaring this and summing will give an expres- 

sion very much like Eq. (14). 

3. Two-Spin Dynamics; Probability of Detection 

We next consider the dynamics of a pair of adjacent spins under the 

assumption that the two spins on either side of them are fixed and up. This 

will be the essential rate calculation because we are taking h large enough 

for the double spin flip to be an energy drop. Once the phonons carry away 

the energy of the exothermic transition, the two flipped spins will stay 

down. With them down, the decay of their neighbors to the down state is 

inevitable. We will later calculate the rate for this; we have already 

developed the machinery in our treatment of H 1. 

As the two spins we take numbers 1 and 2. We will take ]cl >> ]~b], so 

that during the period that the atom is nearby we will only consider the 

coupling of spin number 1 to its phonon bath via the c's. For  number 2, 

the ~b's are all there are. The duration T will be taken to be large. This 

calculation will later be adapted to the two-spin case using only the ~b's, as 

a check on false positives. The two-spin Hamiltonian is therefore 

H2= _jO-zlGz2+(_j+h)(Gzl +Gz2)+ ~ ~ ~kblkbtk* 
l = l , 2  k 

+ n zA + E +262  + 
k 

+ E (CkG +lblkO" , t +A ~- Ck a - - lb l ka - -A)  (23) 
k 

In our basis kets, labels of spin number 1 will be to the left of the semi- 

colon, spin number 2 to the right. The atomic state will not be indicated; 

it is in one-to-one correspondence with the spin state of number 1. If 

number 1 is up, the atom is excited, etc. We will consider the initial condi- 

tion 1 4 ( 0 ) ) =  1+; + ). The general state is 

I~(t))=f(t) I+; + ) + ~  [g,k(t)I-k; + )+g2k(t)I+;-k>l  
k 

+ ~ G~,(t)]-k; -k ' )  (24) 
k,k' 
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where in the last sum k and k' are summed independently [in contrast to 
our convention in Eq. (15) for identical phonons attached to the same 
spin]. The time-dependent Schr6dinger equation implies 

t f=  ( -  3 J +  2h + s  ~ (ck glk + ~bk g2k) (25) 
k 

i~1 k = (J-- ~-2 + ~Ok) gl~ + c~ f  + ~ ~k, Gkk, (26) 
k' 

ig,2, = ( J  + s + cog) g2k + ~ f  + ~ ck, Gk,~ (27) 
k' 

iGkk, (J--  2h - D +mk + c%,) Gkk, + * * = gl~q~k , + g2k, Ck (28) 

We will calculate the time dependence of ~/, but we remark that our 
manipulations can also be looked upon as the finding of the imaginary part 
of the energy (hence the decay rate) of the metastable quantum state with 
energy near - 3 J +  2h + s As before, we perform a Laplace transform 
(recall that T is assumed large) and use the initial conditions f ( 0 ) =  1, 
glk(0) = g2k(0)= Gkk,(0) =0.  From (28) we have 

with 

dkk.(S) dkk,(s) = ~l~(s) ~*, + ~2~'(s) c~' 

dkk,(S ) = is - -  J +  2h + (2 - cn k - o k ,  

Substitution in (26) and (27) yields 

D+k(S)  glk(S) = C~ (?(S) + E 
Ok. ~2k,(s)~ 

k' dkk ' (S)  J 

Dck(S ) g2k(S)=+~ (?(S)"~- k~ ' ck'dkk,(S )glk'(S!~ 

with 

(29) 

(30) 

(31) 

(32) 

D +k(S ) = is - -  J +  f2 - -  co k 

Dck(S )  = is - -  J - -  (2 - -  O k  

- ~ 1(&12/dkk,(S)  (33) 
k' 

- ~ kCk'12/dkk'(S) (34/ 
k' 

Note that D+~ and Dck are n o t  simply related by c ~  ~b, but involve dif- 
ferent signs for f2 as well. Since, as we have seen above, a single spin flip 
does not lower the energy, it is clear that the decay rate will be O ( c 2 ( f ) .  
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Therefore, it would be inadequate to drop the sums in (31) and (32) and 
substitute the result in (the Laplace transform of) Eq. (25). However, we 
can use (31) and (32) together to get the next level of accuracy in ~t~(s) by 
substituting the lowest order expressions back in (31) and (32). This yields 

c ~ f  [1 + Z dkkO-~k'JlCk']2 (35) D c k g l k  = * ~  

F Ick, I 2 
Dck g2k = r  L 1 + 2 dkk--~Ok'J (36) 

where we have suppressed the s argument. This implies that the Laplace 
transform o f f ( t )  is 

with 

j~(s) = i / ~ ( s )  (37) 

~ ( s ) = i s - ( - 3 J + 2 h + g 2 ) - ~ [ D c k  L k' dkk 'D ,k ,~  

+ 1r [1 + Ic '12 ] (38) 

If the coupling were turned off, ~ ( s )  would vanish for i s =  - 3 J +  
2h + Q and f ( t )  would be exp[ - i t (  - 3 J +  2h + s The coupling shifts the 
location of the zero and our interest is in the case in which the zero (in is)  

acquires an imaginary part. This will happen if one of the denominators d, 
D 0, or D C vanishes for positive co. For the single-spin dynamics above, that 
did not happen and the real energy shift [Eq. (21)] did not lead to an irre- 
versible transition. For the present two-spin case we will see that dkk,(s)  can 
vanish, thereby providing an imaginary part in the root is and with it an 
exponential decay in f; that decay or transition rate is precisely the prob- 
ability per unit time that the apparatus successfully notes the presence of 
the excited atom. For convenience we define 

z = is - ( - 3 J  + 2h + (2 ) (39) 

and rewrite 

dkk, = Z + A E - -  (co k + Oak, ) (40) 

D c k = Z - -  V o - - C O k - -  ~ 1 r  , 

D.K = Z --  V c --  o k --  ~ I Ck'12/dkk , 

(41) 

822/58/5-6-28 
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with 

AE = 4(h - J) + 2Q, V4 = 4 J -  2h - 2f2, Vc = 4 J -  2h (42) 

We assume all three of the above quantities are positive. For AE this 
follows from the assumption that the critical droplet size is less than two. 

In making perturbation theory arguments, we count equally powers of 
c or of ~b even though we will also take Ic[ >> I~bl. From (38) and our earlier 
remarks it is clear that z is second order. It is also useful to define zeroth- 
order versions of the denominators 

d~ D~ - - ( V ~ + o ) ~ ) ,  o _ = Ock----(Vc+c%) (43) 

Finally, we note that 

I 2~dO q 1 _ 1 z - Z  I~k,I  k , ' /  

D~-D~k 1 D~, J 
(44) 

to second order. If we rewrite Eq. (38) in terms of z, there will only be 
second-order and higher terms. Retaining only second and fourth orders 
yields 

~(~)=z l+Y~ ~ ( ~ 0 )  
k \ qlk 

_ ~ [ c ~ 2 [ l + ~ [ ~ b k , [ 2 / /  1 +~g-I ~-~b)} (45, 

where (c ~ ~b) means interchange c and ~b in all appearances in the parallel 

expression. 
As indicated above, we only wish to calculate the imaginary part of 

the root of ~(s). To leading order of perturbation theory (fourth in this 
case), this is given by the imaginary part of the right-hand side of (45). 
This imaginary part is the decay 8 or transition rate F. Thus 

]Ckl~ ~ Iq~k'12 / 1 (b)} 

=im  ( 1 q (46) 
k,i,,AE--cok--cok, V~+a)k Vc+O)k, 

8 The rate F is associated with the amplitude. Probabilities decay with rate 2/'. 
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The imaginary part comes from the singular denominator ( A E - c o k - c % ) .  

For closely spaced (essentially continuum) levels we have 

I 1 1 12 6 ( A E  -- co~ -- o & )  (47) r=~z  ~ levi = I~,1 ~ g~+co~ ~- gc+CO~ 
k,k' 

where, to avoid having to specify details of the k-space density of states, we 
continue to write Z~ for the integral over k. 

Equation (47) is consistent with the intuitive picture of the decay that 
we have offered. There is a 6-function for energy conservation, requiring 
that the energies of the created phonons sum to A E  (>0) .  The transition 
is also of order Ic[ 2 [~b[ 2. As we saw earlier, ]C] 2 o r  [~bt 2 represents the 
probability that a single spin will be down in an overall up environment. 
Equation (47) suggests that the transition takes place for times when both 

are down. 

3.1.  Fa lse  P o s i t i v e s  

The reliability of an apparatus depends on knowing the extent to 
which its signal is unambiguous. What is the probability of two adjacent 
spins flipping to the down position in the absence of an excited atom? The 
formula developed above, Eq. (47), will yield this quantity merely by 
setting c=~b and putting s to zero. It follows that the probability of 
false positives is O(L~ 4) since any pair of adjacent spins can initiate 
spontaneous nucleation. (The final flipped total spin state does not tell 
one where nucleation occurred.) Rarity of false positives then requires 
L04"~ c2~2r, where r is the number of excited atoms presented to the 
apparatus per unit time. Satisfying this condition seems to us physically 
reasonable, as the bubbles that we are trying to model do not involve 1026 
particles, but rather could easily be as small as 106 particles. Moreover, 
from our theoretical point of view we only need L large enough so that 
questions of irreversibility and wave function position uncertainty do not 
arise. Even L ~ 103 should accomplish this. Moreover, a slight variation of 
our model could further protect against false positives. The passing atom 
could interact with two spins, so that the false positive criterion would 
become L(~ 4 ~ c4r. Finally, we note that s can be adjusted so that with the 
outside atom the two-spin flip exceeds criticality, whereas without it, it 
does not. This option for avoidance of false positives is probably physically 
most relevant, but because it would complicate the backreaction calcula- 
tion below, we will not pursue it in detail. 
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3.2. Backreact ion- -Sp in  Unf l ipping 

Suppose the proximity of the atom induces the two-spin flip. There is 
still no macroscopic registration of the measurement (see next section) and 
we must allow for the possibility that the two spins will flip up again before 
the neighboring spins have turned over in their "inexorable" way. 

In the continuum limit the reversal does not occur. Therefore, the 

reversal rate necessarily depends on the detailed structure of the levels and 
coupling strengths. For the purposes of the present paper the continuum 
idealization is adequate, so the double unflipping is not a problem. 
Nevertheless, we will discuss briefly the mechanism of this process. 

Since the unflipping discussion forces us away from the continuum 
approximation, it will be convenient to consider the energy eigenfunction 
expansion of I~(t)). By replacing iO/Ot by E and taking f, gtk, etc., to be 
coefficients in a corresponding basis, Eqs. (25)-(28) become the energy- 
dependent Schr6dinger equation. With a similar replacement [ i s l E ,  
drop circumflex, drop f (0) ] ,  the Laplace transform equations can also 
be used for the energy eigenfunctions. We therefore have an expansion 

of the form [ ~ ( t ) ) = Z a n [ u , ) e x p ( - i E n )  with l u , ) = f ( " ) [ + ; + ) +  
Zk g]~)[-k; + ) +  .... The structure of the coefficients {f('),...} and {En} 
will provide both the decay and the unflipping. 

The key relation is Eq. (29). When ~kk'~(') is expressed in terms of g]~) 
and g~) there appears a denominator dkk,, which, as we saw in (40), is 
essentially AE-~o k -c~k,. Since this will nearly vanish [recall that we are 
no longer in the continuum limit and the solution for E (or z) will prevent 
exact vanishing] ~('~ -kk' can be large, despite its being reduced by a factor c 
or ~b relative to gl~ ). This means that when we express the initial state 
10(0)) = 1+; + ) as an eigenfunction expansion, the sum is not dominated 
by a single eigenfunction (as it would be if AE<0) ,  but is built of many; 
that is, the state 1+; + ) is a poor approximation to a time-independent 
state. Nevertheless, we must reconcile this with the fact that it is a good 
metastable state with a long lifetime l /F= 0(1/c202). What is happening is 
that I + ; + ) is expressed as a sum over many different eigenfunctions, but 
that they are close in energy. Initially they are all in phase and the lifetime 
is basically the time necessary for them to get out of phase and have the 
coefficients of their I + ; + ) term incoherently cancel. 

With this picture we can understand what is needed for the system to 
unflip. The phages must get lined up again. This is the quantum version of 
the Poincar6 recurrence (16'17) and is related to the theory of almost periodic 
functions. As indicated above, we do not propose to study this problem in 
the present paper, but one can immediately see that the details of {cok}, 
etc., will strongly influence the structure of the recurrences. 
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3.3. Registration of the Measurement; Falling Dominoes 

So far we have calculated the probability of a double spin-flip. This is 
irreversible, but it is not macroscopic. Our next step is to show how our 
having initially placed the system in a metastable state--in the statistical 
mechanics sense--allows the micro-macro promotion. 

The idea is simple. Once two spins are down, they will not come up 
again. Now their two immediate neighbors (numbers N and 2) are each in 
a background of one up spin and one down spin. For them, the nearest 
neighbor coupling J therefore cancels and from the standpoint of their 
single-spin dynamics all they feel is the field h. With h alone, their spin- 
down state has the lower energy and it is only a matter of time until they 
flip over and allow their phonon baths to carry off the energy. How much 
time? For this we can adapt our earlier single-spin dynamical calculation 
by setting J = 0 .  The denominator we must examine is D(s) of Eq. (13), 

D(s)=is  + W -  ~ [~bk] 2 [is+ W -  2W-cok]  (48) 

Recall that W was 2 J - h ,  so now with J replaced by 0, W is negative. It 
is also convenient to define 

Equation (48) becomes 

z = i s +  W = i s - h  (49) 

I~12 
D(s)= Z -  ~ z + 2h_o9 k (50) 

As for our earlier decay calculation, we note that z is O(]~bt 2). Furthermore, 

and this is why setting J = 0 makes a big change from our nondecay single- 
spin calculation, the denominator in the sum in (50) does vanish at 
appropriate k. As above, the decay rate 7 is given by the imaginary part of 
D and we have 

7 = ~r ~ I~bkl 2 6 ( 2 h  - ink) = • ]~b~l 2" (density of states factor) (51 )  

k 

where e)~ = 2h. The mean time for the entire ring of spins to turn over is 
therefore 

L/4~/ (52) 

This is a long time on the microscopic scale, but this fact is not a drawback 
to the operation of the apparatus. Once the irreversible double-spin flip has 
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occurred we can take our time about the registration process. Of course, if 
o n e  is building a cloud chamber and wants many rapid cycles of compres- 
sion and expansion, one will not want to wait too long. In this practical 
situation there are, however, two mitigating features. First, the "L" in (52) 
would become L ~/3 (where L is the number of atoms involved). Second, the 
critical droplets will start out somewhat larger, since the condensation will 
occur preferentially on relatively larger subcritical droplets. 

3.4. Isolated Spin Approx imat ion  

In our first calculation above we studied single-spin dynamics, specifi- 

cally the time evolution of one spin in a background L -  1 up spins. We 
extended this technique by later calculating the dynamics of two spins, 
taking their neighbors to be up. In this section we study the validity of this 
isolation technique. Specifically, we examine how the conclusions of the 
single-spin dynamics need to be modified when looked at from the perspec- 
tive of two-spin dynamics. 

For single-spin dynamics, starting from an initial state t+  ), we found 
[Eq. (10)] the coefficient of the Laplace transform of the I - k )  component 

to be 

t s - -  W - - c o  k 

with W = 2 J - h .  Moreover, to lowest order, the pole in is comes at 
is ~ - W ,  so that 

~k(s) ~ (~*f(s) /(  - 2 W -  ~o k) 

Let us look at the same question, allowing both spins number 1 and 
2 to be dynamical (two-spin dynamics). The two-spin calculation is adap- 
ted to this problem by setting c = ~ and s = 0. From Eq. (35) we have 

~, ,k (S )=iS_J_~- -~k  +O(( j2  ) 1 + E d~---~k: j 

In this case is ~ - 3 J +  2h so that 

glk(S) - 4 J +  2 h ~ k k +  O(~b 2) - ~ J  

The only substantial difference between ~ ( s )  and ~lk(s) is the factor 
1 + ~ 1~12/dD. Although this term is small in a perturbation sense, it is the 
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place where decay enters. Thus, to the extent that decay is absent or irrele- 
vant, the isolation technique is valid. Our calculations also implicitly 
involve a slight generalization of this conclusion: In our two-spin dynamics 
we calculate a decay rate, neglecting the fact that three-spin dynamics 
would give a small higher-order-three-spin decay process (apart from the 
two-spin dynamical decay arising from the additional nearest-neighbor 
pair). Because there is already decay for two spins, inclusion of the three- 
spin process will make no qualitative change and, as we indicated, little 
quantitative change. Therefore, this extended calculation has not been con- 
sidered in detail. By contrast, it was necessary to go from the one-spin to 

the two-spin case precisely because the qualitatively significant process of 
decay was thereby introduced. 

4. D I S C U S S I O N  

Our detector can be thought of as a small ferromagnetic ring at low 
temperature, with its spontaneous magnetization opposite to that of an 
external field. There is weak coupling between the individual spins in this 
magnet and the phonon bath of the substance within which this magnet is 
located. Spontaneous decay from the metastable state would therefore take 
a long time. An atom passes near one of the spins of the ferromagnet, and 
if the atom is in its excited state, it enhances the coupling of this spin to 
the phonon bath. With probability p = ( 1 -  e -2rr)  this will induce nuclea- 
tion of a critical droplet in the ring, where F is the decay rate calculated 

above [Eq. (47)] and T is the time the atom spends in the neighborhood 
of that spin. Once nucleated, the stable phase droplet grows to macroscopic 
size at a rate that is also calculated above. There is thus probability p of 
detection of the excited atom. The pointer for that detection is the total 
magnetization of the ring. The microscopic states of the two classes of 
pointer states (all spins up/all spins down) are nearly orthogonal, this 
property arising not only from the differences in spin state, but from the 
vastly different phonon states as well. (In our notation, the phonon bath 
acquires the macroscopic energy hL. One could also relate this to entropy 
change.) 

The state of the atom at the end of the measurement has been changed 
it is deexcited. In much of the literature on quantum measurement theory 

it has been convenient to assume that no change takes place in the 
measured system and to identify measurement and state preparation. That 
this is an idealization is discussed, for example, by Wigner. ~ This 
idealization is not incorporated in our model. 

For the apparatus initial conditions discussed in this paper, the state 
of apparatus-plus-system at the end of the measurement will be a 
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(coherent) superposition of macroscopically distinct states. Measurement 

theory problems associated with the loss (for example, by "wave-packet 

reduction") or avoidance (because of special initial conditions) of such 

states are not addressed in the present paper. It is of course our intention 

that our model will allow these issues to be studied in a relatively concrete 

fashion. 

In the Introduction we indicated that we sought to make a caricature 

of the formation of droplets in a cloud chamber. Calling our spin system 

a lattice gas would lead to semantic improvement, but would not provide 

what we feel is most seriously missing in our description: dynamical spatial 

coordinates. For  realistic cloud chambers the temperature is not close to 

zero, so that a full quantum description of the initial gas state, including 

position coordinates, becomes problematic. 

The introduction of finite temperature in our model should not present 

difficulty. We have shown that the properties of the 0/1-phonon state and 

the 1/2-phonon state are quite similar with respect to time spent (or frac- 

tion of amplitude) in the down-spin state. For finite temperature a statisti- 

cal average (for example, with weight e -~H) over exact microscopic 

apparatus states should therefore not alter our conclusions. The difference 

between our states and cloud chamber states is that the phase transition 

that we rely on persists 9 at zero temperature, allowing us to use simple 

microscopic apparatus states. 

Besides the absence of spatial coordinates, we have another idealiza- 

tion deserving comment. The number of spins in our ring L is large, but for 

various reasons should not be of order 10 26 (the reasons: false positives, 

finite temperature, and registration time). We do not consider this problem 

to be serious, since we can take L large enough so that microscopic rever- 

sibility and position uncertainty are no longer of concern. The flipping of 

our little ring magnet could then trigger other less sensitive devices and the 

signal amplified to the level of typewriters or cats. 

Although we indicated in the Introduction that we were aware of few 

papers in which specific apparatus models were constructed, there is sub- 
stantial literature on the general properties that an apparatus must have, 

density of states, ergodic properties, entropy production, etc. We mention, 

for example, the work of Daneri e t  al. ~2~ (reprinted in ref. 19). It will be 

interesting to see whether the model we have "constructed" conforms to 

these general descriptions. One feature of our model that will need elabora- 

tion for that purpose is the structure of the phonon bath, {e~}, {~b~}, {ck}, 

and density of states. In our discussion of backieactions we noted the 

9 Strictly speaking, it is not a matter of persisting at zero temperature; it only occurs at zero 
temperature. 
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importance of these properties, and many of the questions dealt with in the 
literature we cited have to do with irreversibility and ergodicity. It might 
be useful, for example, to carry the modeling process one step further and 
introduce the particles from which the phonon bath is abstracted. 

Another use to which our model could be put is the identification of 
pointer states and the determination of whether those states, together with, 
perhaps, additional degrees of freedom, act in the ways suggested by more 
general considerations, for example, the inducing of superselection rules. (21) 
Finally, Glauber (22) has proposed a model similar in spirit (and formalism) 
to our single-spin restricted Hamiltonian H1. He achieves amplification by 

introducing an inverted oscillator potential. This is not the same as what 
we have been doing. Even if one could effectively replace our background 
spins by an inverted parabola, there would be a small dimple on the top, 
representing the metastable state. 
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