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Summary

In this paper we consider how to assign treatment in a randomized experiment in which the

correlation among the outcomes is informed by a network available pre-intervention. Working

within the potential outcome causal framework, we develop a class of models that posit such a

correlation structure among the outcomes. We use these models to develop restricted randomiza-

tion strategies for allocating treatment optimally, by minimizing the mean squared error of the

estimated average treatment effect. Analytical decompositions of the mean squared error, due

both to the model and to the randomization distribution, provide insights into aspects of the opti-

mal designs. In particular, the analysis suggests new notions of balance based on specific network

quantities, in addition to classical covariate balance. The resulting balanced optimal restricted

randomization strategies are still design-unbiased when the model used to derive them does not

hold. We illustrate how the proposed treatment allocation strategies improve on allocations that

ignore the network structure.

Some key words: Causal inference; Degree distribution; Network balance; Network data; Optimal treatment allocation;

Randomized experiment; Rerandomization.

1. Introduction

The past decade has witnessed a surge of interest in causal analyses in the context of social

networks, social media platforms and online advertising (Christakis & Fowler, 2007; Aral et al.,

2009; Bakshy et al., 2011, 2012; Bond et al., 2012; Gui et al., 2015; Kim et al., 2015; Phan &

Airoldi, 2015; Cavusoglu et al., 2016). From a statistical perspective, the challenging aspect of

these applications is how to account for the presence of connections, or network data, observed

pre-intervention, possibly with uncertainty. While there is a well-developed literature on several

aspects of the statistical analysis of network data (Wasserman & Faust, 1994; Bickel & Chen, 2009;

Goldenberg et al., 2010; Kolaczyk & Csárdi, 2014), the literature on methods for experimentation

and causal analyses that use observed connections is still nascent (Rosenbaum, 2007; Hudgens

& Halloran, 2008; Toulis & Kao, 2013; Ogburn & VanderWeele, 2017).

The need to account for network connections in causal analyses has led scholars to focus on

two specific problem settings: network interference (Toulis & Kao, 2013; Ugander et al., 2013;
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850 G. W. Basse AND E. M. Airoldi

Aronow & Samii, 2017; Eckles et al., 2017), where the potential outcomes of unit i are functions

of the treatment assigned to unit i and of the treatments assigned to other units that are related to

unit i through the network; and network-correlated outcomes (McPherson et al., 2001; Shalizi &

Thomas, 2011; Manski, 2013), where the network informs the correlation among the potential

outcomes because the potential outcomes of unit i depend on its covariates, and the covariates of

units that are connected are more similar than the covariates of those that are not. In this paper,

we focus on the second setting, which has received less attention.

Restricted randomization as a way to increase the precision of estimates has a long tradition

(Yates, 1948; Youden, 1972; Simon, 1979; Bailey, 1983; Higham et al., 2015). The basic idea

is that some assignments are considered problematic and should be excluded; stratified random-

ization, for instance, implicitly excludes assignments for which certain covariates of interest are

unbalanced between the treatment arms. In networks, the challenge is to identify the features that

must be balanced, which makes it difficult to know how to restrict the randomization. Drawing

inspiration from the model-assisted survey sampling literature (e.g., Särndal et al., 2003), we pro-

pose a model-assisted approach to design. We posit a working model for the potential outcomes

specified conditionally on a network observed pre-intervention, and then restrict the randomiza-

tion to assignments for which the estimator of interest achieves a low mean squared error. The

class of models we propose leads to analytical expressions for the mean squared error that suggest

new notions of balance in terms of network statistics related to the degree distribution. We also

develop theoretical results showing that our model-assisted restricted randomization approach

maintains the design-unbiasedness of the difference-in-means estimator even when the model is

misspecified, and reduces its expected variance when the model holds.

2. Analytical insights for evaluating allocations

2·1. Causal inference set-up

We work within the potential outcomes framework (Rubin, 1974; Holland, 1986; Imbens &

Rubin, 2015). We consider a population of N units, a binary treatment, denoted by Zi = 1 if unit i

is assigned to treatment, and real-valued outcomes, denoted by Yi. The corresponding vectors are

denoted by Y and Z . We make the stable unit-treatment-value assumption, so the outcome of unit

i is a function only of the treatment assigned to it, Yi(Z) = Yi(Zi), thus excluding interference

(Rubin, 1974). We consider a finite population setting, where the potential outcomes Y (Z) are

unknown constant quantities, given Z . The only source of variation is how treatment is allocated

to units, which is done according to a distribution on the space of all binary vectors of length N ,

called the randomization distribution.

To illustrate model-assisted restricted randomization, we consider the average treatment effect

as the inferential target of interest, τ ∗ = N−1
∑N

i=1{Yi(1) − Yi(0)}, and the difference-in-means

estimator of the average treatment effect,

τ̂ (Y | Z) =

∑N
i=1 ZiYi

∑N
i=1 Zi

−

∑N
i=1(1 − Zi)Yi

∑N
i=1(1 − Zi)

. (1)

2·2. The normal-sum model

The model-assisted approach to experimental design requires a model, which is used to improve

the inferential properties of the difference-in-means estimator when the model holds. We posit a

model that depends on a network, which is available at the design stage.
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Design of experiments for network-correlated outcomes 851

Consider N units and an undirected network G among them or, equivalently, a binary adjacency

matrix A of size N × N with the added constraint that Aii = 1 for all i; we call A the extended

adjacency matrix. The neighbourhood of a unit i is defined as the index set Ni = {j : Aij = 1

or Aji = 1}. Consider the model

Xj ∼ N (µ, σ 2), (2)

Yi(0) | X ∼ N
(∑

j∈Ni
Xj, γ

2
)

, (3)

Yi(1) = Yi(0) + τ , (4)

where N (m, v) denotes the normal distribution with mean m and variance v. The network induces

correlation among the control potential outcomes because the mean of each Yi(0) is the sum of

the covariate values, Xj, of units j in a neighbourhood of unit i. The effect of treatment is additive.

Equations (2)–(4) define the normal-sum model. The implied model for the observed outcomes,

Y obs, is given in the Supplementary Material. We generalize this model in § 2·5 but will otherwise

focus on the normal-sum model for clarity in presenting the restricted randomization approach.

The normal-sum model provides a useful abstraction for exploring the problem of optimal

design of experiments in the presence of network-correlated outcomes. An illustration will help

to anchor the intuition. The normal-sum model arises naturally, for example, when considering

the time users spend on a social media platform. Consider the binary treatment Zi to be the

exposure to a new feature of the website designed to increase engagement and time spent online,

and let Yi(Zi) be the time spent online by user i when assigned to treatment Zi. The causal effect of

interest τ is then the effect of the new feature on the time spent online. Let us assume a constant,

additive treatment effect for simplicity. In the absence of network connections and in the absence

of treatment, Xi is the expected value of Yi(0) conditional on Xi. So Xi can be thought of as the

intrinsic propensity of user i to spend time on the website. The model then captures the fact that

the time spent on the website by user i increases with the number of his or her neighbours, with

their propensities to spend time on the website, and with the exposure to the new feature if the

treatment has an effect. The rest of the paper explores the implications of the normal-sum model

for designing optimal treatment allocation strategies.

2·3. Interpretation of the mean squared error for a fixed treatment allocation vector

We compute the mean squared error of the difference-in-means estimator according to the

normal-sum model for Y obs, defined as mse(τ̂ | Z) = E{(τ̂ − τ ∗)2 | Z} for a fixed treatment

allocation vector Z ; we call this quantity the conditional mean squared error. We have

mse(τ̂ | Z) = µ2{δN (Z)}2

︸ ︷︷ ︸

bias2

+ γ 2ω(Z)Tω(Z) + σ 2ω(Z)TATAω(Z)
︸ ︷︷ ︸

variance

.

We can identify desirable assignments by evaluating their conditional mean squared error. This

idea is the basis for the model-assisted restricted randomization strategies in § 3·2.

In the absence of specific constraints on the number of treated units, different treatment allo-

cation vectors will generally have a different number of treated and untreated units, defined as

N1 =
∑

i Zi and N0 =
∑

i(1 − Zi), respectively, both functions of Z . Then the bias term,

µδN = µ
(

N−1
1

∑

{i:Zi=1} |Ni| − N−1
0

∑

{i:Zi=0} |Ni|
)

, (5)

is proportional to the difference in the average neighbourhood sizes of treated and untreated units,

and measures a lack of balance between the two groups in terms of the average degree. A larger

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

/1
0
5
/4

/8
4
9
/5

0
6
6
7
9
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asy036#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asy036#supplementary-data
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value of the mean µ amplifies the contribution of this imbalance to the mean squared error. Since

the designer does not control µ, desirable treatment assignments minimize bias by balancing the

average neighbourhood size between treated and untreated units. The first variance term is

γ 2ωTω = γ 2
(

N−1
1 + N−1

0

)

, (6)

which is minimized when N1 = N0. This term penalizes the difference between the number of

treated and untreated units. A larger value of γ amplifies the contribution of this imbalance to the

mean squared error. This result is consistent with classical results on the optimality of balanced

randomization for estimating the average treatment effect in the absence of network-correlated

outcomes (e.g., Imbens & Rubin, 2015, Ch. 6). The second variance term involves features of

the network; it is

σ 2ωTATAω = (σ 2/N 2
1 )

∑

{i,j: Zi=Zj=1}

|Ni ∩ Nj| (7)

+ (σ 2/N 2
0 )

∑

{i,j: Zi=Zj=0}

|Ni ∩ Nj| (8)

− {2σ 2/(N1N0)}
∑

{i,j: Zi=1,Zj=0}

|Ni ∩ Nj|. (9)

The term on the right-hand side of (7) is proportional to the average number of shared neighbours

among pairs of units both assigned to the treatment group. The term (8) is proportional to the

average number of shared neighbours among pairs of units both assigned to the control group.

The term (9) is proportional to the average number of shared neighbours among pairs of units

where one is assigned to treatment and the other to control. Considering the signs of these three

factors, the second variance term may be minimized by assigning units with shared neighbours

to different groups, and by avoiding the assignment of entire clusters of units that are densely

connected to either treatment or control.

2·4. Interpretation of the mean squared error averaged over allocation vectors

Next, we compute the mean squared error of the difference-in-means estimator according

to the normal-sum model and the distribution on the allocation vectors implied by a complete

randomization strategy, which assigns equal probability to all of the treatment allocation vectors

Z for which the numbers of units in treatment and control are fixed at (N0, N1). We refer to this

quantity, mse(τ̂ ) = E[E{(τ̂ − τ ∗)2 | Z}], as the marginal mean squared error. It is

mse(τ̂ ) =
(

N−1
1 + N−1

0

)(

γ 2 + σ 2
)

(10)

+
(

N−1
1 + N−1

0

)
{

σ 2( ¯|N | − 1)
︸ ︷︷ ︸

C1

−
2σ 2

N (N − 1)

∑

i<j

|Ni ∩ Nj|

︸ ︷︷ ︸

C2

+
µ2N

N − 1
( ¯|N |2 − ¯|N |

2
)

︸ ︷︷ ︸

C3

}

·

The right-hand side of (10) is the mean squared error of the difference-in-means estimator due

to a complete randomization strategy in the absence of a network, since (γ 2 + σ 2) is the total

variance implied by the network-sum model. The three terms C1, C2 and C3 can be seen as

contributions to the variance due to the presence of network-correlated outcomes. The term C1
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Design of experiments for network-correlated outcomes 853

is proportional to the average degree of the nodes; thus networks with higher average degrees

will tend to yield higher mean squared errors, ceteris paribus. The term C2 is proportional to the

average number of shared neighbours among all pairs of nodes; thus networks that are locally

denser will tend to have lower mean squared error, ceteris paribus. The term C3 is proportional

to the variance of observed degrees; thus low variability in the degree of the nodes will lead to

lower mean squared error, ceteris paribus. This contribution need not be positive, because of term

C2, which summarizes average local density.

2·5. More general models of network-correlated potential outcomes

The normal-sum model introduced in § 2·2 is a special case of a more general model that

replaces (3) with the more general formulation

Yi(0) | X ∼ N
[

g{(Xj)j∈Ni}, γ
2
]

,

with regularity conditions on the function g which essentially ensure that for any subset of nodes

S ⊂ Ni, the conditional expectation E[g{(Xj)j∈Ni} | (Xj)j∈S] is well behaved. We detail the pos-

itivity, symmetry and monotonicity properties as well as the general form of the mean squared

error for this model in the Supplementary Material, and we show that the general form of the mean

squared error suggests that good designs seek to decrease the number of neighbours shared within

treatment groups and increase the number of units shared between treatment groups, while balanc-

ing the sizes of the groups and the distribution of neighbourhood sizes. These derivations indicate

that the network balance criteria the proposed restricted randomizations are based upon extend

well beyond the normal-sum model. Moreover, model-assisted strategies come with theoretical

guarantees that hold regardless of the validity of the model, as we show next.

3. Methodology and theory

3·1. Classical randomization and restricted randomization strategies

Randomization strategies are probability distributions on the set of binary vectors Z . Restricted

randomization strategies are probability distributions implied by discarding allocation vectors

Z ∈ Z according to a set of rules. According to a Bernoulli randomization strategy with param-

eter p ∈ (0, 1), each treatment allocation vector Z ∈ Z has individual treatments Zi drawn as

independent Bernoulli random variables with probability of success p. A completely randomized

design with parameters (N0, N1), where N0 + N1 = N , considers only treatment allocation vec-

tors Z ∈ Z such that
∑N

i=1 Zi = N1, and assigns equal probability to them. If N0 = N1 = N/2,

we refer to this as a balanced completely randomized design.

Restricted randomization strategies stem from the observation that when designing an exper-

iment, it is often clear how to evaluate whether a treatment allocation vector is undesirable. For

instance, when an allocation vector Z leads to statistical imbalance for one or more key covariates,

it leaves the door open to confounding even in the presence of randomization (Gosset, 1938).

Indeed, the most common form of restricted randomization is to discard treatment allocations

that lead to covariate imbalances (Lock-Morgan & Rubin, 2012).

3·2. Model-assisted restricted randomization strategies

We introduce four model-assisted designs, which differ in the degree of reliance on the model.

First, we consider balanced restricted randomization strategies, which discard treatment allocation

vectors where the number of treated units N1 differs from the number of untreated units N0, or
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differs by more than 1 when N is odd. This strategy aims at minimizing the contribution of the

total variance to the conditional mean squared error, according to (6).

Second, we introduce unbiased restricted randomization strategies, which discard treatment

allocation vectors where the average number of neighbours for treated units differs from the aver-

age number of neighbours for untreated units. This strategy aims at minimizing the contribution

of the bias to the conditional mean squared error, as suggested by the discussion of (5).

Third, we introduce optimal restricted randomization strategies, which favour treatment alloca-

tion vectors that minimize the average number of shared neighbours among pairs of treated units,

according to (7), minimize the average number of shared neighbours among pairs of untreated

units, according to (8), and maximize the average number of shared neighbours among pairs of

units one of which is treated and the other untreated, according to (9).

Let Z = {0, 1}N be the set of all possible treatment allocation vectors on N units. Formally,

we can define sets of allocations corresponding to the restricted randomizations defined above:

Zb = {Z ∈ Z : N1 − N0 = 0}, (11)

Zu = {Z ∈ Z : N−1
1

∑

{i:Zi=1} |Ni| − N−1
0

∑

{i:Zi=0} |Ni| = 0}, (12)

Zo = {Z ∈ Z : mse(τ̂ | Z) � qmse
α }, (13)

where qmse
α is the α quantile of the distribution of the conditional mean squared error. These

subsets of assignments depend on network statistics that the normal-sum model suggests as

relevant for computing the conditional mean squared error, discussed in § 2·3.

The rest of the paper focuses on the first three model-assisted strategies: balanced restricted

randomization, which assigns equal probability to all Z ∈ Zb; balanced unbiased restricted

randomization, which assigns equal probability to all Z ∈ Zb ∩ Zu; and balanced unbiased

optimal restricted randomization, which assigns equal probability to all Z ∈ Zb ∩ Zu ∩ Zo.

The fourth model-assisted strategy, which we refer to as unconstrained optimal restricted

randomization, aims to trade off small increases in bias for significant reductions in variance. It

assigns equal probability to all Z ∈ Zmin, defined as

Zmin = {Z ∈ Z : arg min mse(τ̂ | Z)}. (14)

The set Zmin is usually either a singleton or a set of small cardinality. This makes it challenging

to perform randomization-based inference using this design; in particular, the approach proposed

in § 3·5 is often unfeasible in practice. This design is largely of theoretical interest.

3·3. Model-based optimal treatment allocation strategies

The model-assisted strategies in § 3·2 use a model for the outcomes to select allocations that

improve properties of the difference-in-means estimator. The natural next step is to use the model

to derive a better estimator for the average treatment effect, replacing for instance the difference-

in-means estimator with the maximum likelihood estimator of τ under the normal-sum model.

The estimator τ̂mle and its conditional mean squared error are derived in the Supplementary Mate-

rial. The optimal maximum likelihood design is then the model-based restricted randomization

strategy that assigns equal probability to all Z ∈ Zmle, defined as

Zmle = {Z ∈ Z : arg min mse(τ̂mle | Z)}. (15)

In the Supplementary Material, we show that the maximum likelihood estimator for τ is not

robust with respect to misspecification of the model or the network, unlike the model-assisted

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

/1
0
5
/4

/8
4
9
/5

0
6
6
7
9
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asy036#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asy036#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asy036#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asy036#supplementary-data


Design of experiments for network-correlated outcomes 855

restricted randomization designs. When evaluating the performance of model-based strategies,

we fix parameters µ, σ and γ at their true values and treat τ as the only unknown parameter.

3·4. Restricted randomizations via rerandomization

A general approach to sampling from arbitrary restricted randomization designs, referred to

as rerandomization, has recently been formalized by Lock-Morgan & Rubin (2012). Let φ be a

binary function such that assignment Z belongs to the restricted randomization set if and only

if φ(Z) = 1. A simple way to sample from the restricted randomization design is via rejection

sampling: draw an assignment Z from the original design, and then keep the assignment if

φ(Z) = 1, or reject it if φ(Z) = 0. In our setting, the restricted sets in (11)–(13) can be defined

in terms of different functions φ. Denote the indicator function by I (·); then

φb(Z) = I
{∑N

i=1 Zi =
∑N

i=1(1 − Zi)
}

,

φu(Z) = I
{

µδN (Z) = 0
}

,

φo(Z) = I
{

mse(τ̂ | Z) � qmse
α

}

.

Thus rerandomization can be used to sample from the restricted randomization designs we pro-

posed. It is particularly useful when performing exact tests and computing confidence intervals,

as we show next.

3·5. Inference via inversion of a sequence of exact Fisher tests

There are traditionally three types of confidence interval in randomization-based inference:

Neyman intervals, bootstrap intervals, and Fisher intervals. Neyman intervals are usually obtained

using an asymptotic normal approximation to the distribution of the difference-in-means estimator

(Imbens & Rubin, 2015, Ch. 6). This approach works well for simple designs for which the

asymptotic variance can be estimated, but is challenging with more complicated designs. Li et al.

(2017) proposed an asymptotic theory of rerandomization. Unfortunately, the asymptotic regime

considered in that paper is not compatible with our setting: it requires the number of covariates

to be fixed in the asymptotic regime, whereas in our case the quantities that are analogous to

covariates include the number of neighbours shared by each pair of units, which grows with

the number of units in the asymptotic regimes of interest; it also requires the constraints to be

a function only of the vector of differences in means between treated and control units for the

observed covariates, and of the covariance matrix of that vector, which does not hold in our case.

Bootstrap intervals are difficult to implement since the correlation structure of the outcomes may

be complex.

Instead, we propose using Fisher intervals, which are obtained by inverting a sequence of

Fisher exact tests (e.g., Rosenbaum, 2002). This can be accomplished by rerandomization (Lock-

Morgan & Rubin, 2012, § 2.2) but with the proposed restricted randomization distributions as

the permutation distributions.

We illustrate by simulation the potential gains from Fisher intervals based on restricted ran-

domization. For a fixed network of 500 nodes, we generated 200 realizations of the potential

outcomes according to the normal-sum model, as well as 200 observed assignments. For each

realization, we computed Fisher confidence intervals based on balanced optimal restricted ran-

domization, balanced unbiased restricted randomization, and balanced complete randomization,

with a nominal test size of α = 5%. The intervals based on balanced optimal restricted ran-

domization have a median length of 5·5 with 90% interquantile range [5·1, 5·7]; those based on

balanced unbiased restricted randomization have a median length of 5·7 with 90% interquantile
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856 G. W. Basse AND E. M. Airoldi

range [5·4, 5·9]. In contrast, the intervals based on balanced complete randomization have median

length 6·5 with 90% interquantile range [6·0, 6·6]. The coverage for all three methods is 95%,

as expected. These results suggest that restricted randomization inference reduces the length of

the intervals while maintaining nominal coverage. More details are given in the Supplementary

Material.

3·6. Theory

Model-assisted designs have desirable inferential properties even when the model they rely

on for evaluating treatment allocations is wrong. We show that the difference-in-means estimator

is design-unbiased (Särndal et al., 2003) for the restricted randomization strategies developed in

§ 3·2.

Definition 1 (Design unbiasedness). An estimator τ̂ is unbiased with respect to a distribution

on Z , typically referred to as a design on Z , if EZ(τ̂ − τ) = 0.

The main result is the following.

Theorem 1. The difference-in-means estimator τ̂ defined in (1) is an unbiased estimator of

the average treatment effect with respect to the following distributions:

(i) the uniform distribution on Zb, which defines the balanced design;

(ii) the uniform distribution on Zb ∩ Zu, which defines the balanced unbiased design;

(iii) the uniform distribution on Zb ∩ Zo, which defines the balanced optimal design;

(iv) the uniform distribution on Zb ∩ Zu ∩ Zo, which defines the balanced unbiased optimal

design.

As a consequence of design-unbiasedness and of the increasingly nested supports, we can

compare variances of τ̂ implied by the designs in Theorem 1, in expectation.

Corollary 1. The estimator τ̂ defined in (1) satisfies

E
{

varZb∩Zo(τ̂ | Y )
}

� E
{

varZb(τ̂ | Y )
}

.

Similar inequalities can be derived for any pair of nested designs in Theorem 1. These results

are based on symmetry arguments, which is why Zb is always part of the support of designs that

make the difference-in-means estimator unbiased. This notion of symmetry is made precise in

the following lemma.

Lemma 1. For Z in Zb, τ̂ (1 − Z) = 2τ − τ̂ (Z).

As a consequence, if we required the unconstrained optimal design to be balanced by restricting

its support to Zb ∩ Zmin, we would recover design-unbiasedness for the difference-in-means

estimator. However, we do not consider balanced unconstrained optimal designs.

4. Discussion

The idea behind model-assisted design is fairly general, two key elements being the estimator

and the model. The theoretical guarantees in § 3·6 are limited to estimators satisfying the sym-

metry condition of Lemma 1, and to the model family introduced in § 2·5. Extending the theory

to a larger class of estimators and models is conceptually feasible, although it would often lead

to complex expressions for the mean squared error and hard-to-interpret balance criteria.
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The designs presented in (14) and (15) can be seen as extreme versions of the model-assisted

approach, perhaps closer in spirit to the optimal model-based design literature (Kiefer, 1959).

However, the mean squared errors minimized in the model-based and model-assisted design

of experiments are associated with different estimators. Randomization inference based on the

restricted distributions that the designs in (14) and (15) imply is often impractical, since the

sets Zmle and Zmin are generally too small. Moreover, even when feasible, inference based on

these designs relies heavily on model-induced constraints, by requiring stringent balance of terms

appearing in the conditional mean squared error, and is in general not robust with respect to model

misspecification.

In practice, there are often additional issues to consider, which we have ignored for simplicity of

exposition. Covariates will have to be taken into account, and the parameters µ, σ 2 and γ will need

to be specified or estimated. One option is to specify point priors (Box & Lucas, 1959); another

option is to specify full priors and work with the integrated mean squared error. In both situations,

historical data and pilot studies could be used to calibrate these priors, and are recommended for

optimal design in practice (Kim et al., 2015). Our theory for a more general model of network-

correlated outcomes, as well as simulation studies, both detailed in the Supplementary Material,

show that the efficiency gains one can expect to achieve with model-assisted design of experiments

are robust with respect to misspecification.

This paper has introduced model-assisted design of network experiments and illustrated its

use in a simple setting. Although the model in § 2·5 is fairly general, it focuses on estimating the

average treatment effect in the presence of network-correlated outcomes and homophily, ignor-

ing other phenomena of interest, including network interference, peer influence and contagion.

Developing model-assisted design strategies for estimating other causal effects in more compli-

cated settings, such as the presence of network interference and confounding due to homophily,

is one of the directions we are currently pursuing.
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