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Abstract

We develop an approach to evaluating frequentist model averaging procedures

by considering them in a simple situation in which there are two nested linear re-

gression models over which we average. We introduce a general class of model

averaged confidence intervals, obtain exact expressions for the coverage and the

scaled expected length of the intervals and use these to compute these quantities

for the model averaged profile likelihood confidence intervals proposed by Fletcher

and Turek (2011) and the model averaged tail area confidence intervals proposed

by Turek and Fletcher (2012). We show that the Fletcher-Turek (2011) confidence

intervals can have coverage well below the nominal coverage and expected length

greater than that of the standard confidence interval with coverage equal to the



same minimum coverage. In these situations, the Fletcher-Turek confidence inter-

vals are not better than the standard confidence interval used after model selection

but ignoring the model selection process. The Turek-Fletcher (2012) confidence in-

tervals perform better than the Fletcher-Turek and post-model-selection confidence

intervals but, for the examples that we consider, offers little over simply using the

standard confidence interval for θ under the full model, with the same nominal

coverage.

Keywords: Akaike Information Criterion (AIC); confidence interval; coverage

probability; expected length; model selection; nominal coverage; profile likelihood,

regression models; tail area confidence interval.

1 Introduction

It is common practice in applied statistics to carry out data-based model selection

by, for example, using preliminary hypothesis tests or minimizing a criterion such

as the Akaike Information Criterion (AIC) and then to use the selected model to

construct confidence intervals as if it had been given to us a priori as the true model.

This procedure can lead to confidence intervals with minimum coverage probabilities

far below the nominal coverage probability; see Kabaila (2009) for a review of the

literature on this topic.

In recent years, there has been growing interest in using techniques which involve

several models to try to incorporate model uncertainty into the inferences. These

techniques, loosely referred to as model-averaging, are used in both the Bayesian

and the frequentist literature; see, for example, Buckland et al. (1997), Raftery et

al. (1997), Volinsky et al. (1997), Hoeting et al. (1999), Burnham and Anderson

(2002) and Claeskens and Hjort (2008). In this paper, we focus on frequentist

model-averaging techniques for constructing confidence intervals.

The earliest frequentist approach to constructing model-averaged confidence in-

tervals (see Buckland et al, 1997 and Burnham and Anderson, 2002) was to centre
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the interval on a model-averaged estimator and determine the width of the interval

by an estimate of the standard deviation of this estimator. The distribution theory

on which these intervals are based is not (even approximately) correct (Claeskens

and Hjort, 2008, p.207) but simulation studies report that these intervals work well

in terms of coverage probability in particular cases (Lukacs et al., 2010; Fletcher

and Dillingham, 2011). A different approach was proposed by Hjort and Claeskens

(2003) but this turns out to be essentially the same as the standard confidence

interval based on fitting a full model (Kabaila and Leeb, 2006; Wang and Zou,

2013). More recently, Fletcher and Turek (2011) and Turek and Fletcher (2012)

have proposed averaging confidence interval construction procedures from each of

the possible models. Fletcher and Turek (2011) averaged the profile likelihood con-

fidence interval procedure and Turek and Fletcher (2012) averaged the tail areas of

the distributions of the estimators from each of the possible models.

Given the practical importance of the problem, it is not surprising that consid-

erable hope has been invested in model averaging as a simple, general method for

making valid inferences under model uncertainty. In this context, it is important to

develop a theoretical understanding of the properties of model averaging procedures

so that we can put their increasing use on a firm basis. A good starting point is to

explore the properties of procedures in meaningful, tractable scenarios which allow

us to evaluate whether they work as expected, to compare different proposals and

perhaps to modify and improve current proposals. We make a start on this by devel-

oping a general method for studying the theoretical properties of model averaging

procedures in a simple scenario that is both meaningful and tractable and then ap-

ply it to the Fletcher and Turek (2011) model averaged profile likelihood confidence

interval (MPI) procedure and the Turek and Fletcher (2012) model averaged tail

area confidence interval (MATA) procedure.

We obtain a 1 − α level profile likelihood confidence interval for a parameter θ

in a model Mj by computing the signed-root log-likelihood ratio for θ under Mj

and then solving for the lower and upper endpoints of the interval the two equations
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obtained by equating the normal cumulative distribution function evaluated at the

signed-root log likelihood ratio to 1 − α/2 and α/2, respectively. We obtain tail

area confidence intervals in the same way by replacing the the signed-root log-

likelihood ratio by the t ratio Tj(θ) = (θ̂j − θ)/se(θ̂j) and solving the two equations

obtained by equating Gνj (Tj(θ)) to 1 − α/2 and α/2, where Gνj is the cumulative

distribution function of the distribution of Tj(θ) under model Mj (i.e. the Student t

distribution with νj degrees of freedom). When we have models {M1, . . . ,MR} for

a fixed, finite R, MPI and MATA confidence intervals for θ, with nominal coverage

1−α, are obtained by solving for the endpoints a weighted average of the respective

endpoint equations for each model. There are various ways to choose the weights;

we follow Fletcher and Turek (2011) and Turek and Fletcher (2012) and focus on

weights derived by exponentiating the Akaike Information Criterion (AIC) for each

model.

The only evaluation of MPI and MATA to date has been by simulation; Fletcher

and Turek (2011) and Turek and Fletcher (2012) showed that these procedures per-

form well in particular settings. It is natural to use simulations to evaluate different

confidence intervals, but simulation methods have weaknesses for evaluating per-

formance criteria. First, simulations cover only a limited set of particular settings

(particularly, values of the unknown nuisance parameters) and the conclusions ap-

ply only to these settings. They may therefore not consider settings where the

coverage is low or the expected length is large. We can improve the situation by

evaluating minimum coverage probabilities and maximum expected lengths to char-

acterise performance over unknown nuisance parameters. Secondly, the variability

in simulation results complicates finding bounds on coverage or expected length,

particularly when there are a large number of parameters to vary in the under-

lying distribution. We therefore use exact calculations to evaluate the properties

of the confidence intervals both in particular settings and uniformly over unknown

nuisance parameters.

For simplicity, we consider a scenario with only two possible models, a linear
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regression model with independent and identically distributed normal errors (M2)

and the same model with a linear constraint on the regression parameters (M1).

We evaluate the properties of model averaged confidence intervals, with nominal

coverage 1− α, for a parameter of interest θ that is common to both models. This

scenario is simple but, nonetheless, includes practically important problems. For

example, in the comparison of two treatments for a given value of the single covariate

in a one-way analysis of covariance, the parameter of interest θ is the treatment effect

for a given value of the covariate and the two models M2 and M1 are distinguished

by whether τ , the difference in the coefficients of the covariate, is unconstrained or

constrained to equal zero (so the fitted models have parallel mean functions). In

general, θ and τ can be any linearly independent linear functions of the regression

parameter and we obtain general results for any given model matrix, so allowing

any possible set of nuisance regression parameters. We focus on two properties,

the coverage probability and the scaled expected length, where the scaling is with

respect to the expected length of the standard confidence interval at the minimum

coverage level. We derive computationally convenient, exact expressions for the

coverage probability and the scaled expected length of model averaged confidence

intervals for θ, so that we do not need to resort to simulations.

Our results show that there are situations in which MPI has coverage much lower

than the nominal coverage and expected length greater than that of the standard

confidence interval with coverage equal to the minimal coverage. In these situations,

MPI performs worse than standard confidence intervals used after model selection

but ignoring the model selection process. MATA performs better than MPI in these

same situations, performing like the standard confidence interval under M2. This

shows the difficulty of improving on the strategy of using complicated models and

avoiding any kind of model selection. These results reinforce the need to develop

new procedures and highlight the need for careful analysis of new procedures.

We present our theoretical results in Section 2 and illustrate their application

to a real data example from a cloud seeding experiment in which the parameter
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of interest is the effect of cloud seeding in Section 3. We present the coverage

probability and the scaled expected length of model averaged confidence intervals

for the parameter of interest and show how to interpret these values. We conclude

with a brief discussion in Section 4. Theoretical calculations and the proofs of the

Theorems are presented in an Appendix.

2 Theoretical details

In this Section, we describe a general class of frequentist model averaged confi-

dence intervals for θ that includes Fletcher and Turek’s (2011) MPI and Turek and

Fletcher’s (2012) MATA procedures. We give exact expressions for the coverage

probability and the scaled expected length of these intervals. The proofs are left to

the Appendix.

The model M2 is given by

Y = Xβ + ε,

where Y is a random n-vector of responses, X is a known n × p model matrix

with p < n linearly independent columns, β is an unknown p-vector parameter

and ε ∼ N(0, σ2In), with σ2 an unknown positive parameter. Suppose that we are

interested in making inference about the parameter θ = a⊤β, where a is a specified

nonzero p-vector. Suppose also that we define the parameter τ = c⊤β − t, where c

is a specified nonzero p-vector that is linearly independent of a and t is a specified

number. The model M1 is M2 with τ = 0.

Let β̂ be the least squares estimator of β and σ̂2 = (Y −Xβ̂)⊤(Y −Xβ̂)/(n−p)

be the usual unbiased estimator of σ2. Set θ̂ = a⊤β̂ and τ̂ = c⊤β̂ − t. Define vθ =

Var(θ̂)/σ2 = a⊤(X⊤X)−1a and vτ = Var(τ̂)/σ2 = c⊤(X⊤X)−1c. Two important

quantities are the known correlation ρ = a⊤(X⊤X)−1c/(vθvτ )
1/2 between θ̂ and τ̂

and the unknown parameter γ = τ
/(

σv
1/2
τ

)
.

Suppose that under the models M1 and M2 confidence intervals
[
θ̂1l, θ̂1u

]
, and
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[
θ̂2l, θ̂2u

]
for θ with nominal coverage 1− α, are found by solving the equations

a1

{
(θ̂ − θ̂1l)/v

1/2
θ , τ̂ /v1/2τ , σ̂

}
= 1−α/2 and a1

{
(θ̂ − θ̂1u)/v

1/2
θ , τ̂ /v1/2τ , σ̂

}
= α/2

and

a2

{
(θ̂ − θ̂2l)/v

1/2
θ , σ̂

}
= 1− α/2 and a2

{
(θ̂ − θ̂2u)/v

1/2
θ , σ̂

}
= α/2,

where a1(δ, x, y) and a2(δ, y) are scale invariant, increasing, continuous and bounded

functions of δ ∈ R that approach 1 as δ → ∞ and approach 0 as δ → −∞, for

each y > 0. Here, scale invariance means that a1(δ, x, y) = a1(kδ, kx, ky) and

a2(δ, y) = a2(kδ, ky) for all δ, x, y > 0 and any k > 0.

Suppose that the function w1 : [0,∞) → [0, 1] is a decreasing continuous func-

tion, such that w1(z) approaches 0 as z → ∞. We consider the weight function

w1(x
2/y2) and define

h(δ, x, y) = w1(x
2/y2) a1(δ, x, y) + {1− w1(x

2/y2)} a2(δ, y). (1)

It follows from the assumptions on a1 and a2 that h(δ, x, y) is a scale invariant,

increasing continuous function of δ ∈ R that approaches 1 as δ → ∞ and approaches

0 as δ → −∞, for each x ∈ R and y > 0. We define a frequentist model averaged

confidence interval
[
θ̂l, θ̂u

]
for θ with nominal coverage 1− α by solving

h
{
(θ̂ − θ̂l)/v

1/2
θ , τ̂ /v1/2τ , σ̂

}
= 1− α/2 and h

{
(θ̂ − θ̂u)/v

1/2
θ , τ̂ /v1/2τ , σ̂

}
= α/2

for θ̂l and θ̂u.

The coverage and expected length properties of
[
θ̂l, θ̂u

]
are conveniently ex-

pressed in terms of δu(x, y) which, for each x ∈ R and y > 0, is defined to be the

solution in δ of the equation h(δ, x, y) = u.

Theorem 1 The coverage probability of the frequentist model averaged confidence

interval
[
θ̂l, θ̂u

]
(averaged over M1 and M2), with nominal coverage 1− α, is

P
(
θ̂l ≤ θ ≤ θ̂u

)
=

∫
∞

0

∫
∞

−∞

[
Φ

{
δ1−α/2(x, y)− ρ(x− γ)

(1− ρ2)1/2

}

−Φ

{
δα/2(x, y)− ρ(x− γ)

(1− ρ2)1/2

}]
φ(x− γ) fn−p(y) dx dy,
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where φ is the probability density function of the standard normal distribution and

fν(y) is the probability density function of (Q/ν)1/2, where Q has a χ2
ν distribution.

Theorem 1 shows that the coverage of
[
θ̂l, θ̂u

]
is a function of the nominal coverage

1−α, the residual degrees of freedom n− p, the correlation ρ between θ̂ and τ̂ , and

the unknown parameter γ = τ
/(

σv
1/2
τ

)
. The only unknown quantity is γ. We use

the minimum coverage over γ to describe the worst case results without having to

specify particular values for γ. We can obtain a useful upper bound to the minimum

coverage over γ.

Corollary 1 As γ → ∞, the coverage probability of the frequentist model averaged

confidence interval
[
θ̂l, θ̂u

]
(averaged over M1 and M2), with nominal coverage

1−α, converges to the coverage probability of the corresponding interval under M2,

with nominal coverage 1− α, respectively. That is,

P
(
θ̂l ≤ θ ≤ θ̂u

)
→ P

(
θ̂2l ≤ θ ≤ θ̂2u

)
as γ → ∞.

An immediate consequence is that

inf
γ

P
(
θ̂l ≤ θ ≤ θ̂u

)
≤ P

(
θ̂2l ≤ θ ≤ θ̂2u

)
.

Corollary 1 shows that frequentist model averaging cannot increase the minimum

coverage probability above that of the interval
[
θ̂2l, θ̂2u

]
, with nominal coverage

1−α under M2. So, to achieve good coverage, we need to start with intervals with

good coverage.

For the expected length of
[
θ̂l, θ̂u

]
, we obtain the following result.

Theorem 2 The expected length of the frequentist model averaged confidence interval
[
θ̂l, θ̂u

]
(averaged over M1 and M2), with nominal level 1− α, is

E
(
θ̂u − θ̂l

)
= σ v

1/2
θ

∫
∞

0

∫
∞

−∞

{
δ1−α/2(x, y) − δα/2(x, y)

}
φ(x− γ) fn−p(y) dx dy,

where φ is the probability density function of the standard normal distribution and

fν(y) is the probability density function of (Q/ν)1/2, where Q has a χ2
ν distribution.
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Let cmin denote the minimum coverage probability of
[
θ̂l, θ̂u

]
. The expected length

of the standard interval that has this minimum coverage is

2G−1
n−p((cmin+1)/2) E(σ̂) v

1/2
θ = 23/2σ v

1/2
θ G−1

n−p((cmin+1)/2)
Γ{(n− p+ 1)/2}

(n − p)1/2 Γ{(n− p)/2}
,

so the scaled expected length of
[
θ̂l, θ̂u

]
is

(n− p)1/2 Γ{(n − p)/2}

∫
∞

0

∫
∞

−∞
{δ1−α/2(x, y)− δα/2(x, y)}φ(x − γ) fn−p(y) dx dy

23/2 Γ{(n − p+ 1)/2}G−1
n−p((cmin + 1)/2)

.

As with the coverage, the only unknown quantity in this expression is γ, so we study

the maximum scaled expected length over γ.

The range of calculations needed to evaluate the coverage probability and the

scaled expected length of
[
θ̂l, θ̂u

]
are reduced by the following result that shows

that, because of symmetry, we need only consider γ ≥ 0 and ρ ≥ 0.

Theorem 3 We make the dependence of δu(x, y) on ρ explicit by using the notation

δu(x, y, ρ) in place of δu(x, y). Suppose that δ1−α/2(−x, y, ρ) = −δα/2(x, y, ρ) and

δu(x, y,−ρ) = δu(−x, y, ρ). The coverage probability and the scaled expected length

of the frequentist model averaged confidence interval
[
θ̂l, θ̂u

]
(averaged over M1 and

M2) are both even functions of γ for fixed ρ and even functions of ρ for fixed γ.

We can apply Theorems 1–3 to a variety of confidence intervals and weight

functions, including the profile likelihood and tail area methods of Fletcher and

Turek (2011) and Turek and Fletcher (2012). Their recommended weights based on

AIC for the models M1 and M2 correspond to

w1(z) =
1

1 +
{
1 + z

n−p

}n/2
exp(−1)

. (2)

It is straightforward to incorporate other weights (such as weights based on BIC

rather than AIC) but, to save space, we consider only the weights based on AIC.

The signed-root log-likelihood ratio statistic used by Fletcher and Turek (2011)

is minus the usual definition; which definition we adopt makes no essential difference

to the results so we follow Fletcher and Turek (2011). We show in the Supplementary
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Online Material that the signed-root log-likelihood ratio statistic for M2 is r2
{
(θ̂−

θ)/v
1/2
θ , σ̂

}
, where

r2(δ, y) = sign(δ)

[
n log

{
1 +

δ2

(n− p)y2

}]1/2
, (3)

and the signed-root log-likelihood ratio statistic forM1 is r1
{
(θ̂−θ)/v

1/2
θ , τ̂ /v

1/2
τ , σ̂

}
,

where

r1(δ, x, y) = sign(δ − ρx)

(
n log

[
1 +

(δ − ρx)2

(1− ρ2){x2 + (n− p)y2}

])1/2

. (4)

Profile likelihood confidence intervals for θ with nominal coverage 1− α under M1

and M2 are obtained by solving equations based on

a1(δ, x, y) = Φ{r1(δ, x, y)} and a2(δ, y) = Φ{r2(δ, y)},

where Φ is the standard normal cumulative distribution function. These functions

obviously satisfy the conditions of Theorems 1 and 2. We show in the Supplementary

Online Material that these functions also satisfy the conditions of Theorem 3. So

these Theorems describe the properties of the Fletcher and Turek (2011) MPI and

are used to construct Figures 1–2 in the next Section.

Turek and Fletcher (2012) consider tail area confidence intervals for θ with nom-

inal coverage 1− α under M1 and M2 that are obtained from the t ratios

r2(δ, y) = δ/y and r1(δ, x, y) =
δ − ρx

(
x2+(n−p)y2

n−p+1

)1/2
(1− ρ2)1/2

by solving equations based on

a1(δ, x, y) = Gn−p+1{r1(δ, x, y)} and a2(δ, y) = Gn−p{r2(δ, y)},

where Gν is the distribution function of Student’s t distribution with ν degrees of

freedom. These functions obviously satisfy the conditions of Theorems 1 and 2. We

show in the Supplementary Online Material that these functions also satisfy the

conditions of Theorem 3. So these Theorems also describe the properties of the
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Turek and Fletcher (2012) MATA and are used to construct Figures 3–4 in the next

Section.

For MPI, the upper bound for the minimum coverage probability given in Corol-

lary 1 is

P
(
θ̂2l ≤ θ ≤ θ̂2u

)
= 2Gn−p


(n− p)1/2

{
exp

(
z21−α/2

n

)
− 1

}1/2

− 1. (5)

This upper bound is very easily computed and can be used to provide some guidance

as to when MPI should not be used. For MPI, (5) can be well below the nominal

coverage 1−α because the profile likelihood confidence interval under M2 can have

poor coverage. To see this note that for fixed p/n = r, the coverage of the profile

likelihood interval under M2 is

P
(
θ̂2l ≤ θ ≤ θ̂2u

)
= 2Gn(1−r)

[
(1− r)1/2

{
z21−α/2 +O(n−1)

}1/2
]
− 1

→ 2Φ
{
(1− r)1/2z1−α/2

}
− 1 , as n → ∞,

where z1−α/2 = Φ−1(1− α/2) is the (1− α/2)-quantile of the standard normal dis-

tribution. Thus the coverage probability of the profile likelihood confidence interval

under M2 (and hence MPI) decreases as p/n = r increases and is substantially

less than the nominal coverage 1− α unless p/n is small. In contrast, the tail area

interval under M2 with nominal coverage 1− α has coverage 1− α so the coverage

of MATA with nominal coverage 1−α approaches 1−α as γ → ∞. Thus we expect

MATA to have better coverage properties than MPI.

3 Cloud seeding example

In this Section, we illustrate how we can use our theoretical results in the context of

a real data example from a cloud seeding experiment. The data are presented and

analysed by Biondini, Simpson and Woodley (1997), Miller (2002, Section 3.12)

and Kabaila (2005). Following Kabaila (2005), we compare the effect of seeding
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(TRT=1) against the random control (TRT=2) treatment in the moving echo mo-

tion category (CAT=1) subgroup of the data. The response variable is the floating

target rainfall volume and the sample size is n = 33. In addition to the treatment

indicator, there are five other predictor variables, which include seedability. A de-

tailed description of these variables and the units of measurement used, are provided

in the Supplementary Online Material. The models considered by Miller (2002, Sec-

tion 3.12) and Kabaila (2005) included the intercept, treatment indicator, the main

effects, squared effects and the interactions between the five predictor variables so

that p, the dimension of the regression parameter vector, is 22. All these additional

variables can be included in the model or not; variable selection has been carried out

by Miller (2002, Section 3.12) and Kabaila (2005) for many variables in this study.

For illustration, we consider model averaging over the full model (p = 22) and the

submodel excluding the squared seedability term whose coefficient we denote by τ .

The goal is to construct a 95% confidence interval for θ, the expected response when

cloud seeding is used minus the expected response under random control when all

the other explanatory variables are the same.

We can construct several confidence intervals for θ with nominal coverage 0.95.

The standard (tail area) Student t confidence interval is [−0.327, 3.421] under M2.

AIC selects M1 so the naive approach of ignoring the model selection process leads

to using the standard interval [0.474, 2.650] computed under M1. The MATA is

[−0.183, 3.370]. The profile-likelihood confidence interval is [0.554, 2.539] under M2

and the MPI is [0.618, 2.572].

For MPI, we plot the exact coverage and the scaled expected length in Figures 1

and 2, respectively. We find that the coverage probability of MPI is close to 0.7315

for all γ rather than the nominal 0.95 and the scaled expected length is close to

one for all γ. Therefore, MPI is actually similar to the standard 0.7315 confidence

interval for θ. The minimum coverage of MPI decreases as |ρ| increases and as p/n

increases. For the cloud seeding example, p/n = 2/3 which is not small and the

correlation between θ̂ and τ̂ is ρ = 0.2472 which is small and positive. The poor
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minimum coverage of MPI is due to the value of p/n not being small.

[Figures 1 and 2 near here]

For MATA, we plot the exact coverage and the scaled expected length in Figures

3 and 4, respectively. We find that the coverage probability of MATA is close to 0.95

for all γ with a minimum coverage probability 0.9465 and the scaled expected length

is close to one for all γ. Therefore, MATA is similar to and offers no improvement

on the standard 0.95 confidence interval for θ under M2. The minimum coverage

of MATA decreases as |ρ| increases but the interval is still better than MPI.

[Figures 3 and 4 near here]

It is interesting to compare the MPI and MATA interval with the confidence

interval constructed after selecting between models M1 and M2 the model with

smaller AIC and ignoring the selection process. The coverage probability of this

interval as a function of γ is shown in Figure 5 (Kabaila and Giri, 2009a, b). Com-

paring this with Figure 1, we see that the coverage probability for this post-model-

selection interval is uniformly far better than that of the MPI. In contrast, MATA

has slightly better coverage probability than this post-model-selection interval.

[Figure 5 near here]

Additional figures and a second example are included in the Supplementary

Online Material.

4 Conclusion

We have examined the exact coverage and scaled expected length of a class of model

averaged confidence intervals for a parameter θ, with nominal coverage 1− α, that

includes MPI and MATA in a particular simple situation in which there are two

linear regression models (differing in only a single parameter τ) to average over. We
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showed that both the coverage and the scaled expected length depend on n, n− p,

the correlation ρ between the least squares estimators θ̂ and τ̂ , and the unknown

true value γ = τ
/(

σv
1/2
τ

)
. As γ is unknown, it is useful to consider the minimum

coverage and the maximum scaled expected length over γ.

Our results show that MPI can perform poorly when p/n is not small or when

|ρ| is large, and should not be used in these situations. In these situations, MPI

performs no better than than post-model-selection confidence intervals which ignore

the selection process. MATA performs better than MPI and post-model-selection

confidence intervals but, for the examples that we consider, offers little over simply

using the standard confidence interval for θ under M2 with the same nominal level.

An ideal confidence interval should have minimal coverage equal to its nominal

coverage and, to show a benefit of model selection, have scaled expected length that

(a) is substantially less than 1 under M1 and (b) has a maximum value that it not

much larger than 1 and (c) is close to 1 if the data happens to strongly contradict

the model M1. This is evidently difficult to achieve.

Performing well in the simple situation we have developed in this paper does not

mean that a model averaging procedure will always perform well. In particular, we

also need to explore other situations, such as other models. For example, MATA is

related to the Wald statistic and such statistics often do not perform well in discrete

data problems.
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Appendix

Proof of Theorem 1

The coverage probability of the model averaged confidence interval
[
θ̂l, θ̂u

]
(aver-

aged over M1 and M2), with nominal coverage 1− α, is

P
(
θ̂l ≤ θ ≤ θ̂u

)
= 1− P

(
θ < θ̂l

)
− P

(
θ̂u > θ

)
.

Now h(δ, x, y) is an increasing function of δ for fixed x and y so

P
(
θ < θ̂l

)

= P
{
(θ̂ − θ)

/(
σv

1/2
θ

)
> (θ̂ − θ̂l)

/(
σv

1/2
θ

)}

= P
[
h
{
(θ̂ − θ)

/(
σv

1/2
θ

)
, τ̂
/(

σv1/2τ

)
, σ̂/σ

}
> 1− α/2

]

= P
[
(θ̂ − θ)/(σv

1/2
θ ) > δ1−α/2

{
τ̂ /(σv1/2τ ), σ̂/σ

}]

=

∫
∞

0

∫
∞

−∞

P
[
(θ̂ − θ)/(σv

1/2
θ ) > δ1−α/2{τ̂ /(σv

1/2
τ ), σ̂/σ}

∣∣∣τ̂ /(σv1/2τ ) = x, σ̂/σ = y
]

×φ(x− γ) fn−p(y) dx dy,
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where γ = τ/(σv
1/2
τ ). Now the distribution of (θ̂ − θ)/(σv

1/2
θ ) conditional on

τ̂ /(σv
1/2
τ ) = x is N

(
ρ(x − γ), 1 − ρ2

)
, τ̂ /(σv

1/2
τ ) ∼ N(γ, 1) and θ̂ and τ̂ are in-

dependent of σ̂, so

P
[
(θ̂ − θ)/(σv

1/2
θ ) > δ1−α/2{τ̂ /(σv

1/2
τ ), σ̂/σ}

∣∣ τ̂ /(σv1/2τ ) = x, σ̂/σ = y
]

= P
{
(θ̂ − θ)/(σv

1/2
θ ) > δ1−α/2(x, y)

∣∣ τ̂ /(σv1/2τ ) = x
}

= 1− P
{
(θ̂ − θ)/σv

1/2
θ ≤ δ1−α/2(x, y)

∣∣ τ̂ /(σv1/2τ ) = x
}

= 1− Φ

{
δ1−α/2(x, y)− ρ(x− γ)

(1− ρ2)1/2

}

and hence

P
(
θ < θ̂l

)
=

∫
∞

0

∫
∞

−∞

[
1− Φ

{
δ1−α/2(x, y)− ρ(x− γ)

(1− ρ2)1/2

}]
φ(x− γ)fn−p(y) dx dy.

Similarly,

1− P
(
θ̂u > θ

)
= P

(
θ < θ̂u

)

= P
[
h{(θ̂ − θ)/(σv

1/2
θ ), τ̂ /(σv1/2τ ), σ̂/σ} > α/2

]

= P
[
(θ̂ − θ)/(σv

1/2
θ ) > δα/2{τ̂ /(σv

1/2
τ ), σ̂/σ}

]

=

∫
∞

0

∫
∞

−∞

[
1− Φ

{
δα/2(x, y)− ρ(x− γ)

(1 − ρ2)1/2

}]
φ(x− γ) fn−p(y) dx dy.

Proof of Corollary 1

From the proof of Theorem 1, we can write

P
(
θ < θ̂l

)
= 1− P

{
h(G,H,W ) ≤ 1− α/2

}
,

where G = (θ̂ − θ)/σv
1/2
θ ∼ N(0, 1), H = τ̂ /σv

1/2
τ ∼ N(γ, 1), (n − p)W 2 = (n −

p)σ̂/σ ∼ χ2
n−p and (G,H) andW are independent. Note that w1(H

2/W 2) converges

in probability to 0, as γ → ∞. Since 0 < a1(δ, x, y) < 1 and 0 < a2(δ, y) < 1 for all

x ∈ R and y > 0, it follows from the definition (1) of h that h(G,H,W ) converges in

probability to a2(G,W ), as γ → ∞. Thus, h(G,H,W ) converges in distribution to
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a2(G,W ), as γ → ∞. The cumulative distribution function of a2(G,W ), evaluated

at u, is a continuous function of u ∈ R. Therefore

P
(
θ < θ̂l

)
→ 1− P

{
a2(G,W ) ≤ 1− α/2

}
, as γ → ∞.

Now consider the confidence interval
[
θ̂2l, θ̂2u

]
, with nominal coverage 1 − α

under M2. The lower endpoint of this confidence interval satisfies

a2

(
θ̂ − θ̂2l

σv
1/2
θ

,
σ̂

σ

)
= 1− α/2.

Note that

P
(
θ < θ̂2l

)
= P

(
θ̂ − θ

σv
1/2
θ

>
θ̂ − θ̂2l

σv
1/2
θ

)

= P

{
a2

(
θ̂ − θ

σv
1/2
θ

,
σ̂

σ

)
> a2

(
θ̂ − θ̂2l

σv
1/2
θ

,
σ̂

σ

)}

= P
{
a2(G,W ) > 1− α/2

}

= 1− P
{
a2(G,W ) ≤ 1− α/2

}
.

So P
(
θ < θ̂l

)
→ P

(
θ < θ̂2l

)
, as γ → ∞. Similarly, P

(
θ < θ̂u

)
→ P

(
θ < θ̂2u

)
, as

γ → ∞ and the Corollary 1 holds.

Proof of Theorem 2

The expected length of the model averaged confidence interval
[
θ̂l, θ̂u

]
(averaged

over M1 and M2), with nominal coverage 1− α, is

E
(
θ̂u − θ̂l

)
= σ v

1/2
θ E

{
(θ̂ − θ̂l)/(σv

1/2
θ )− (θ̂ − θ̂u)/(σv

1/2
θ )

}

= σv
1/2
θ E

[
δ1−α/2

{
τ̂ /(σv1/2τ ), σ̂/σ

}
− δα/2

{
τ̂ /(σv1/2τ ), σ̂/σ

}]

= σ v
1/2
θ

∫
∞

0

∫
∞

−∞

{
δ1−α/2(x, y) − δα/2(x, y)

}
φ(x− γ) fn−p(y) dx dy.

Proof of Theorem 3

We make the dependence of δu(x, y) on ρ explicit by using the notation δu(x, y, ρ) in

place of δu(x, y). Recall that under the conditions of the Theorem δ1−α/2(−x, y, ρ) =

−δα/2(x, y, ρ) and δ1−α/2(x, y,−ρ) = δα/2(−x, y, ρ).
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Proof: For the coverage.

Let

C(γ, ρ) =

∫
∞

0

∫
∞

−∞

[
Φ

{
δ1−α/2(x, y, ρ)− ρ(x− γ)

(1− ρ2)1/2

}

−Φ

{
δα/2(x, y, ρ) − ρ(x− γ)

(1− ρ2)1/2

}]
φ(x− γ) fn−p(y) dx dy.

For each fixed ρ,

C(−γ, ρ) =

∫
∞

0

∫
∞

−∞

[
Φ
{δ1−α/2(x, y, ρ)− ρ(x+ γ)

(1− ρ2)1/2

}

−Φ
{δα/2(x, y, ρ) − ρ(x+ γ)

(1− ρ2)1/2

}]
φ(x+ γ) fn−p(y) dx dy

=

∫
∞

0

∫
∞

−∞

[
Φ
{δ1−α/2(−z, y, ρ)− ρ(−z + γ)

(1− ρ2)1/2

}

−Φ
{δα/2(−z, y, ρ) − ρ(−z + γ)

(1− ρ2)1/2

}]
φ(−z + γ) fn−p(y) dz dy

=

∫
∞

0

∫
∞

−∞

[
Φ
{
−

δα/2(z, y, ρ) − ρ(z − γ)

(1− ρ2)1/2

}

−Φ
{
−

δ1−α/2(z, y, ρ)− ρ(z − γ)

(1− ρ2)1/2

}]
φ(z − γ) fn−p(y) dz dy

= C(γ, ρ).

The second line follows by changing the variable to z = −x, the third follows by

hypothesis and the fact that the standard normal density is an even function, and

the fourth follows from the fact that Φ(−x) = 1− Φ(x).

By hypothesis, δu(x, y,−ρ) = δu(−x, y, ρ). Thus, for each fixed γ,

C(γ,−ρ) =

∫
∞

0

∫
∞

−∞

[
Φ
{δ1−α/2(−x, y, ρ) + ρ(x− γ)

(1− ρ2)1/2

}

−Φ
{δα/2(−x, y, ρ) + ρ(x− γ)

(1− ρ2)1/2

}]
φ(x− γ) fn−p(y) dx dy

=

∫
∞

0

∫
∞

−∞

[
Φ
{
−

δα/2(x, y, ρ)− ρ(x− γ)

(1− ρ2)1/2

}

−Φ
{
−

δ1−α/2(x, y, ρ)− ρ(x− γ)

(1− ρ2)1/2

}]
φ(x− γ) fn−p(y) dx dy

= C(γ, ρ),
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where the second line follows from the Lemma and the third from the fact that

Φ(−x) = 1− Φ(x).

Proof: For the expected length.

The expected length and the scaled expected length are proportional to

L(γ, ρ) =

∫
∞

0

∫
∞

−∞

{δ1−α/2(x, y, ρ)− δα/2(x, y, ρ)}φ(x − γ) fn−p(y) dx dy.

For each fixed ρ,

L(−γ, ρ) =

∫
∞

0

∫
∞

−∞

{δ1−α/2(x, y, ρ)− δα/2(x, y, ρ)}φ(x + γ) fn−p(y) dx dy

=

∫
∞

0

∫
∞

−∞

{δ1−α/2(−z, y, ρ)− δα/2(−z, y, ρ)}φ(−z + γ) fn−p(y) dz dy

=

∫
∞

0

∫
∞

−∞

{−δα/2(x, y, ρ) + δ1−α/2(z, y, ρ)}φ(z − γ) fn−p(y) dz dy

= L(γ, ρ).

The second line follows by changing the variable to z = −x and the third follows

by hypothesis and the fact that the standard normal density is an even function.

It follows from δu(x, y,−ρ) = δu(−x, y, ρ) that

L(γ,−ρ) =

∫
∞

0

∫
∞

−∞

{δ1−α/2(−x, y, ρ)− δα/2(−x, y, ρ)}φ(x − γ) fn−p(y) dx dy

=

∫
∞

0

∫
∞

−∞

{−δα/2(x, y, ρ) + δ1−α/2(x, y, ρ)}φ(x − γ) fn−p(y) dx dy

= L(γ, ρ),

where the second line follows by hypothesis.
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Figure 1: Plot of the coverage probability for MPI, with nominal coverage 0.95, for the seeding

effect in the cloud seeding example when the submodel is defined by setting the coefficient of

the squared seedability equal to zero.
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Figure 2: Plot of the scaled expected length for MPI, with nominal coverage 0.95, for the seeding

effect in the cloud seeding example when the submodel is defined by setting the coefficient of

the squared seedability equal to zero.
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Figure 3: Plot of the coverage probability for MATA, with nominal coverage 0.95, for the seeding

effect in the cloud seeding example when the submodel is defined by setting the coefficient of

the squared seedability equal to zero.
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Figure 4: Plot of the scaled expected length for MATA, with nominal coverage 0.95, for the

seeding effect in the cloud seeding example when the submodel is defined by setting the coefficient

of the squared seedability equal to zero.
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Figure 5: Plot of the coverage probability for the post-model-selection confidence interval, with

nominal coverage 0.95, for the seeding effect in the cloud seeding example when the possible

models are the full model and the submodel defined by setting the coefficient of the squared

seedability equal to zero. The model selected is the model with smaller AIC.
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