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Abstract. This paper presents the set of plane-parallel model atmosphere equations for a very hot neutron star (X-ray burst
source). The model equations assume both hydrostatic and radiative equilibrium, and the equation of state of an ideal gas in local
thermodynamic equilibrium (LTE). The equation of radiative transfer includes terms describing Compton scattering of photons
on free electrons in fully relativistic thermal motion, for photon energies approaching me c2. Model equations take into account
many bound-free and free-free energy-dependent opacities of hydrogen, helium, and the iron ions, and also a dozen bound-
bound opacities for the highest ions of iron. We solve model equations by partial linearisation and the technique of variable
Eddington factors. Large grid of H-He-Fe model atmospheres of X-ray burst sources has been computed for 107 ≤ Teff ≤
3× 107 K, a wide range of surface gravity, and various iron abundances. We demonstrate that the spectra of X-ray bursters with
iron present in the accreting matter differ significantly from pure H-He spectra (published in an earlier paper), and also from
blackbody spectra. Comptonized spectra with significant iron abundance are generally closer to blackbody spectra than spectra
of H-He atmospheres. The ratio of color to effective temperatures in our grid always remains in the range 1.2 < Tc/Teff < 1.85.
The present grid of model atmospheres and theoretical X-ray spectra will be used to determine the effective temperatures, radii
and M/R ratios of bursting neutron stars from observational data.

Key words. radiative transfer – stars: atmospheres – stars: neutron – X-rays: bursts – stars: magnetic fields –
stars: fundamental parameters

1. Introduction

X-ray bursters were discovered by Grindlay et al. (1976), and
Belian et al. (1976). These X-ray sources are neutron stars in in-
teracting binaries. Very small mass functions and short orbital
periods indicate that the secondary star has low mass (Stella
et al. 1987; Chakrabarty & Morgan 1998). Periodic pulsations
have not been detected in the light curves of the great majority
of X-ray burst sources, and this has been used as an argument
that the surface magnetic field of a neutron star is weak (Joss
& Li 1980)1. We note that the spectrum of a type I X-ray burst
becomes softer during the decay of the burst, and that such a
softening is the signature of this type of events.

X-ray bursts are very energetic events. The estimated en-
ergy released during a single burst is typically ∼1039 erg. The
light curve of a burst is characterized by a rise time of ∼1 s and
a decay time of ∼3–100 s. X-ray bursts from a given source

1 Pulsations were observed in SAX J1808.4-3658, but other features
(e.g. kHz QPO) suggested that the magnetic field is relatively weak.
Recently at least 4 accreting millisecond pulsars have been detected,
and all are objects with weak magnetic fields.

are recurrent events, but are not strictly periodic. The intervals
between bursts are typically in the range of ∼104−105 s, but
sometimes a burster undergoes inactive phases lasting weeks
or even months (see review articles by Joss & Rappaport 1984;
Lewin et al. 1993).

The origin of an X-ray burst is a thermonuclear flash in
freshly accreted matter on the neutron-star surface. This idea
was proposed by Woosley & Taam (1976) and Maraschi &
Cavaliere (1977). This model explains quite well many of the
global features of X-ray bursters, including energetics, tempo-
ral structure and spectral behavior of an average X-ray burst
source (Joss 1977, 1978; Ayasli & Joss 1982).

Neutron star spectra were initially assumed to be perfect
blackbodies. This assumption, however, is not valid for any re-
alistic stellar atmosphere. For the case at hand, significant dis-
tortions from a simple blackbody spectrum result from radia-
tive transfer through the neutron-star atmosphere, because the
radiative opacity is dominated by scattering on free electrons
(Madej 1974; Czerny & Sztajno 1983). In this case the outgo-
ing X-ray spectra are shifted towards higher energies and the
peak X-ray flux is shifted in the same direction both for
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coherent (Thomson) and incoherent (Compton) scattering.
There are two reasons for this effect. First, the free-free absorp-
tion coefficient in the atmosphere of a hot neutron star varies
with frequency as ν−3 (for the opacity by heavier elements this
relation is flat), and this causes a redistribution of radiation to-
wards higher energies. Second, the presence of photon scatter-
ing causes an additional shift of the outgoing flux in the same
direction. The latter effect results from the shift of the ther-
malization depth to deeper (hotter) layers in the atmosphere. In
other words, in the scattering atmosphere of a neutron star, pho-
tons are created by thermal processes below the photosphere,
where the local temperature T is much higher than the effective
temperature Teff , and where the peak of the emission spectrum
is shifted to higher energies.

An exact description of Compton scattering (Sampson
1959; Pomraning 1973; Madej 1989, 1991a; Psaltis & Lamb
1997; Psaltis 2001) is very important for the accurate deter-
mination of basic neutron star parameters in X-ray bursters
by use of fitting procedures. For this reason many authors
have computed models of neutron star atmospheres with var-
ious degrees of sophistication in the treatment of Compton
scattering. The influence of Compton scattering on the atmo-
spheres of X-ray bursters has been discussed in several pa-
pers (see e.g. Ebisuzaki et al. 1984; and Foster et al. 1986).
Consistent models of the atmosphere with Compton scattering
have been presented by London et al. (1986), Ebisuzaki (1987),
and Ross & Fabian (1993). In these papers the authors utilised
the Kompaneets approximation for the description of Compton
scattering.

We also note the works by Babul & Paczyński (1987),
Joss & Melia (1987), Zavlin & Shibanov (1991a,b) and Pavlov
et al. (1991), who computed semianalytic model atmospheres
and X-ray spectra of bursting neutron stars with luminosities
approaching the Eddington limit. Most of these papers pre-
dicted the basic qualitative features of Comptonised model at-
mospheres and spectra, such as the shift between color and ef-
fective (or blackbody) temperatures. Another important feature
found by these authors is the existence of a flux excess at low
X-ray energies in the Comptonized emergent spectra of models
with luminosities approaching the Eddington limit.

Recently, papers with more general descriptions of
Compton scattering were published by Madej (1991a,b), Madej
& Różańska (2000a,b), Joss & Madej (2001), and Madej et al.
(2004). The equation of transfer assumed in the latter papers
allows for a large energy exchange beetwen photons and elec-
trons, and therefore enables one to compute Compton scatter-
ing of photons with large initial energies, as well as the cor-
responding redistribution of photon energies during scattering.
However, in these works the linear polarization of radiation was
not considered, and the differential Compton scattering coeffi-
cient was averaged over scattering angles.

The present paper presents model atmospheres and spectra
that will be used in the future for the quantitative interpretation
of the observed X-ray spectra of bursting neutron stars. This pa-
per is organised in the following manner: Sect. 2 presents the
basic assumptions and equations of the model atmosphere with
Compton scattering taken into account. Section 3 presents our
computations of model atmospheres containing iron and the

resultant theoretical X-ray spectra, and compares the results
with the H-He models of our previous paper (Madej et al.
2004). Section 4 presents a summary and conclusions.

2. Our models – assumptions and equations

2.1. Assumptions

We formulate the set of model neutron-star atmosphere equa-
tions assuming:

– plane-parallel geometry for the atmosphere;
– local thermodynamical equilibrium and the equation of

state of an ideal gas;
– radiative and hydrostatic equilibrium;
– zero magnetic field;
– no neutron-star rotation.

The equation of transfer includes free-free and bound-free ab-
sorption from all ions of hydrogen, helium and iron, as well
as Compton scattering terms. The latter allow us to trace
scattering off electrons with relativistic thermal motion, and
with initial photon energies exceeding the electron rest mass.
Moreover, the opacity of 10 spectral lines of highly ionised iron
was included in our calculations. All these lines belong to the
fundamental series of helium-like and hydrogen-like iron, and
they fall in the energy range 6.7–9.0 keV, where most of the ra-
diative energy of an X-ray burster is emitted. The total number
of considered lines was chosen arbitrarily.

We are aware that the assumed chemical composition prob-
ably does not correspond to the atmosphere of a real X-ray
burster. The composition of both the freshly accreted matter
and the material processed during thermonuclear flashes in the
stellar envelope will be rich of CNO and a variety of heavier
elements. In our models, however, iron represents the average
“metal”, serving as the contributor of free electrons and the
strong additional continuum free-free opacities. In this way we
investigate the influence of both of these agents on the model
atmospheres and the Comptonisation of the outgoing spectra,
no matter what specific heavy elements may be the source of
these effects in a real X-ray burster. We are then able to com-
pare the resultant spectra with the spectra of pure H-He atmo-
spheres (Madej et al. 2004).

Ionization equilibrium in the model was determined in the
following manner. For each discrete standard optical depth
level τi and the corresponding values of temperature T and gas
pressure Pg, we have guessed the value of electron pressure Pe

and then determined trial populations of all possible ionization
states by solving the set of Saha equations for each element.
Ionization populations computed in this way determine new
values of electron density Ne, electron pressure Pe, and the re-
sulting gas pressure Pst

g = Pst
g (Pe, T ) = (Nat + Ne) kT (ideal gas

approximation). This procedure was iterated until Pst
g obtained

in the above manner approached Pg with a relative accuracy
better than 10−5.

The energy-dependent absorption κν in our model atmo-
sphere code, ATM21, is the sum of many agents. First, we al-
ways compute bound-free opacities from the 9 lowest levels
of hydrogen, the 30 lowest levels of neutral helium, and the
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10 lowest levels of singly ionized helium. Second, in this work
bound-free opacities of all existing iron ions from the ground
level were computed following Verner & Yakovlev (1995), who
have published formulae fitting opacities of arbitrary elements
and ions with atomic number Z ≤ 30, stored in the Opacity
Project database, see Seaton (1987). Third, free-free opacities
of all existing ions were computed using the standard equations
from Mihalas (1978).

General relativistic effects, such as the gravitational redshift
of radiation and the bending of photon trajectories in strong
gravitional field were not included in our equations. See Madej
et al. (2004) for a discussion of some of the effects of general
relativity on the emergent spectra.

The atmosphere of a neutron star with Teff ≥ 107 K is geo-
metrically very thin, usually of the order of 1–10 m (see Madej
1991b), except cases of the lowest values, g, for gravitational
acceleration at the neutron star surface, when the model at-
mosphere approaches the critical gravity gcr. As g approaches
gcr, the acceleration exerted on the atmosphere by the radi-
ation field balances the downward gravitational acceleration,
and the atmosphere expands to infinity. For higher values of g,
the ratio of the height of the atmosphere to the neutron- star ra-
dius is much smaller than unity. In this case the assumption of
plane-parallel structure for the atmosphere is fully acceptable.
The existence of radiative equilibrium implies that the radiation
field is the only means of energy transport, and both convection
and thermal conductivity can be neglected. Magnetic fields in
X-ray bursts sources are relatively weak, and are in the range
107−109 G (Joss & Li 1980; Lewin et al. 1995; Miller et al.
1998). Consequently, the magnetic field is unable to modify
the continuum and line opacities.

Our model equations describe the transfer of radiation sub-
ject to the constraints of hydrostatic and radiative equilibrium.
We assume the equation of state of an ideal gas in local thermo-
dynamic equilibrium (LTE), so that all occupation numbers of
bound and free states, opacities and emissivities are the same
as their thermal equilibrium values at the local temperature T
and density ρ throughout the entire atmosphere. However, in
our model atmospheres the equation of transfer is dominated
by the Compton scattering terms. This means explicitly that
the equation of transfer distinctly remains in non-LTE.

2.2. Model equations

The equation of transfer with Compton scattering terms is as
follows:

µ
∂Iν(z, µ)
ρ ∂z

= κ′ν
(
1 − e−hν/kT

)
(Bν − Iν) (1)

+

(
1 +

c2

2hν3
Iν

) ∮

ω′

dω′

4π

∫ ∞

0
dν′
ν

ν′
σ

(
ν′ → ν, n · n′) Iν′

−Iν

∮

ω′

dω′

4π

∫ ∞

0
dν′σ

(
ν→ ν′, n · n′)

(
1 +

c2

2hν′3
Iν′

)
,

where Bν is the Planck function, and Iν and Jν denote spe-
cific intensity and mean intensity of radiation, respectively.
Parameter κ′ν denotes the true absorption coefficient without
correction for induced emission, whereas κν = κ′ν (1 − e−hν/kT )

will be used later as the same coefficient corrected for induced
emission. Variable z denotes geometrical depth, and µ is the
cosine of the zenithal angle (Madej 1991a). The variable

σ
(
ν→ ν′, n · n′) = σν φ (ν, ν′, n · n′) (2)

denotes the differential cross section of Compton scattering,
where the redistribution function φ(ν, ν′, n · n′) is normalised
to unity:
∮

ω′

dω′

4π

∫ ∞

0
dν′φ

(
ν, ν′, n · n′) = 1. (3)

There exists the universal relation

σ
(
ν→ ν′, n · n′) ν2e−hν/kT = σ

(
ν′ → ν, n′ · n) ν′2e−hν′/kT , (4)

which results from the detailed balancing of Compton scatter-
ing in thermodynamic equilibrium (cf. Pomraning 1973).

The differential cross section σ(ν → ν′, n · n′) has been
computed here following Guilbert (1981). Unfortunately, the
set of the corresponding equations is very complex and cannot
be presented explicitly here.

We can integrate φ(ν, ν′, n · n′) over the solid angles ω′, and
obtain the zeroth moment of the redistribution function:

Φ(ν, ν′) =
∮

dω′

4π
φ
(
ν, ν′, n · n′) . (5)

The equation of radiative transfer, Eq. (1), can be transformed
to a useful form using the following approximations. First, we
replace the redistribution function φ(ν, ν′, n · n′) by its zeroth
moment Φ(ν, ν′). Second, the specific intensity of radiation Iν
in both stimulated scattering terms was replaced by the mean
intensity Jν. Then, we define two new Compton redistribution
functions:

Φ1
(
ν, ν′

)
=

(
1 +

c2

2hν′ 3
Jν′

)
Φ(ν, ν′), (6)

Φ2
(
ν, ν′

)
=

(
1 +

c2

2hν3
Jν

) (
ν

ν′
)3

exp

[
− h(ν − ν′)

kT

]
Φ

(
ν, ν′

)
. (7)

Third, we arbitrarily assume that the angular integral of σ(ν′ →
ν, n · n′) Iν′ in Eq. (1) can be approximated by the product of
two corresponding angular integrals of σ(ν′ → ν, n· n′) and Iν′ .
Equation (1) changes to

µ
∂Jν
ρ ∂z

= κν (Bν − Iν) − σν Iν

∫ ∞

0
Φ1

(
ν, ν′

)
dν′

+σν

∫ ∞

0
Jν′ Φ2

(
ν, ν′

)
dν′. (8)

The equation of transfer can be written on the monochromatic
optical depth scale, dτν = − (κν+σν) ρ dz. After simple algebra
we obtain

µ
∂Iν
∂τν
= Iν − εν Bν − (1 − εν) Jν

+ (1 − εν) Jν

∫ ∞

0
Φ1

(
ν, ν′

)
dν′

− (1 − εν)
∫ ∞

0
Jν′ Φ2

(
ν, ν′

)
dν′, (9)
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where εν = κν/(κν + σν) is the ratio of true absorption to the
total opacity coefficients, and Compton scattering is described
by the redistribution functions Φ1(ν, ν′) and Φ2(ν, ν′).

Following the standard approach we obtain the zeroth and
first moments of the equation of transfer in the following form:

dKν
dτν
= Hν (10)

dHν
dτν
= εν (Jν − Bν) + (1 − εν) Jν

∫ ∞

0
dν′Φ1(ν, ν′)

− (1 − εν)
∫ ∞

0
dν′Φ2(ν, ν′) Jν′ . (11)

Combining both the above equations we obtain the second or-
der differential equation of transfer

ην
d
dτ

(
ην

d
dτ

( fνJν)

)
= εν

(
Jν − B∗ν

)

+ (1 − εν) Jν

∫ ∞

0
dν′ Φ∗1(ν, ν′)

− (1 − εν)
∫ ∞

0
dν′Φ∗2(ν, ν′) Jν′ (12)

where ην = (κν + σν)/(κ + σ)std, fν = Kν/Jν is the variable
Eddington factor, and τ denotes the standard optical depth. The
latter is the monochromatic optical depth computed at the fixed
(standard) wavelength.

Terms with an asterisk are calculated at the unknown tem-
perature at which the equation of radiative equilibrium is pre-
cisely fulfiled. Since we seek this temperature, we make a lin-
earization of the three following functions, expanding them in
a Taylor series with respect to temperature

B∗ν(T ) = Bν(T ) + ∆T

(
∂Bν
∂T

)

τ

, (13)

Φ∗1(ν, ν′) = Φ1(ν, ν′) + ∆T

(
∂Φ1

∂T

)

τ

, (14)

Φ∗2(ν, ν′) = Φ2(ν, ν′) + ∆T

(
∂Φ2

∂T

)

τ

, (15)

where ∆T = T ∗ − T . The second and higher order derivatives
were neglected in the above expansions.

2.3. Radiative equilibrium

The equation of radiative equilibrium requires that

∫ ∞

0
Hν dν =

σRT 4
eff

4π
· (16)

Differentiating the above equation with respect to τ, and using
Eq. (11) yields the useful equation of radiative equilibrium

0 =
∫ ∞

0
dν ηνεν

(
Jν − B∗ν

)

+

∫ ∞

0
dν (1 − εν) Jν

∫ ∞

0
dν′Φ∗1(ν, ν′)

−
∫ ∞

0
dν ην (1 − εν)

∫ ∞

0
dν′Φ∗2(ν, ν′)Jν′ . (17)

The above equation is linearised according to the procedure de-
scribed in Sect. 2.2. After that we obtain the temperature cor-
rections in the form:

∆T =

∫ ∞
0

dν ενην (Jν − Bν) + L(τ)
∫ ∞

0
dν ενην (∂Bν/∂T ) − L′(τ)

(18)

where functions L(τ) and L′(τ) are defined as follows:

L(τ) =
∫ ∞

0
dν (Jν − Bν)

∫ ∞

0
dν′Φ1(ν, ν′)

×
[
ην(1 − εν) − ην′ (1 − εν′ )

(
ν′

ν

)]
(19)

L′(τ) =
∫ ∞

0
dν

[
ην(1 − εν)Jν

∫ ∞

0
dν′
∂Φ1

∂T

−ην(1 − εν)
∫ ∞

0
dν′ Jν′

∂Φ2

∂T

]
· (20)

2.4. Hydrostatic equilibrium

Our model assumes also the equation of hydrostatic equilib-
rium, since we investigate static atmospheres. The condition of
hydrostatic equilibrium can be written in the form:

dP
dz
=

dPg

dz
+

dPr

dz
= − gρ. (21)

Here the total scalar pressure P is the sum of gas and radiation
pressures, P = Pg + Pr. If we write the above equation on the
standard optical depth scale τ, and use the expression

dPr

dτ
=

4π
c

∫ ∞

0
ηνHν dν, (22)

then we get the final form of the hydrostatic equlibrium
equation:

dPg

dτ
=

g

(κ + σ)std
− 4π

c

∫ ∞

0
ηνHν dν. (23)

2.5. The equation of transfer and boundary conditions

The final equation of transfer, which is adopted in numerical
calculations, is of the form:

ην
∂

∂τ

(
ην
∂

∂τν
( fνJν)

)
= εν (Jν − Bν)

+ (1 − εν) Jν

∫ ∞

0
Φ1

(
ν, ν′

)
dν′ − (1 − εν)

∫ ∞

0
Jν′ Φ2

(
ν, ν′

)
dν′

−
[
εν
∂Bν
∂T
− (1 − εν) Jν

∫ ∞

0

∂Φ1

∂T
dν′

+ (1 − εν)
∫ ∞

0
Jν
∂Φ2

∂T
dν′

]

×
∫ ∞

0
ηνεν (Jν − Bν) dν + L(τ)

∫ ∞
0
ηνεν (∂B/∂T ) dν− L′(τ)

· (24)

The equation can be solved when both the upper and the lower
boundary conditions are specified.
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The upper boundary condition is of the standard form,

∂

∂τν
( fνJν) = hνJν(0) (25)

where hν = Hν(0)/Jν(0) is the surface scalar factor which has to
be iterated simultaneusly with the variable Eddington factors fν
(Mihalas 1978).

The lower boundary condition is in fact the thermalisation
condition:

∂

∂τν
( fνJν) =

1
3
∂Bν
∂τν
· (26)

A detailed description and transformations of the inner bound-
ary condition to the useful form are given in the Appendix.

3. Results

We calculated a grid of 106 models. Each of them was com-
puted on a mesh of 144 standard optical depth points (12 points
per decade), distributed from τstd = 10−8 to 104, and on
1139 frequency (energy) points, ranging from 400 keV to
12 eV. Effective temperatures of our neutron star atmospheres
are Teff = 1, 1.5, 2, 2.5, 3 × 107 K, and surface gravities g range
from the critical gravity gcr to 1015 (cgs units). Chemical com-
position includes H and He in the solar abundance NHe/NH =

0.11, and iron either NFe/NH = 3.7 × 10−5 (solar value), or
100 times higher. The constancy of bolometric flux across each
model atmosphere was better than 0.1%, and only at a few
points located deep below the photosphere was the flux error
worse, up to about 2.5%.

3.1. Temperature structure of models

The distribution of temperature in a model atmosphere in radia-
tive equilibrium is determined by several different parameters,
such as the effective temperature, surface gravity, and the par-
ticular chemical composition. Assumption of either Compton
or Thomson scattering also is of crucial importance. In or-
der to demonstrate particular features in T (τ) stratification we
have arbitrarily chosen models with the effective temperature
Teff = 2 × 107. In all such models, the gradient of temperature
is very steep in deep optical depths. In higher layers, e.g. for
τRoss < 0.1, the run of T (τRoss) exhibits different behaviour.

In the case of models with Thomson scattering, tempera-
ture decreases with decreasing τRoss to some minimum value,
and above this minimum T can rise only slightly and the model
atmosphere is isothermal. A model atmosphere can be isother-
mal starting from layers where it is optically thin, and photons
do not efficiently interact with gas. In the case of a model at-
mosphere with Compton scattering the situation is qualitatively
different, since Compton scattering allows for energy and mo-
mentum exchange between photons and free electrons. This
process causes heating of the scattering layers of the atmo-
sphere, because energy is transfered from radiation created in a
hot layer of thermalisation to colder electron gas near the sur-
face. Such an effect explains the existence of a temperature rise
in the outermost layers, where Compton scattering dominates

Fig. 1. Temperature distribution in atmospheres of Teff = 2 × 107 K
and log g = 14.5, and various chemical compositions. Both Compton
and Thomson scattering models are shown here. The solid line rep-
resents an atmosphere with solar iron abundance NFe/NH = 3.7 ×
10−5 and the dashed line represents a model with the iron abundance
100 times higher (Compton scattering models). Dotted line: model
with solar iron abundance, long dashed line – 100 times higher iron
abundance (Thomson scattering).

and sources of absorption vanish due to extremely low density
and complete ionisation of atoms.

On the contrary, a model atmosphere computed under an
assumption of coherent Thomson scattering exhibits a mono-
tonic run of temperature T , decreasing outwards. The isother-
mal outermost region spreads above some optical depth lo-
cated higher than in the Compton scattering model (see Fig. 1).
Moreover, the isothermal zone exhibits a much lower temper-
ature. This is because Thomson scattering implies zero energy
exchange between photons and electrons, consequently, it can-
not extract thermal energy from hard radiation created in hot
thermalisation layers. In particular, in the model of Teff = 2 ×
107 K, log g = 14.5, and the solar iron abundance, the at-
mosphere becomes isothermal at the Rosseland optical depth
τRoss ≈ 0.3 for Compton scattering and 0.03 for Thomson scat-
tering atmospheres. Boundary temperatures in both cases are
T0 ≈ 2.21 × 107 K and 1.45 × 107 K, respectively.

In a model atmosphere with nonzero iron abundance, ther-
mal absorption is higher than in a H-He atmosphere of the same
Teff and log g. This is because iron is a strong opacity source.
In particular, iron adds huge free-free absorption to the model
atmosphere. Such an atmosphere is cooler in its uppermost lay-
ers, see Fig. 2. This is because thermal nongrey absorption in
LTE is a very efficient cooling mechanism due to the Kirchoff
law, cf. also Mihalas (1978). Thermal emissivity and absorp-
tion in LTE fulfil the equation jν = κνBν, where jν denotes
emissivity, κν is the thermal absorption coefficient, and Bν
denotes the Planck function. This relation implies that with
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Fig. 2. Temperature stratification in atmospheres of Teff = 2 × 107 K
and log g = 14.5, and different iron abundances. Solid line – solar
abundance of iron, NFe/NH = 3.7 × 10−5, dotted line – iron abundance
is 100 times higher; dashed line – H-He atmosphere.

increasing absorption, the rate of emission of radiation in-
creases. If there exists a spectral window where the optical
depth is low, then this layer easily loses thermal energy and its
temperature T decreases. An atmosphere gets isothermal start-
ing from the layer in which photons very weakly interact with
matter.

Surface gravity has an essential impact on the structure of
an atmosphere (see Fig. 3). In the case of high surface gravity,
the density and thermal absorption coefficient κν also are high.
Consequently, photons are more efficiently absorbed and there
exists a deeper minimum of temperature T than in the atmo-
sphere of a neutron star with lower gravity. In a model with
low surface gravity, the temperature T in the outermost lay-
ers is higher than in a model with high gravity, since Compton
scattering is the dominant opacity source and gas is effectively
heated by multiple photon-electron energy exchanges.

The run of temperature in our models can be quite compli-
cated in some cases, as is shown in Fig. 4. The relation T (τRoss)
displayed there is implicitly determined by a very complicated
distribution of various iron ions and their continuum opacities,
see also Fig. 5.

3.2. Model spectra

Theoretical X-ray spectra of hot neutron stars differ signif-
icantly from the blackbody spectra. In general, spectra of
atmospheres in which Thomson electron scattering opacity
is present are harder than blackbody spectra (Madej 1974;
van Paradijs 1982). This effect is also displayed in Compton
scattering atmospheres, but then the frequency of the peak
flux is lower. It is located between the maxima of a black-
body with the effective temperature Teff and the spectrum of an

Fig. 3. Temperature structure of atmospheres at the fixed Teff = 2 ×
107 K and solar iron abundance, and different surface gravities. Solid
line – log g = 14.1, dashed line – 14.3, dotted line – 14.5, dot-dashed
line – 14.9.

Fig. 4. Temperature structure of atmospheres with solar iron abun-
dance and log g = 14.5, and of different Teff ; solid line – model of
Teff = 107 K, dotted line – 1.5 × 107 K.

atmosphere with coherent Thomson scattering (Madej 1991a;
Madej et al. 2004).

This effect is caused by two factors. First, adding of scatter-
ing opacity to thermal absorption causes the layer of thermal-
isation (where outgoing photons are created by thermal emis-
sion) move to deeper and hotter layers as compared to a purely
absorbing atmosphere. Consequently, the energy of the peak
flux of the outgoing radiation increases. Second, noncoherent
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Fig. 5. Fractional abundances for various iron ions in the atmosphere
with Teff = 107 K, log g = 14.5, and the solar iron abundance.

Compton scattering of hot photons in cooler surface layers re-
moves (on average) part of the radiation energy. Due to this ef-
fect, outgoing spectra are softer than those with Thomson scat-
tering, and the previous increase of the peak flux energy must
be reduced.

Such a situation can be reversed by simultaneous redistri-
bution of radiation flux caused by nongrey thermal absorption.
In hydrogen-helium atmospheres of hot neutron stars both ele-
ments are almost completely ionised, and then the only impor-
tant thermal absorption is free-free absorption with κν ∼ ν−3.
Absorption strongly decreases with increasing energy, and it
contributes to the additional increase of energy at the peak.
However, the situation can be more complicated in atmo-
spheres with nonzero iron abundance.

As we can see in Fig. 6, energy of the peak flux of the
outgoing continuum radiation of an atmosphere with Compton
scattering is harder than in the case of the model atmosphere
with Thomson scattering. In model atmospheres with iron,
properties of outgoing radiation and its spectrum are deter-
mined by the temperature structure in the atmosphere, which
differs from T (τ) in H-He atmospheres. In iron rich models, at-
mospheres with Compton scattering are much hotter in opticaly
thin layers than in Thomson scattering case (Fig. 1). This jus-
tifies the result that spectra with Compton scattering can some-
times be harder than spectra with Thomson scattering (Fig. 6).

Comptonized spectra of hot neutron star atmospheres differ
significantly from blackbody spectra of the effective tempera-
ture Teff, both in the case of pure H-He and H-He-Fe chem-
ical composition. The former model spectra were taken from
Madej et al. (2004). Differences between model atmospheres
and blackbody spectra depend on the Teff, surface gravity log g
and the chemical composition.

All our spectra are harder than the blackbody of Teff.
Continuum outgoing spectra can be ordered in the following

Fig. 6. Comparison of outgoing spectra computed either with
Thomson scattering or Compton scattering, and the blackbody spec-
trum. All model spectra displayed here are computed with Teff = 2 ×
107 K and log g = 14.5.

Fig. 7. Outgoing flux spectra of the atmosphere of Teff = 2 × 107 K
and log g = 14.5, and different iron abundances. Long dashed line –
model with NFe/NH = 3.7 × 10−3, solid line – solar iron abundance
NFe/NH = 3.7 × 10−5, dotted line – H-He atmosphere, dashed line –
blackbody spectrum.

series, with increasing hardeness: the blackbody, spectrum of
an atmosphere with iron abundance 100 times higher than the
solar value, spectra of atmospheres with solar iron abundance
(NFe/NH = 3.7 × 10−5), and spectra of pure H-He atmospheres
(see Figs. 7–8). This is because in an atmosphere with low or
zero iron abundance, the ratio of thermal absorption to the to-
tal opacity coefficient is generally lower than in an atmosphere
of higher iron abundance. In a series of atmospheres with the
highest iron abundance NFe/NH = 3.7 × 10−3, monochro-
matic thermal absorption generally increases due to the
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Fig. 8. Flux spectra for Teff = 107 K and log g = 12.9, and differ-
ent chemical composition. Solid line – model with iron abundance
100 times solar value, dashed line – the blackbody spectrum, dotted
line – model spectrum of pure H-He atmosphere.

Fig. 9. Comparison of theoretical spectra of atmospheres with differ-
ent log g and fixed Teff = 2 × 107 K and solar iron abundance. Solid
line – log g = 14.1 (it is very close to the Eddington limit), dotted
line – 14.3, dashed line – 14.5, long dashed line – 14.7, and the dot-
dashed line – 14.9.

presence of strong bound-free continuum absorption of
lithium-like to hydrogen-like ions of iron, and that absorp-
tion is strongest just beyond the corresponding spectral edge.
Moreover, ionised iron causes a very strong free-free absorp-
tion, which does not produce spectral features and therefore
remains invisible in outgoing spectra.

Figure 9 presents the sequence of outgoing theoretical spec-
tra corresponding to the fixed Teff = 2 × 107 K and solar iron
abundance NFe/NH = 3.7 × 10−5, and various log g. We can see
how theoretical X-ray spectra evolve towards higher energies,

while the surface gravity log g decreases towards the critical
gravity gcr.

Surface gravity log g significantly modifies the structure
of an atmosphere because it directly determines stratification
of density ρ through the equation of hydrostatic equilibrium.
The spectrum of outgoing radiation emitted from the atmo-
sphere of a neutron star of low surface gravity log g is much
harder than spectra corresponding to high log g. Atmospheres
of low log g are more extended and have lower densities than
the atmosphere of a neutron star with higher gravity. Therefore,
Compton scattering opacity gives a higher contribution to the
total opacity in the former cases. The spectrum of an atmo-
sphere with high surface gravity shows two prominent absorp-
tion edges, caused by hydrogen-like and helium-like iron. We
also see deep absorption lines belonging to the fundamental se-
ries of both iron ions.

We have included in our model atmosphere computations
the series of lines 11S0 − n1P0

1 of helium-like iron, and the se-
ries 12S1/2 − n2P0

1/2,3/2 of hydrogen-like iron. In both cases the
principal quantum number of the upper level n = 2, . . . , 6, and
higher lines in both series were not included. Therefore we cal-
culated profiles of a total of 10 lines. In this work we ignored
the series of intercombination lines 11S0 − n3P0

1 of helium-like
iron, which should be of noticeable strength in highly ionized
iron.

All the above lines cause a blanketing effect on model
atmospheres computed, and therefore they influence the ra-
diative equilibrium and the run of temperature T (τ) in all
models. Therefore, broadening of these lines is of particular
importance. We have considered iron lines broadened by natu-
ral (radiative), thermal (Doppler), and pressure (Stark) broad-
enings, the latter considered following Griem (1974). The final
opacity profile of each of those lines was carefully computed as
the convolution of all of the three mechanisms (Madej 1989).

3.3. The ratio of color to effective temperatures

Tables 1 and 2 present the ratios of color and effective temper-
atures for all the computed models. In the case of X-ray spectra
computed with iron of solar abundance, the ratios of color and
effective temperature do not differ strongly from those of pure
H-He X-ray spectra (Madej et al. 2004). In both series of mod-
els (H-He atmospheres and those with solar iron abundance)
we note the existence of local minima of relations Tc/Teff vs.
log g for low effective temperatures (Teff = 1, 1.5 × 107 K). For
higher effective temperatures (Teff = 2 × 107 or even higher)
the ratio Tc/Teff increases with decreasing surface gravity.

Table 1 shows that for low effective temperatures these
ratios decrease with decreasing surface gravity from 1.35 (at
log g = 15.0) to 1.28 (at log g = 14.3). The local mini-
mum of Tc/Teff is rather flat, and its minimum value of 1.28
corresponds to a wide range of surface gravities, ranging
from log g = 14.4 to log g = 13.8. For lower log g the ra-
tio Tc/Teff increases from 1.29 (for log g = 13.7) to 1.62
(for log g = 12.9), the latter value corresponding to a model
which is very close to the critical surface gravity. The local
minimum of Tc/Teff mentioned above separates regions on the
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Table 1. Tc/Teff ratios in models with NH/NHe = 0.11, and NFe/NH =

10−5.

log g�Teff 1 × 107 1.5 × 107 2 × 107 2.5 × 107 3 × 107

15.0 1.37 1.25 1.30 1.31 1.45

14.9 1.36 1.25 1.31 1.47 1.56

14.8 1.34 1.25 1.32 1.50 1.76

14.7 1.33 1.25 1.35 1.53 –

14.6 1.33 1.26 1.40 1.54 –

14.5 1.32 1.26 1.42 1.68 –

14.4 1.30 1.28 1.42 – –

14.3 1.30 1.29 1.45 – –

14.2 1.30 1.31 1.48 – –

14.1 1.30 1.34 1.67 – –

14.0 1.29 1.38 – – –

13.9 1.29 1.41 – – –

13.8 1.30 1.47 – – –

13.7 1.30 1.77 – – –

13.6 1.30 1.85 – – –

13.5 1.31 – – – –

13.4 1.33 – – – –

13.3 1.34 – – – –

13.2 1.39 – – – –

13.1 1.44 – – – –

13.0 1.50 – – – –

12.9 1.63 – – – –

Table 2. Tc/Teff ratios in models with NH/NHe = 0.11, and NFe/NH =

10−3.

log g�Teff 1 × 107 1.5 × 107 2 × 107 2.5 × 107 3 × 107

15.0 1.64 1.51 1.31 1.22 1.22

14.9 1.61 1.47 1.31 1.28 1.29

14.8 1.58 1.47 1.31 1.31 1.29

14.7 1.54 1.45 1.31 1.31 –

14.6 1.51 1.45 1.32 1.37 –

14.5 1.49 1.42 1.33 1.43 –

14.4 1.46 1.39 1.34 1.50 –

14.3 1.44 1.36 1.38 – –

14.2 1.41 1.34 1.39 – –

14.1 1.40 1.31 1.42 – –

14.0 1.37 1.30 1.46 – –

13.9 1.35 1.28 – – –

13.8 1.34 1.28 – – –

13.7 1.33 1.30 – – –

13.6 1.30 1.36 – – –

13.5 1.29 – – – –

13.4 1.25 – – – –

13.3 1.24 – – – –

13.2 1.24 – – – –

13.1 1.22 – – – –

13.0 1.22 – – – –

12.9 1.23 – – – –

Fig. 10. Run of ratios Tc/Teff vs. log g in models with solar iron
abundance.

log g axis where the outgoing spectrum (and the energy of peak
flux) is determined mostly by the redistribution of radiation by
highly nongray absorption and effects of Compton scattering,
respectively.

In spectra of neutron stars of high effective temperatures,
the ratios Tc/Teff increase with decreasing surface gravity log g.
This is because in very hot atmospheres the ratio of Compton
scattering opacity to the total opacity coefficient at some fixed
frequency increases and their spectra differ more and more
from a blackbody. The highest value of the ratio of color and
effective temperature in our iron-rich models approaches 1.77,
and is obtained for the highest effective temperature of our grid,
Teff = 3 × 107 K, and log g = 14.8. We obtain quite a large
value of Tc/Teff = 2.01 also for log g = 14.4, Teff = 2.5 × 107,
and the solar abundance of iron. In the latter model 96% of the
gravitational acceleration is compensated for by the accelera-
tion exerted by the radiation field.

For spectra of atmospheres with an iron abundance
100 times higher than the solar value, the Tc/Teff ratios are
lower than those for atmospheres with lower iron abundance
for the same Teff and log g, see Table 2. This is because in at-
mospheres with overabundant iron the importance of thermal
absorption is higher than in atmospheres with solar iron abun-
dance. In models of low effective temperatures (Teff = 1 ×
107 K and 1.5 × 107 K), the ratio Tc/Teff decreases with de-
creasing surface gravity log g. For Teff = 2 × 107 K and higher,
these ratios increase with decreasing log g due to increasing
significance of Compton scattering.

4. Summary and discussion

We have computed and presented two grids of model atmo-
spheres and theoretical spectra for hot neutron stars, which
correspond to X-ray burst sources. The assumed chemical
compositions include hydrogen and helium in solar propor-
tion, NHe/NH = 0.11, and iron with two different abundances,
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Fig. 11. Run of ratios Tc/Teff vs. log g in models with iron abundance
100 times higher than the solar value.

NFe/NH = 3.7 × 10−5 and 3.7 × 10−3 (the solar abundance and
100 times solar). All spectra were calculated on a large grid of
effective temperatures Teff and surface gravities log g. We cal-
culated two grids of models bf with various iron abundances
for 5 effective temperatures: 1, 1.5, 2, 2.5, and 3 × 107 K,
and with many surface gravities ranging from log g = 15 (in
cgs units) down to the logarithm of critical gravity, log gcr, in
steps of ∆ log g = 0.1.

We assumed an LTE equation of state for an ideal gas, both
the radiative and hydrostatic equilibrium, zero magnetic field,
no neutron-star rotation, and plane-parallel geometry for the
model atmospheres. The equation of radiative transfer includes
free-free absorption from all ions, bound-free absorption from
all ground levels of H, He, and Fe ions, and terms describing
Compton scattering by free electrons. Bound-bound opacities
(spectral lines) of helium-like and hydrogen-like iron are also
included (10 lines of the fundamental series for both ions). The
presence of scattering terms implies that radiative transfer is a
non-LTE process.

All model atmospheres computed in this work exhibit a
temperature inversion in the uppermost layers. This is caused
by the heating effect of Compton scattering on the cooler elec-
tron gas by hotter radiation from deep thermalisation layers.
The same heating effect has been found in pure H-He model
atmospheres (Madej et al. 2004).

Our calculations show that all model spectra of X-ray
bursters differ from blackbody spectra at any given effective
temperature Teff. The spectral differences depend on the pa-
rameters of a particular model atmosphere, i.e., Teff, log g,
and chemical composition. The continuum spectra of iron-
rich atmospheres that were presented in this paper are always
harder than a blackbody spectrum at a given Teff. Similar re-
sults were also presented by Madej et al. (2004) for H-He at-
mospheres. Therefore, the color temperature Tc determined
from the peak flux frequency is always higher than the effec-
tive temperature Teff in neutron-star atmospheres dominated by

Compton scattering. The ratio Tc/Teff does not exceed 1.85 in
our models.

The theoretical spectra presented in this paper display
two series of iron spectral lines, belonging to helium-like and
hydrogen-like iron (fundamental series). Line profiles are com-
puted in LTE, which means that the line source function is the
Planck function. Profiles of these lines are computed as the
numerical convolution of natural, thermal and pressure broad-
ening, the latter approximated on the basis of Griem (1976);
see also Madej (1989). A few of the strongest absorption lines
exhibit reverse emission in the line cores, which was caused
by the temperature inversion in the higher layers of the model
atmospheres.

It is particularly interesting and new in our calculations that
the peak fluxes of spectra with Compton scattering sometimes
exhibit higher color temperatures Tc than Thomson scattering
spectra computed for the same Teff and log g. In the spectra of
pure H-He atmospheres the situation is always different. In the
latter case the peak fluxes of spectra with Compton scattering
at a given Teff are located at energies above the maximum for
a blackbody spectrum but below the maximum for a Thomson
scattering spectrum.

This paper is an improvement and extention of the work by
London et al. (1986). These authors computed 17 models of
X-ray burst sources, but only 3 models assumed nonzero iron
abundance (with a solar value of NFe/NH = 10−5). Therefore,
a comparison between their models and ours is very difficult.
The Tc/Teff ratios obtained by London et al. (1986) are larger
than our values. For example: for Teff = 1.17 × 107 K and
log g = 15.0 we obtained Tc/Teff = 1.3, while London et al.
(1986) obtained 1.45; for Teff = 1.75 × 107 K and log g = 15.0:
1.25 and 1.36, respectively; and for Teff = 1.25 × 107 K and
log g = 14.0: 1.32 and 1.46.

Kuulkers et al. (2002) argued that if a burst aproaches
the Eddington limit, then the deviation of its spectrum from
blackbody is the largest, Tc/Teff ∼ 2, and that higher values
of Tc/Teff do not occur. We confirm the claim with our precise
numerical calculations.

We note that our extensive grids of models are an excel-
lent tool for fitting the observed spectra of X-ray bursts by use
of, for example, the  software. Such spectral fitting is
most reliable when the atmosphere of the neutron star can be
regarded as static, remaining in both hydrostatic and radiative
equilibrium. These conditions are best fulfiled in the cooling
phase of an X-ray burst and during the quiescent intervals be-
tween bursts.

Acknowledgements. This work has been supported by the Polish
Committee for Scientific Research grant No. 1 P03D 001 26.

Appendix A: The lower boundary condition

At the lower boundary τstd = τmax we assume that the radiation
field is thermalised at each frequency of the grid, Jν(τmax) =
Bν(τmax).

The second moment of the radiation field equals

Kν = fνJν = fνB
∗
ν, (A.1)
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where the Eddington factors fν = 1/3. The asterisk attached
to the Planck function indicates that its value strictly fulfils the
condition of radiative equilibrium.

Differentiating of Eq. (A.1) yields:

∂

∂τν
( fνJν) =

1
3
∂B∗ν
∂τν
=

1
3ην(κ + σ)std ρ

∂B∗ν
∂T

dT
dz

(A.2)

where dτν = −ην(κ+σ)std ρdz, the ratio ην = (κν+σν)/(κ+σ)std,
and the dimensionless absorption εν = κν/(κν + σν).

The temperature gradient dT/dz, which is required in the
above equation, can be determined from the bolometric flux:

H =
1
3

∫ ∞

0
dν

1
(κν + σν) ρ

∂B∗ν
∂T

dT
dz
· (A.3)

Bolometric flux is given by: H = σRT 4
eff/4π, where σR =

5.66961 × 10−5 erg cm−2 s−1 K−4. Temperature gradient is

dT
dz
= 3H ×

(∫ ∞

0
dν

1
(κν + σν) ρ

∂B∗ν
∂T

)−1

, (A.4)

therefore,

∂

∂τν
( fνJν) =

H
ην(κ + σ)std ρ

∂B∗ν
∂T

×
(∫ ∞

0
dν

1
(κν + σν) ρ

∂B∗ν
∂T

)−1

. (A.5)

We approximate ∂B∗ν/∂T in the above equation by a linear
Taylor series

∂B∗ν
∂T
=
∂Bν
∂T
+ ∆T

∂2Bν
∂T 2
, (A.6)

and obtain the lower boundary condition in the following ex-
panded form:

∂

∂τν
( fνJν) =

H
ην(κ + σ)std ρ

(
∂Bν
∂T
+ ∆T

∂2Bν
∂T 2

)

×
[∫ ∞

0
dν

1
(κν + σν) ρ

(
∂Bν
∂T
+∆T

∂2Bν
∂T 2

)]−1

. (A.7)

Let us introduce new variables:

M1 =

∫ ∞

0
dν
∂Bν
∂T

1
κν + σν

, (A.8)

M2 =

∫ ∞

0
dν
∂2Bν
∂T 2

1
κν + σν

· (A.9)

The lower boundary condition assumes the following form:

∂

∂τν
( fνJν) =

H · M−1
1

κν + σν

(
∂Bν
∂T
+ ∆T

∂2Bν
∂T 2

)

× (M1 + M2∆T )−1

≈ H · M−1
1

κν + σν

∂Bν
∂T
×

1 + ∆T

(
∂Bν
∂T

)−1
∂2Bν
∂T 2

M2

M1
∆T

 · (A.10)

Neglecting terms with (∆T )2 we obtain:

∂

∂τν
( fνJν) =

H · M−1
1

κν + σν

∂Bν
∂T

×
1 + ∆T

(
∂Bν
∂T

)−1
∂2Bν
∂T 2

− M2

M1
∆T

 . (A.11)

Temperature corrections ∆T are necessary to complete the
above equation. These corrections can be obtained from the
equation of radiative equilibrium:

0 =
∫ ∞

0
dν ηνεν

(
Jν − B∗ν

)

+

∫ ∞

0
dν (1 − εν)Jν

∫ ∞

0
dν′Φ∗1(ν, ν′)

−
∫ ∞

0
dν ην(1 − εν)

∫ ∞

0
dν′Φ∗2(ν, ν′) Jν′ . (A.12)

Equation (A.12) should be linearized with respect to tempera-
ture T , in order to replace variables with an asterisk:

T ∗(τν) = T (τν) + ∆T (τν), (A.13)

B∗ν(T ) = Bν(T ) + ∆T

(
∂Bν
∂T

)

τ

, (A.14)

Φ∗1(ν, ν′) = Φ1(ν, ν′) + ∆T

(
∂Φ1

∂T

)

τ

, (A.15)

Φ∗2(ν, ν′) = Φ2(ν, ν′) + ∆T

(
∂Φ2

∂T

)

τ

. (A.16)

This step yields temperature corrections in the form:

∆T =

∫ ∞
0

dν ενην (Jν − Bν) + L(τ)
∫ ∞

0
dν ενην (∂Bν/∂T ) − L′(τ)

, (A.17)

where functions L(τ) and L′(τ) are defined as:

L(τ) =
∫ ∞

0
dν (Jν − Bν)

∫ ∞

0
dν′Φ1(ν, ν′)

×
[
ην(1 − εν) − ην′(1 − εν′ )

(
ν′

ν

)]
, (A.18)

L′(τ) =
∫ ∞

0
dν

[
ην(1 − εν)Jν

∫ ∞

0
dν′
∂Φ1

∂T

−ην(1 − εν)
∫ ∞

0
dν′ Jν′

∂Φ2

∂T

]
. (A.19)

Combining Eqs. (A.11) and (A.17) we obtain the final form of
the lower boundary condition:

∂

∂τν
( fνJν) =

H · M−1
1

κν + σν

∂Bν
∂T

×
1 +

∫ ∞
0

dν ενην(Jν − Bν) + L(τ)
∫ ∞

0
dν ενην (∂Bν/∂T ) − L′(τ)

×

(
∂Bν
∂T

)−1
∂2Bν
∂T 2

− M2

M1



 . (A.20)
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