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Model averaging in ecology: a review of Bayesian, information-theoretic,
and tactical approaches for predictive inference
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JOS�E J. LAHOZ-MONFORT,3 LAURA J. POLLOCK,12 BJ€ORN REINEKING,13,14 DAVID R. ROBERTS ,1,15 BORIS SCHR€ODER ,16,17

WILFRIED THUILLER,12 DAVID I. WARTON,18 BRENDANA.WINTLE,3 SIMON N.WOOD,19 RAFAELO.W€UEST,12,20 AND FLORIAN HARTIG
1,21

1Biometry and Environmental System Analysis, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
2Conservation Ecology Center, Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia 22630 USA

3School of BioSciences, University of Melbourne, Royal Parade, Parkville, Melbourne, Victoria 3052 Australia
4School of Mathematics, Statistics and Actuarial Science, University of Kent, Parkwood Road, Canterbury CT2 7FS UK

5Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435 USA
6Institute of Nature Conservation, Polish Academy of Sciences, al. A. Mickiewicza 33, 31-120 Krak�ow, Poland

7Department of Biology, University of York, Wentworth Way, York YO10 5DD UK
8Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Belfield D4, Dublin, Ireland

9Computational Landscape Ecology, Helmholtz Centre for Environmental Research-UFZ, Permoser Str. 15, 04318 Leipzig, Germany
10German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103 Leipzig, Germany

11Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
12Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, Laboratoire d’Ecologie Alpine (LECA), Grenoble 38000 France

13University Grenoble Alpes, Irstea, UR LESSEM, F-38402 St-Martin-d’H�eres, Grenoble, France
14Biogeographical Modelling, Bayreuth Center of Ecology and Environmental Research Bay CEER, University of Bayreuth,

Dr. Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
15Department of Geography, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4 Canada

16Landscape Ecology and Environmental Systems Analysis, Institute of Geoecology, Technische Universit€at Braunschweig, Langer Kamp 19c, 38106
Braunschweig, Germany

17Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195 Berlin, Germany
18School of Mathematics and Statistics, Evolution and Ecology Research Centre, University of New SouthWales, Sydney, New SouthWales 2052 Australia

19School of Mathematics, Bristol University, Tyndall Avenue, Bristol BS8 1TWUK
20Swiss Federal Institute for Forest, Snow and Landscape ResearchWSL, Z€urcherstrasse 111, 8903 Birmensdorf, Switzerland

21Theoretical Ecology, University of Regensburg, Universit€atsstr. 31, 93053 Regensburg, Germany

Abstract. In ecology, the true causal structure for a given problem is often not known, and several
plausible models and thus model predictions exist. It has been claimed that using weighted averages of
these models can reduce prediction error, as well as better reflect model selection uncertainty. These claims,
however, are often demonstrated by isolated examples. Analysts must better understand under which con-
ditions model averaging can improve predictions and their uncertainty estimates. Moreover, a large range
of different model averaging methods exists, raising the question of how they differ in their behaviour and
performance. Here, we review the mathematical foundations of model averaging along with the diversity of
approaches available. We explain that the error in model-averaged predictions depends on each model’s
predictive bias and variance, as well as the covariance in predictions between models, and uncertainty
about model weights. We show that model averaging is particularly useful if the predictive error of con-
tributing model predictions is dominated by variance, and if the covariance between models is low. For
noisy data, which predominate in ecology, these conditions will often be met. Many different methods to
derive averaging weights exist, from Bayesian over information-theoretical to cross-validation optimized
and resampling approaches. A general recommendation is difficult, because the performance of methods is
often context dependent. Importantly, estimating weights creates some additional uncertainty. As a result,
estimated model weights may not always outperform arbitrary fixed weights, such as equal weights for all
models. When averaging a set of models with many inadequate models, however, estimating model weights
will typically be superior to equal weights. We also investigate the quality of the confidence intervals calcu-
lated for model-averaged predictions, showing that they differ greatly in behaviour and seldom manage to
achieve nominal coverage. Our overall recommendations stress the importance of non-parametric methods
such as cross-validation for a reliable uncertainty quantification of model-averaged predictions.

Key words: AIC weights; ensemble; model averaging; model combination; nominal coverage; prediction
averaging; uncertainty.
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INTRODUCTION

Models are an integral part of ecological research, repre-

senting alternative, possibly overlapping, hypotheses (Cham-

berlin 1890). They are also the standard approach to

making predictions about ecological systems (Mouquet

et al. 2015). In many cases, it is not possible to clearly iden-

tify a single most-appropriate model. For instance, process-

based models may differ in the specific ways they represent

ecological mechanisms, without a clear empirical or theoret-

ical reason to prefer one option over the other. Statistical

analyses rarely offer a single solution, both because the lim-

ited amount of data allows for several plausible combina-

tions of predictors, and because different modelling

approaches are available for statistical analysis (e.g., Hastie

et al. 2009, Kuhn and Johnson 2013).

Model averaging seemingly solves this dilemma. Propo-

nents of this approach have claimed that calculating a

weighted average of the predictions of all candidate models

will reduce prediction error through reduced variance and

bias (the latter based on arguments described in Madigan

and Raftery 1994), as well as better represent uncertainty

about model parametrisation and structure (Wintle et al.

2003, see also Model averaging (typically) reduces prediction

errors). For some ecological examples of model averaging,

see Thuiller (2004), Richards (2005), Brook and Bradshaw

(2006), Dormann et al. (2008), Diniz-Filho et al. (2009), Le

Lay et al. (2010), Garcia et al. (2012), Cariveau et al.

(2013), Meller et al. (2014), and Lauzeral et al. (2015).

Evaluating the utility of this approach is complicated by

the large number of different methods for model averaging

and the subsequent uncertainty quantification of averaged

predictions. Several previous reviews on model averaging in

ecology and evolution focused exclusively on “information-

theoretical model averaging” (Johnson and Omland 2004,

Hobbs and Hilborn 2006, Burnham et al. 2011, Freckleton

2011, Grueber et al. 2011, Nakagawa and Freckleton 2011,

Richards et al. 2011, Symonds and Moussalli 2011), proba-

bly under the influence of the AIC-weighted (Akaike infor-

mation criterion) averaging popularized by Burnham and

Anderson (2002, Posada and Buckley 2004). Bayesian model

averaging has been used less frequently in ecology (for an

example see Corani and Mignatti 2015), but, for an excellent

recent review of this topic in the context of Bayesian model

selection, see Hooten and Hobbs (2015, see also Hoeting

et al. 1999, Ellison 2004, Link and Barker 2006). However,

none of the above covers all available model averaging

approaches, together with a general discussion of advan-

tages and disadvantages.

Our aim is to provide such a comprehensive review in the

light of developments over the last 20 years, summarizing

the mathematical reasoning behind model averaging, and

offering an intuitive but technically sound entry to the field,

illustrated by case studies. We primarily address prediction

averaging of correlative models, although most of the points

will similarly apply to mechanistic/process-based models

(see, e.g., Diks and Vrugt 2010, Knutti et al. 2010 for

reviews in the context of climate and hydrological models,

respectively). We do not consider averaging model parame-

ters, because we agree with the criticism summarized in Ban-

ner and Higgs (2017): parameters (such as partial regression

coefficients) are estimated conditional on the model struc-

ture; as the model structure changes, parameters may

become incommensurable (see Posada and Buckley 2004,

Cade 2015, Banner and Higgs 2017, and Appendix S1.1 for

short review of the parameter-averaging literature). Instead,

our focus is on prediction, and predictive inference (sensu

Geisser 1993), as exemplified by model-averaged predictions

of species potential occurence for reserve-site selection (Mel-

ler et al. 2014) or the effect of roads on occupancy of ponds

by frogs (Dai and Wang 2011). Also, we only focus on aver-

aging sets of models that differ in structure, as opposed to

mere differences in initial conditions or parameter values

(Gibbs 1902, Johnson and Bowler 2009). The latter case is

called “ensemble” in the statistical and physical sciences,

while in ecology that term is used more loosely.

This review is divided into five parts: first, we present the

mathematical logic behind model averaging, and why this

alone puts severe constraints on how we do model averaging.

Then, in the second part, we review the different ways

through which model-averaging weights can be derived,

comparing Bayesian, information-theoretic, and tactical

perspectives (by tactical we mean heuristic approaches to

model averaging that are not explicitly based on statistical

theory). This is followed by a brief exploration of how to

quantify the uncertainty of model-averaged predictions.

Finally, we briefly illustrate model averaging with two

case studies, before closing with unresolved challenges, and

recommendations.

THE MATHEMATICS BEHIND MODEL AVERAGING

In accordance with virtually all discussions of model aver-

aging we encountered, we first focus on how model averag-

ing reduces prediction error, here quantified as mean

squared error (MSE) of a prediction bYm of model m. As for

any estimator, we can decompose this error into contribu-

tions of bias and variance:

MSEð bYmÞ ¼ biasð bYmÞ
n o2

þ varð bYmÞ: (1)

Bias refers to a systematic model error that would not

change if a new data set for the same system became avail-

able, while variance refers to the expected spread of model

predictions when fit with hypothetical new data sets for the

same system.

We can use Eq. 1 to examine the error of a weighted aver-

age eY of the predictions of several (M) contributing models,
bY1; bY2; . . .; bYM

eY ¼
XM

m¼1

wm
bYm; with

XM

m¼1

wm ¼ 1: (2)

The motivation for the weights wm is to adjust the average

such that is has improved properties over a simple average

(with equal weights) or a single candidate models (all weight

on one model).

We can see from Eq. 1 that bias, i.e., the difference

between the expectation of the averaged predictions and the

truth ( eY � y�), will depend directly on the bias of the con-

tributing models, as well as their weights (Eq. 2). The

486 DORMANN ET AL. Ecological Monographs
Vol. 88, No. 4

R
E
V
IE
W



statistical model-averaging literature often assumes that

individual models have no bias, and therefore tends to be

less interested in its contribution (Bates and Granger 1969,

Buckland et al. 1997, Burnham and Anderson 2002). In

contrast, for process models, reducing bias is often named as

one of the main motivations for model averaging (e.g., Solo-

mon et al. 2007, Gibbons et al. 2008, Dietze 2017). Implic-

itly, the assumption here is that model biases will tend to fall

on both sides of the truth, in which case they may cancel out

in an average.

Prediction variance (arising from n hypothetical repeated

samplings) is composed of two terms, the variance of each

contributing model’s prediction

varð bYmÞ ¼
1

n� 1

Xn

i¼1

ð bYm � bY i
mÞ

2

and the covariances between predictions of model m and m0

covð bYm; bY m0Þ ¼
1

n� 1

Xn

i¼1

ð bYm � bY i
mÞð
bYm0 � bY i

m0Þ

For the average of two predictions, bY1 and bY2, this yields

varð eY Þ ¼ w2
1varð

bY1Þ þw2
2varð

bY2Þ þ 2w1w2covð bY1; bY2Þ (3)

When averaging several models, we expand Eq. 3 to

varð eY Þ ¼ var
XM

m¼1

wm
bYm

 !
¼
XM

m¼1

w2
mvarð

bYmÞ

þ
XM

m¼1

X

m0 6¼m

wmwm0covð bYm; bYm0Þ

¼
XM

m¼1

XM

m0¼1

wmwm0covð bYm; bYm0Þ

¼
XM

m¼1

XM

m0¼1

wmwm0qmm0rð bYmÞrð bYm0Þ

(4)

where qmm0 is the correlation between bYm and bYm0 , and r(.)

is their standard deviation.

Combining Eqs. 1 and 3 we can see that the error of a

model-averaged prediction decomposes into

MSEð eY Þ ¼
XM

m¼1

wm Eð bYmÞ � y�
� � !2

þ
XM

m¼1

XM

n¼1

wmwm0qmm0rð bYmÞrð bYm0Þ

(5)

where Eð bYmÞ � y� ¼ biasð bYmÞ represents prediction bias.

FIG. 1. Conceptual depiction of the contributions of error to model averaging. (A) Contributing models have larger bias than variance.
The error of the average depends on how the bias is averaged out. It can increase or decrease compared to the best model. Adding a lot more
models will not change the error, unless this reduces bias. (B) Contributing models have similar bias and variance. In this case, averaging an
increasing number of models can reduce the variance of the error, while the bias remains. (C) Contributing models are unbiased, but have
large variance. In this case (assuming covariances between models are low), an increasing number of models can, in principle, make the error
arbitrarily small.

November 2018 MODEL AVERAGING IN ECOLOGY 487

R
E
V
IE
W



Understanding what influences the error of

model-averaged predictions

Eq. 5 allows us to make a number of statements about the

potential benefits of model averaging. We shall first illus-

trate the fundamental effects of bias, variance, and covari-

ance using simple toy examples. In the next sections, we

shall then move from this idealized examples to more realis-

tic situations.

First, when each model produces a distinct prediction, with

variances substantially lower than systematic differences

between models, bias dominates (Fig. 1 top). How useful

model averaging is in this situation depends on the biases of

the individual models (see also Fig. 2 top row). As model

variance increases (or bias decreases), the error term is

increasingly dominated by variance, and assuming covari-

ances are low, the variance of the average (and therefore the

mean error) will be smaller than the variance of the single

model (Fig. 1 bottom). If the covariance of model predictions

is low, increasing the number of models in the average will

generally decrease the variance and therefore the prediction

error, while the bias of the average has no general connection

to the number of averaged models (Fig. 2, right column).

We thus conclude that, as bias becomes large relative to

prediction variance, model averaging is less and less likely to

be useful for reducing variance – but it may still be useful

for reducing bias (under the condition of bidirectional bias:

Fig. 2, lower row).

To understand these effects in more detail, consider the unli-

kely, but didactically important case that model predictions

are independent, meaning that their covariance is 0 and the

correlation matrix qmn of Eq. 5 becomes the identity matrix

(or, equivalently, the covariance term of Eq. 4 vanishes). If we

also assume both predictions have equal variances,

varð bY1Þ ¼ varð bY2Þ ¼ varð bY Þ, since w2 ¼ 1� w1, the above

equation simplifies to varð eY Þ ¼ ð2w2
1 � 2w1 þ 1Þvarð bY Þ. If

one model gets all the weight, we have varð eY Þ ¼ varð bY Þ. If
the two models receive equal weight, we have varð eY Þ ¼
ð2� 0:52 � 2� 0:5þ 1Þvarð bY Þ ¼ 0:5varð bY Þ, a considerable

improvement in prediction variance (and the minimum of this

equation). Other weights fall between these values. In other

words, model averaging can reduce prediction error because

weights enter as quadratic terms in Eq. 3, rather than linearly.

Indeed, Bates and Granger (1969) showed that for unbiased

models with uncorrelated predictions, the variance in the aver-

age is never greater than the smaller of the individual predic-

tions (making the important assumption that the weights are

known, which will be discussed in section Estimating weights

can thwart the benefit of model averaging).

The next thing to note is that the correlation between

model predictions, i.e., the matrix ðqijÞ 2 R
M�M, substantially

affects the benefit of model averaging (see also Fig. 3 and

interactive tool in Data S1). In the best case, correlations

between model predictions are negative or at least absent,

and the second term of Eq. 5 is negative or vanishes. Under

these conditions, averaging can substantially decrease the

variance of the averaged prediction. As correlations between

predictions increase, the covariance term contributes more

and more to the overall prediction error. In the extreme case

of perfectly correlated predictions of the single models, model

averaging has no benefit for reducing prediction variance.

The effect of correlations on the potential reduction of pre-

diction error has an analogy in biodiversity studies, where it is

called the “portfolio effect” (e.g., Thibaut and Connolly 2013).

FIG. 2. Conceptualized outcomes of model averaging. Sampling distributions of model predictions are depicted as stylized empty triangle
on the see-saw (wider means less certain). Filled triangles represent the model predictions with unidirectionally bias (top row) or straddling
truth (bottom row), and positive, no, or negative covariances among model predictions in columns. In the top row, grey-shaded quadrants indi-
cate model combinations with bias in the same direction, leading to a biased average (tilted see-saw). In the bottom row, grey-shaded quadrants
indicate opposite biases, whichmay lead to less biased averaged prediction, assuming optimal model weights were found. Changes in prediction
covariance (columns) affect the uncertainty of the average, with negatively correlated predictions (right) yielding lowest uncertainty.
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It states that the fluctuation in biomass of a community is less

than the fluctuations of biomass of its members, because the

species respond to the environment differently. This asynchrony

in response is analogous to negative covariance in community

members’ biomass, buffering the sum of their biomasses.

This point also provides some important insights about

why machine learning methods, which often average a large

number of bad models, can work so well. When averaging

poor models, e.g., trees in a Random Forest, covariance is

negligible, but the variance of each model prediction is high.

Because wm becomes very small with hundreds of models

(approximately 1/M), the variance of many averaged poor

models (with similar variance) tends to be low: varð eY Þ ¼PM
m¼1

1
M2 varð bYmÞ þ 1

M2

PM
m¼1

P
m6¼n covð

bYm; bYnÞ � M 1
M2

varð bY Þ ¼ 1
M
varð bY Þ; where the second term disappears due

to lack of correlations among predictions. We may speculate

that poor models typically also exhibit substantial but bidi-

rectional bias, which again would be reduced by averaging.

Putting bias, variance and correlation together (Fig. 2),

we note that model averaging will deliver smaller prediction

error when bias is bidirectional (i.e., model predictions over-

and underestimate the true value: bottom row of Fig. 2) and

predictions are negatively correlated (Fig. 2 bottom right).

Uni-directional bias will remain problematic (top row of

Fig. 2), irrespective of covariances among predictions.

Thus, for a given set of weights, the prediction error of

model-averaged predictions depends on three things: the

bias of the model average, as emerging from the bias of the

individual models, the prediction variances of the individual

models, and the covariance of those predictions.

Estimating weights can thwart the benefit of model averaging

So far, we have assumed that weights have fixed values, and

thus there is no uncertainty about them. Yet, the aim of opti-

mizing predictive performance suggests that weights need to

be estimated from the data. But estimation brings associated

uncertainty with it, and this has implications for the actual

benefits of model averaging: estimated “optimal” weights will

be suboptimal (Nguefack-Tsague 2014). With such an error,

even for only mildly correlated predictions, the averaged pre-

diction will have more variance, and possibly bias, than if the

(unknown) truly optimal weights were used (Claeskens et al.

2016). It may, in fact, often be no better than one obtained

using arbitrary weights, e.g., equal weights (Clemen 1989,

Smith et al. 2009, Graefe et al. 2014, 2015). The “simple the-

oretical explanation” provided by Claeskens et al. (2016)

demonstrates that estimating weights introduces additional

variance into the prediction. As a consequence, the predic-

tions averaged with estimated weights may be worse than that

of a single model (in contrast to the assertion of Bates and

Granger 1969, see Claeskens et al. 2016 for an example).

Apart from the error of the estimate, a further open prob-

lem is to obtain a good estimator for the optimal weight in

the first place. Currently no closed solution is available, not

even for linear models (Liang et al. 2011). Neither Bayesian

nor information-theoretical model weights are designed to

minimize prediction error, and their weights will in general

not be optimal for that purpose. Some tactical approaches

estimate model weights explicitly to minimize prediction

error on hold-out data (in particular jackknife model aver-

aging and stacking; see Tactical approaches to computing

FIG. 3. When averaging is optimal, in the simplest case of two models that make correlated Gaussian predictions. The models are here
described by their biases (b1, b2, not shown), their standard deviations (r1, r2), and by the correlation (q) between them. Each panel shows
the regions in the ðr1; qÞ plane where model 1 is best (blue shading and contour line), model 2 is best (orange shading and contour line), and
where the optimal average is best (color gradient between blue and orange). Top row represents the case where weights, w, are known (i.e., with-
out error: rw ¼ 0), while the second row represents exactly the same settings, but with estimated weights (with uncertainty rw ¼ 0:2). Notice
that when w is estimated with uncertainty, the contours marking the transition between each single model and the average move into the
washed-out colours, i.e., deviate from the fixed w situation in the upper panels. These curves now represent a level set at the values
�w�
1 ¼ 1� rw (blue curve) and �w�

2 ¼ rw (orange curve). As a consequence, the area where model averaging with estimated weights is superior to
the better single model decreases substantially relative to the fixed w case, and disappears completely for rw � 0:5. Formal derivations for the
contours and the critical weights is given in Appendix S1.2, the interactive tool itself in Data S1. Biases are set to b1 ¼ 3 and b2 ¼ 2.
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model weights). Only these approaches are at least trying to

estimate optimal weights for minimizing predictive error.

The interactive tool we provide (Fig. 3) allows readers to

explore this issue in a simple two-model case. It shows that,

in this simple case, estimating weights substantially reduces

the parameter space where model averaging is superior to

the best single model. Thus, the bias-variance trade-off

applies also to model averaging, in the sense that weight esti-

mation introduces additional parameters and therefore

higher model complexity to the analysis. It is therefore

important to think carefully about when to use model aver-

aging, as it can add unnecessary complexity.

Uncertainty about the optimal weights does not imply that

estimated weights are of no use, or that the use of arbitrary

weights (e.g., equal weights) is generally superior. While uncer-

tainty in estimated weights increases prediction error, the abil-

ity to statistically downweight or wholly remove unsuitable

models from the prediction set is a substantial benefit. In

Claeskens et al. (2016) and similar simulations, all models

considered are “alright” (bias-free and with similar prediction

variance), which obviously need not be the case in practical

applications. Thus, the question is not if estimated model

weights are useful in general, but how useful they are beyond

their function of filtering out inferior models from the average.

We believe there is a benefit beyond this filter function, but we

recognize that there is a need for further research to better

demonstrate this benefit, and understand when it occurs.

Model averaging (typically) reduces prediction errors

To complement these theoretical considerations, we exam-

ined 180 studies (a random draws from the results of a sys-

tematic literature search: see Appendix S1.7) regarding

reported benefits from model averaging.

The majority of studies we encountred used an empirical

approach to assess predictive performance, i.e., forecasting,

hindcasting, or cross-validation to observed data (e.g.,

Namata et al. 2008, Marmion et al. 2009a,b, Grenouillet

et al. 2010, Montgomery et al. 2012, Engler et al. 2013,

Smith et al. 2013, Edeling et al. 2014, Trolle et al. 2014).

Model averaging typically yielded lower prediction errors

than the individual contributing models. Most of these stud-

ies used test data sets to estimate predictive success, and rely

critically on the assumption of independence between test

and training data sets (Roberts et al. 2017). Few studies used

simulated data to examine the performance of model averag-

ing under specific conditions (e.g., small sample size, model

structure uncertainty, missing data; Ghosh and Yuan 2009,

Schomaker 2012), and even fewer employ analytical mathe-

matics (Shen and Huang 2006, Potempski and Galmarini

2009, Chen et al. 2012, Zhang et al. 2013).

Quantifying uncertainty of model-averaged predictions

So far, we have shown that model averaging can produce

predictions with a smaller error than any of the contributing

models by averaging away their variance and bias. Those

gains, however, generally decrease with increasing covariance

of the individual model predictions, and increasing mean bias

of the contributing models. Moreover, weighted averaging

allows reducing the weight of models poorly supported by

data, but at the expense of introducing additional variance in

the average, induced by the weight estimation.

Besides having an estimate with low error, the second goal

of most statistical methods is to provide a measure of (un)cer-

tainty of that estimate. The nature of this measure differs

between tactical, Bayesian, and frequentist approaches. Tacti-

cal aproaches, such as machine learning, are usually satisfied

with providing an estimate of predictive error on new data,

typically obtained through cross-validation. This procedure

can be directly extended to model-averaged predictions.

For Bayesian and frequentist methods, the issue of extend-

ing the conventional methods for estimating uncertainty to

model-averaging is somewhat more complicated. Bayesian

methods quantify uncertainty via the posterior distribution,

which can be summarized by a Bayesian credible interval.

One would interpret a 95% credible interval as displaying a

95% certainty for the true value to be contained in the inter-

val. Frequentist methods traditionally provide a confidence

interval. Under repeated sampling of new data sets under

identical conditions, a correctly defined 95% confidence inter-

val should contain the true value in 95% of the cases.

To construct a frequentist confidence interval for a model-

averaged prediction, we have to ask ourselves how this model-

averaged prediction will spread around the true value under

repeated sampling. Fortunately, we have already derived this

result in Eqs. 1–5. For simple cases, we can directly convert

this into a confidence interval. For example, for an unbiased

average, with uncorrelated models of equal weight and vari-

ance, the standard deviation of the average, and thus its confi-

dence interval, should decrease with one over the square root

of the number of contributing models, times the confidence

interval of the single models. In general, however, the calcula-

tion of the confidence interval of the average will have to take

the confidence intervals of all contributing models, as well as

their weights, covariance and bias into account.

Buckland et al. (1997) proposed a simplification of Eq. 5,

which considers bias and variance of the averaged models

(for derivation see Burnham and Anderson 2002:159–162)

varð eY Þ ¼
XM

m¼1

wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð bYmÞ þ c2m

q !2

(6)

Misspecification bias of model m is computed as

cm ¼ bYm � eY , thus assuming (explicitly on page 604 of of

Buckland et al. 1997) that the averaged point estimate eY is

unbiased and can hence be used to compute the bias of the

individual predictions. This assumption can be visualized in

Fig. 2 as the situation where the empty triangles always sit

right on top of “truth.” This assumption is problematic, as it

cannot be met by unidirectionally biased model predictions,

nor when weights wm fail to get the weighting exactly right

and thus eY remains biased. Less problematically, Buckland

et al. (1997) also assumed that predictions from different

models are perfectly correlated, making the covariance term

as large as possible, and variance estimation conservative.

The distribution theory behind this approach has been criti-

cized as “not (even approximately) correct” (Claeskens and

Hjort 2008:207), but shown to work well in simulations

(Lukacs et al. 2010, Fletcher and Dillingham 2011).

Improving on Eq. 6 requires knowledge of the correlation of

model predictions qmm0 (Eq. 5). The key problem is that there
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is no analytical way to compute qmm0. Bootstrapping, although

computationally costly, offers a good solution to this problem.

While the obstacles to calculate confidence intervals

for model-averaged predictions may seem somewhat discour-

aging, it should be noted that alternatives to model averaging

do not necessarily fare better. Predictions from a selected sin-

gle-best model always underestimate the true prediction error

(e.g., Namata et al. 2008, Fletcher and Turek 2012, Turek and

Fletcher 2012). The reason is that the uncertainty about which

model is correct is not included in this final prediction: we pre-

dict as if we had not carried out model selection but had

known from the beginning which model would be the best (as

if the model had been “prescribed”: Harrell 2001). Thus, even

if we were able to choose, from our model set M, the model

closest to truth, we would still need to adjust the confidence

distribution for model selection; and a perfect adjustment was

analytically shown not to exist (Kabaila et al. 2015).

Accordingly, simulation studies have suggested that model

averaging may improve coverage (Wintle et al. 2003, Namata

et al. 2008, Zhao et al. 2013), presumably because the process

of averaging allows us to take into account model uncertainty

(Liang et al. 2011). Yet, given the diversity of approaches to

computing model weights encountered in Approaches to Esti-

mating Model-Averaging Weight, these studies cannot be seen

as conclusive, only as suggestive, for the improvement of

nominal coverage using model averaging. For example

Fletcher and Turek (2012) and Turek and Fletcher (2012)

explore how model averaging can improve the tail areas of

the confidence distribution. These two studies, however, as

well as those cited before, assumed that the full model, refer-

ring to the model that includes all sub-models prior to any

model selection (see Appendix S1.3), is not in the set. The

approach by Fletcher and Turek (2012) was re-analyzed by

Kabaila et al. (2015). The key finding of this latter study is

that the full model coverage was still superior to all other

model averaging approaches, suggesting that the full model

should currently be kept in mind, both for inference, minimal

bias and correct prediction intervals (see also Harrell

2001:59). Such findings sit uncomfortably with the bias–vari-

ance trade-off (Hastie et al. 2009), which states that overly

complex models have poor predictive performance; and

indeed the full model has high prediction variance.

Regrettably, such reasoning cannot be extended in an

obvious way to non-nested models, process models, or

machine learning models. Here, model averaging seems with-

out alternative for propagating model selection uncertainty

into prediction uncertainty more fairly.

Our final option to quantify uncertainty, the Bayesian

credible interval, can be interpreted as a mixture distribution.

In a two-step process, the model weights first determine the

probability of any model to be correct, and the uncertainty of

each model is then mixed additively into a averaged uncer-

tainty. If the predictions of all individual models are identical,

the final distribution will remain the same; from the perspec-

tive of Eq. 5, this is identical to assuming that the average

models are perfectly correlated, although the logical motiva-

tion for the mixing is different. If predictions differ widely,

e.g., due to bias, the mixed confidence distribution will be

much wider and possibly multi-modal.

To illustrate the various Bayesian and frequentist options,

we calculated predictive uncertainties and coverage for four

different options for a set of simple linear regressions in

Fig. 4:

1) Make the assumption that model-averaged predictions

are unbiased. Use bootstrapping to estimate covariances

of predictions for each model. From these estimates,

compute prediction variance according to Eq. 5. This

solution is computer-intensive, but it takes into account

covariance of model predictions. On the other hand, it

cannot account for bias, and should thus not be used

when bias of the estimator is suspected, for example from

cross-validation.

2) Make the assumption that model-averaged predictions

are unbiased. Use Buckland et al. (1997)’s approach

(Eq. 6). This will yield wider estimates than option 1,

because assumptions about bias and correlation are more

conservative.

3) Use a mixture distribution to compute the confidence

distribution of the average, assuming effectively that pre-

dictions from different models are perfectly correlated,

but possibly biased.

4) Fit the full model (if available) and use its confidence dis-

tribution, which can rarely be improved on (Kabaila

et al. 2015).

When averaging models with largely independent (i.e.,

uncorrelated) predictions, only the bootstrap-estimated covari-

ance matrix (option 1 above) will also compute lower vari-

ances (according to Eq. 4). In our example (Fig. 4, see Data

S1 for details), “propagation” produced the tightest confidence

interval (and hence lowest coverage), followed by “Buckland”

and “mixing”. However, neither of these confidence intervals

seemed large enough, as all had too low coverage (suggesting

model bias to be relevant in this example). Only the full model

produces accurate confidence intervals and coverage. Further

simulations along these lines will have to show how these

approaches perform for more complex models and situations.

APPROACHES TO ESTIMATING MODEL-AVERAGING WEIGHTS

So far, we have discussed the properties of a weighted

model average, but we have not discussed how to estimate

the model-averaging weights. Estimating weights aims at

abating poorly fitting, and elevating well-predicting models,

and the actual method for estimating weights has obvious

fundamental importance for the quality of an averaged pre-

diction. Different perspectives on model-averaging weights

have emerged (Table 1), which can be broadly classified into

four categories of decreasing probabilistic interpretability:

1) In the Bayesian perspective, model weights are probabili-

ties that model Mi is the “true” model (e.g., Link and

Barker 2006, Congdon 2007).

2) In the information-theoretic framework, model weights

are measures of how closely the proposed models

approximate the true model as measured by the Kull-

back-Leibler divergence, relative to other models.

3) In a “tactical” perspective, model weights are parameters to

be chosen in such away as to achieve best predictive perfor-

mance of the average. No specific interpretation of the

model is attached to the weights; they only have to work.
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4) Assigning fixed, equal weights to all predictions can be

seen as a reference na€ıve approach, representing the situ-

ation without adjusting for differences in models’ predic-

tive abilities.

We shall address these four perspectives in turn, also hint-

ing at relationships among them.

Bayesian model weights

Theory.—Bayes’ formula can be applied to choosing among

models in much the same way as to parameter values

(Wasserman 2000). To perform inference with multiple mod-

els and their parameters at the same time, one can write

down the joint posterior probability PðMi;HijDÞ of model

Mi with parameter vectorHi, given the observed data D, as

PðMi;HijDÞ / LðDjMi;HiÞ � pðHiÞ � pðMiÞ; (7)

where LðDjMi;HiÞ is the likelihood of model Mi, pðHiÞ is

the prior distribution of the parameters of the respective

model Mi, and pðMiÞ is the prior weight on model Mi.

In practice, one is often interested in some simplified statis-

tics from this distribution, such as the model with the highest

posterior model probability, or the distribution of a predic-

tion including model selection uncertainty. To obtain this

information, we can marginalize (i.e., integrate) over parame-

ter space, or marginalize over model space, respectively.

If we marginalize over parameter space, we obtain poste-

rior model weights that represent the relative probability of

each model (whilst marginalizing over model space yields

averaged parameters, which we shall not address here). We

can calculate these weights as the marginal likelihood of

each model, defined as the average of Eq. 7 across all k

parameters for any given model

PðDjMiÞ /

Z

H1

� � �

Z

Hk

LðDjMi;HiÞpðHiÞdH1 � � � dHk: (8)

From the marginal likelihood, we can compare models via

the Bayes factor, defined as the ratio of their marginal likeli-

hoods (e.g., Kass and Raftery 1995)

BFi;j ¼
PðDjMiÞ

PðDjMjÞ
¼

R
LðDjMi;HiÞpðHiÞdHiR
LðDjMj ;HjÞpðHjÞdHj

(9)

with the multiple integral now pulled together for notational

convenience. For more than two models, however, it is more

useful to standardize this quantity across all models in question,

calculating a Bayesian posterior model weight pðMijDÞ (includ-
ing model priors pðMiÞ: Kass and Raftery 1995) as

posterior model weighti ¼ pðMijDÞ

¼
PðDjMiÞ pðMiÞP
j PðDjMjÞpðMjÞ

:
(10)

FIG. 4. A comparison of different approaches to quantifying uncertainty when combining predictions from four linear models (dashed
curves) with equal weights. (A) Estimates of predictive uncertainty in a single example run. Truth is indicated by the vertical line. Error prop-
agation based on bootstrapped estimates for Eq. 5, Buckland et al.’s correction and model mixing yield (substantially) smaller uncertainties
than the full model. (B–E) Histograms of the cumulative density of the estimated uncertainties at the true values. The numbers display the
coverage for the 95% confidence interval.

492 DORMANN ET AL. Ecological Monographs
Vol. 88, No. 4

R
E
V
IE
W



Estimation in practice.—While the definition of Bayesian

model weights and averaged parameters is straightforward,

the estimation of these quantities can be challenging. In

practice, there are two options to numerically estimate the

quantities defined above, both with caveats.

The first option is to sample directly from the joint poste-

rior (Eq. 7) of the models and the parameters. Basic algo-

rithms such as rejection sampling can do that without any

modification (e.g., Toni et al. 2009), but they are inefficient

for higher-dimensional parameter spaces. More sophisti-

cated algorithms such as MCMC and SMC (see Hartig

et al. 2011, for a basic review) require modifications to deal

with the issue of different number of parameters when

changing between models. Such modifications (mostly the

reversible-jump MCMCs, rjMCMC; Green 1995; see

Appendix S1.5.1) are often difficult to program, tune and

generalize, which is the reason why they are typically only

applied in specialized, well-defined settings. The posterior

model probabilities of the rjMCMC are estimated as the

proportion of time the algorithm spent with each model,

measured as the number of iterations the algorithm drew a

particular model divided by the total number of iterations.

The second option is to approximate the marginal likeli-

hood in Eq. 8 of each model independently, renormalize that

into weights, and then average predictions based on these

weights. The challenge here is to get a stable approximation of

the marginal likelihood, which can be problematic (Weinberg

2012; see Appendix S1.5.1). Still, because of the relatively

simple implementation, this approach is a more common

choice than rjMCMC (e.g., Brandon and Wade 2006).

Influence of priors.—A problem for the computation of

model weights when performing Bayesian inference across

multiple models is the influence of the choice of parameter

priors, especially “uninformative” ones (see Chickering and

Heckerman 1997, Hoeting et al. 1999: section 5).

The challenge arises because in Eqs. 8 and 9 the prior density

pðhiÞ enters the marginal likelihood, and hence the Bayes fac-

tor, multiplicatively. This has the somewhat unintuitive conse-

quence that increasing the width of an uninformative

parameter prior will linearly decrease the model’s marginal like-

lihood (e.g., Link and Barker 2006). That Bayesian model

weights are strongly dependent on the width of the prior choice

has sparked discussion of the appropriateness of this approach

in situations with uninformative priors. For example, in situa-

tions where multiple nested models are compared, the width of

the uninformative prior may completely determine the com-

plexity of models that are being selected. One suggestion that

has been made is to not at all perform multi-model inference

with uninformative priors, but at least additional corrections

are necessary to apply Bayes factors weights (O’Hagan 1995,

Berger and Pericchi 1996). One such correction is to calibrate

the model on a part of the data first, use the result as new priors

and then perform the analysis described above (intrinsic Bayes

factor: Berger and Pericchi 1996, fractional Bayes factor: O’Ha-

gan 1995). If enough data are available so that the likelihood is

TABLE 1. Approaches to model averaging, in particular to deriving model weights, their computational speed, likelihood/number of
parameter requirement, as well as references to implementation in R.

Model averaging approach Speed
Likelihood value |
pm required?† Comments (R-package)‡

Reversible jump MCMC Slow Yes|no Requires individual coding of each model (rjmcmc)

Bayes factor Slow Yes|no Requires specification of priors (BayesianTools, BayesVarSel)

Bayesian model averaging
using expectation
maximization (BMA-EM)

Moderate Yes|no Requires validation step (BMA, EBMAforecast)

Fit-based weights Rapid-slow Yes|yes§ AIC, BIC, and Cp can be easily computed from fitted models
(stats, MuMIn). (LOO-CV as option in MuMIn,¶ also in loo,
cvTools, caret, crossval). DIC and WAIC should be implemented
in a Bayesian approach for full benefit (BayesianTools)

Adaptive regression by
mixing with model
screening (ARMS)

Moderate Yes|yes No up-to-date implementation (ARMS#)

Bootstrapped model
weights

Slow No|no (MuMIn,¶ boot, resample)

Stacking Slow No|no Requires validation step (MuMIn¶)

Jackknife model averaging
(JMA)

Slow No|no Computation time increases linearly with n (MuMIn,¶ boot,
resample)

Minimal variance Rapid No|no Based only on predictions (MuMIn¶)

Cos-squared Rapid No|no Based only on predictions (MuMIn¶)

Model-based model
combinations

Moderate No|no Requires setting up regression-type analysis with model
predictions, plus validation step‡

Equal weight (1/M) Rapid No|no M is number of models considered

Notes: AIC, Akaike information criterion; WAIC, widely applicable information criterion; BIC, Bayesian information criterion.
†Does this method require a maximum-likelihood fit and/or number of parameters (pm) of the model? Typically these two are linked, since

maximum-likelihood approaches typically employ the general linear model (GLM), which provides both information.
‡See also Appendix for details and case studies in Data SI for examples of implementation in R.
§While nonparametric models have no readily extractable number of parameters, a Generalized Degrees of Freedom-approach could be

used to compute them (Ye 1998). Similarly, but more efficiently, cross-validation can be used to estimate the effective number of parameters
(Hauenstein et al. 2017).
¶Implemented in MuMIn as part of this publication.
#http://users.stat.umn.edu/~sandy/courses/8053/handouts/Aaron/ARMS/.
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sufficiently peaked by the calibration step, this approach should

eliminate any complication resulting from the prior choice (for

an ecological example see van Oijen et al. 2013).

Bayesian-flavoured approaches.—Apart from the natural

Bayesian average (see also Yao et al. 2017), there are a num-

ber of other approaches that are connected to or inspired by

Bayesian thinking.

In a set of influential publications, Raftery et al. (1997),

Hoeting et al. (1999), and Raftery et al. (2005) introduced post

hoc Bayesian model averaging, i.e., for vectors of predictions

from already fitted models. The key idea is to iteratively esti-

mate the proportion of times a model would yield the highest

likelihood within the set of models (through expectation maxi-

mization, see Appendix S1.5.2 for details), and use this propor-

tion as model weight. In the spirit of the inventors, we refer to

this approach as Bayesian model averaging using Expectation-

Maximization (BMA-EM), but place it closer to a frequentist

than a Bayesian approach, as the models were not necessarily

(and in none of their examples) fitted within the Bayesian

framework. It has been used regularly, often for process models

(e.g., Gneiting et al. 2005, Zhang et al. 2009), where an

rjMCMC procedure would require substantial programming

work at little perceived benefit, but also in data-poor situations

in the political sciences (Montgomery et al. 2012).

Chickering and Heckerman (1997) investigate approxima-

tions of the marginal likelihood in Eq. 9, such as the Bayesian

Information Criterion (BIC, as defined in the next section; see

also Appendix S1.5.3) and find them to work well for model

selection, but not for model averaging. In contrast, Kass and

Raftery (1995:778) state the eBIC is an acceptable approxima-

tion of the Bayes factor, and hence suitable for model averag-

ing, despite being biased even for large sample sizes. These

approximations may be improved when using more complex

versions of BIC (SPBIC and IBIC; Bollen et al. 2012).

The “widely applicable information criterion” WAIC

(Watanabe 2010 and an equivalent WBIC Watanabe 2013)

are motivated and actually analytically derived in a Bayesian

framework (Gelman et al. 2014). With an uninformative

prior, it can be seen as a variation of AIC (see next section).

The WAIC is computed, for each model, from two terms

(Gelman et al. 2014): (1) the log pointwise predicted density

(lppd) across the posterior simulations for each of the n pre-

dicted values, defined as lppd ¼ log
Qn

i¼1 pposteriorðyiÞ; and

(2) a bias-correction term pWAIC ¼
Pn

i¼1 varðlogðpðyijhsÞÞÞ,
where var is the sample variance over all S samples of the

posterior distributions of parameters h. The WAIC is then

defined as WAIC ¼ �2lppdþ 2pWAIC. In other words, the

WAIC is the likelihood of observing the data under the pos-

terior parameter distributions, corrected by a penalty of

model complexity proportional to the variance of these like-

lihoods across the MCMC samples. Model weights are com-

puted from WAIC analogously to Eq. 11 below.

Information-theoretic model weights

In the information-theoretic perspective, models closer to

the data, as measured by the Kullback-Leibler divergence,

should receive more weight than those further away.

There are several approximations of the KL-divergence,

most famously Akaike’s Information Criterion (AIC; Akaike

1973, Burnham and Anderson 2002). AIC and related indices

can be computed only for likelihood-based models with known

number of parameters (pm), restricting the information-theore-

tic approach to GLM-like models (including GAM):

AICm ¼ �2‘m þ 2pm and

wm ¼
e�0:5ðAICm�AICminÞ

P
i2Me�0:5ðAICi�AICminÞ

(11)

where ‘m is the log-likelihood of model m.

In the ecological literature, AIC (and its sample-size cor-

rected version AICc, and its adaptations to quasi-likelihood

models such as QIC; Pan 2001, Claeskens and Hjort 2008) is

by far the most common approach to determine model

weights (for recent examples see, e.g., Dwyer et al. 2014,

Rovai et al. 2015), despite the fact that the reasoning behind

this choice is not entirely clear. AIC-weights (Eq. 11) have

been interpreted as Bayesian model probabilities (Burnham

and Anderson 2002:75, Link and Barker 2006), assuming a

specific, model complexity and sample size-dependent,

“savvy prior” (Burnham and Anderson 2002:302, see also

Hooten and Hobbs 2015:16, for reformulation as regulariza-

tion prior). An alternative interpretation is the proportion

of times a model would be chosen as the best model under

repeated sampling (Hobbs and Hilborn 2006), but such an

interpretation is contentious (Richards 2005, Bolker 2008,

Claeskens and Hjort 2008). In an anecdotal comparison,

Burnham and Anderson (2002:178) showed that AIC

weights are substantially different from bootstrapped model

weights. The latter were proposed by Buckland et al. (1997)

and represent the proportion of bootstraps a model is per-

forming best in terms of AIC: see case study 1 below. In sim-

ulations, AIC weights did not reliably identify the model

with the known lowest KL-divergence or prediction error

(Richards 2005, Richards et al. 2011). Instead, Mallows’

model averaging (MMA) has been shown to yield the lowest

mean squared error for linear models (Hansen 2007, Scho-

maker et al. 2010). Mallows’ Cp penalizes model complexity

equivalent to �2‘m � nþ 2pm (for n data points; rather than

AIC’s �2‘m þ 2pm, Eq. 11).

Schwartz’ Bayesian Information Criterion was derived to

find the most probable model given the data (Schwartz

1978, Shmueli 2010), equivalent to having the largest Bayes

factor (see previous section). BIC uses logðnÞ rather than

AIC’s “2” as penalization factor for model complexity

(Appendix S1.5.3). A particularly noteworthy modification

of the AIC exist, where the model fit is assessed with respect

to a focal predictor value, e.g., a specific age or temperature

range, yielding the Focussed Information Criterion (FIC;

Claeskens and Hjort 2008). We are not aware of a systematic

simulation study comparing the performance of these model

averaging weights, but AIC’s dominance should not indicate

its superiority (see also case study 1 below).

The weighting procedure can additionally be wrapped

into a cross-validation and model pre-selection, which leads

to the ARMS-procedure (Adaptive Regression by Mixing

with model Screening; Yang 2001, Yuan and Yang 2005,

Yuan and Ghosh 2008). We shall not present details on

ARMS here (for cross-validation see next section), because

we regard model pre-selection as an unresolved issue (see
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Validation-based weighting or validation-based pre-selection

of models).

Tactical approaches to computing model weights

Methods covered in this section share the “tactical” goal

of choosing weights to optimize prediction (e.g., reduce pre-

diction error), without a specific reference to a statistical

theory such as Bayesian inference or information theory.

The most straightforward approach in this area is to make

the averaging weight dependent on an estimate of the predic-

tive error of each model, usually obtained by cross-valida-

tion. Cross-validation approximates a model’s predictive

performance on new data by predicting to a hold-out part of

the data (typically between 5 and 20 folds, down to leave-

one-out cross-validation, which omits each single data point

in turn). The fit to the hold-out can be quantified in differ-

ent ways. If the data can be reasonably well described by a

specific distribution with log-likelihood function ‘ (even if

the model algorithm itself is non-parametric), the log-likeli-

hood of the data in the k folds can be computed and

summed (van der Laan et al. 2004, Wood 2015:36):

‘mCV ¼
Xk

i¼1

‘ðy½i�jĥ
m
y½�i�

Þ (12)

where the index ½�i� indicates that the data y½i� in fold i were

not used for fitting model m and estimating model parameters

ĥmy½�i�
. It can be shown that leave-one-out cross-validation log-

likelihood is asymptotically equivalent to AIC and thus KL-

distance (Stone1977), albeit at a higher computational cost.

Hence, computing model weights wm
CV (Hauenstein et al. 2017)

wm
CV ¼

e‘
m
CV

P
i2M e‘

i

CV

(13)

creates a weighting scheme very similar to AIC-weights,

which implicitly penalizes overfitting.

Other measures of model fit to the hold-out folds have been

used, largely as ad hoc proxies for a likelihood function (e.g.,

in likelihood-free models): pseudo-R2 (e.g., Nagelkerke 1991,

Nakagawa and Schielzeth 2013), area under the ROC curve

(AUC: Marmion et al. 2009a, Ordonez and Williams 2013,

Hannemann et al. 2015), or True Skill Statistic (Diniz-Filho

et al. 2009, Garcia et al. 2012, Engler et al. 2013, Meller

et al. 2014). In these cases, weights were computed by substi-

tuting ‘CV in Eq. 13 by the respective measure, or given a

value of 1/S for a somewhat arbitrarily defined subset of S

(out of M) models, e.g., those above a threshold considered

minimal satisfactory performance (Crossman and Bass 2008,

Crimmins et al. 2013, Ordonez and Williams 2013).

Largely ignored by the ecological literature are two other

non-parametric approaches to compute model weights:

stacking and jackknife model averaging (see Appendix S1.4

for discussion of averaging within machine-learning algo-

rithms). Both are cross-validation based, but unlike simple

cross-validation weights, which are based on the performace

of each contributing model on hold-out data, stacking and

jacknife model averaging explicitly optimize weights to

reduce the error of the average on hold-out data.

Stacking (Wolpert 1992, Smyth and Wolpert 1998, Ting

and Witten 1999) finds the optimized model weights to reduce

prediction error (or maximize likelihood) on a test hold-out of

sizeH. This is, for RMSE and likelihood, respectively:

arg min
wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

H

XH

i¼1

y½i� �
XM

m¼1

wm
bf Xi

bhm½�i�

���
� � !2

vuut
8
<
:

9
=
;

(Hastie et al. 2009) and

arg min
wm

‘ y½i�
XM

m¼1

wm
bf Xi

bhm½�i�

���
� ������

 !( )

where bf ðXijbhm½�i�Þ is the prediction of model m, fitted without

using data i, to data i. This procedure is repeated many times,

each time yielding a vector of optimized model weights, wm,

which are then averaged across repetitions and rescaled to sum

to 1. Yao et al. (2017) extend this approach also to Bayesian

models to provide a clear prediction-error minimizing goal.

Smyth and Wolpert (1998) and Clarke (2003) report stacking

to generally outperform the cross-validation approach from

two paragraphs earlier, and Bayesian model averaging, respec-

tively (see also in Case Studies and Appendix S5).

In Jackknife Model Averaging (JMA; Hansen and Racine

2012), each data point is omitted in turn from fitting and

then predicted to (thus actually a leave-one-out cross-valida-

tion rather than a “jackknife”). Then, weights are optimized

so as to minimize RMSE (or maximize likelihood) between

the observed and the fitted value across all N “jackknife”

samples. The optimization function is the same as for stack-

ing, except that H ¼ N. Thus, in stacking, weights are opti-

mized once for each run, while for the jackknife only one

optimization over all N leave-one-out-cross-validations is

required (further details and examples with R-code are given

in Appendix S1.5.6).

The forecasting (i.e., time predictions) literature (reviewed

in Armstrong 2001, Stock and Watson 2001, Timmermann

2006) offers two further approaches. Bates and Granger

(1969)’s minimal variance approach attributes more weight

to models with low-variance predictions. More precisely, it

uses the inverse of the variance-covariance matrix of predic-

tions, R�1, to compute model weights. In the multi-model

generalisation (Newbold and Granger 1974) the weights vec-

tor w is calculated as:

wminimalvariance ¼ ð10R�1
1Þ�1

1R
�1; (14)

where 1 is an M-length vector of ones. This is the analytical

solution of Eq. 5, assuming no bias and ignoring the problem

that weights are random variates, under the weights-sum-to-

one constraint. Eq. 14 does not ensure all-positive weights,

nor is it obvious how to estimate R. One option (used in our

case studies) is to base R on the deviation from a prediction to

test data in lieu of measure of past performance (following

recommendation of Bates and Granger 1969).

Finally, Garthwaite and Mubwandarikwa (2010) devised

a rarely used method, called the “cos-squared weighting

scheme,” designed to adjust for correlation in predictions by

different models. It was motivated by (1) giving lower weight
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to models highly correlated with others (thereby reducing

the prediction variance contributed through covariances in

Eq. 5), (2) division of weights when a new, near-identical

model prediction is added to the set, and (3) reducing all

weights when more models are added to the set. Weights are

computed as proportional to the amount of rotation the pre-

dictions would require to make them orthogonal in predic-

tion space, hence the trigonometric name of their approach.

Modelling model weights.—So far, weights were always con-

stant. However, one might also consider making weights

dependent on other variables. This approach, which we term

“model-based model combinations” (MBMC, also called

“superensemble modeling”) was first proposed by Granger

and Ramanathan (1984). Here a statistical model f is used to

combine the predictions from different models, as if they

were predictors in a regression: eY 	 f ð bY1; bY2; . . .; bYmÞ (see

Fig. 5A). The regression-type model f can be of any type,

such as a linear model or a neural network. We call this

regression the “supra-model” in order to distinguish

between different modelling levels.

A very simple supra-model would compute the median of

predictions for each point Xi (e.g., Marmion et al. 2009a).

Different models are used in the “average” without requiring

any additional parameter estimation. Median predictions

imply varying weights, as the one or two models considered

for computing the median may change between different Xi.

An ideal model combination could switch, or gently tran-

sition, between models (such as manually constructed by

Crisci et al. 2017). Since the predictions are combined more

or less freely in model-based model combinations to yield

the best possible fit to the observed data, MBMC should be

superior to any constant-weight-per-model approach (see

Fig. 5B), as was indeed found by Diks and Vrugt (2010).

This advantage comes with a severe drawback: a high pro-

clivity to overfitting, as we fit the same data twice (once to

each model, then again to their prediction regression).

This does not seem to be widely recognized as a problem

(despite being a key message of Hastie et al. 2009), as most

studies we found incorrectly cross-validate the supra-model

only, not the entire workflow (if at all; e.g., Krishnamurti et al.

1999, Thomson et al. 2006, Diks and Vrugt 2010, Romero

et al. 2016; but see Breiner et al. 2015). To correctly cross-vali-

date MBMCs, one has to produce hold-outs before fitting the

contributing models, and evaluate the MBMC prediction on

this hold-out (Fig. 5, Appendix S5.9 and case studies; Breiner

et al. 2015). [Correction added 9 July 2018 after online publi-

cation. The work of Breiner et al. (2015) was erroneously

included in the list of studies. This error was due to a misun-

derstanding of the method section in their publication.]

Note that supra-models may differ substantially in their

ability to harness the contributing models. As it is a yet

fairly unexplored field in model averaging, analysts are

advised to try different supra-model types (Fig. 5).

Equal weights

Last, we discuss the most trivial weighting scheme: in

many fields of science (climate modelling, economics, politi-

cal sciences), model averaging proceeds with giving the

structurally different models equal weight, i.e., 1/M (John-

son and Bowler 2009, Knutti et al. 2010, Graefe et al. 2014,

Rougier 2016). In ecology, studies analyzing species distribu-

tions reported equal weights to be a very good choice when

assessed using cross-validation (Crossman and Bass 2008,

Marmion et al. 2009a, Rapacciuolo et al. 2012), but no bet-

ter than the single models on validation with independent

data (Crimmins et al. 2013). Equal weights may serve as a

FIG. 5. A simple model-based model combination (MBMC) example. (A) Three models (solid grey lines: constant, linear, and quadratic)
fitted separately to a data set (points, following the thin black line). Using a linear model (with quadratic terms: red) to combine the three mod-
els’ its may improve it, even more so than the full model (green), and with narrower conidence intervals. Doted lines indicate the weight that
each model receives at each point in the linear model. Such MBMC did not necessarily improve fit, as Random Forest-based model combina-
tions showed (blue). (B) Using fivefold cross-validation around the entire workflow shows that the linear supra-model (Supra-LM) indeed
improved prediction (decreased root mean squared prediction error), while the Random Forest-supra-model (Supra-rF) did not. The full
model (as reference) comprised all terms present in Supra-LM, but was fitted directly. Boxes are 50% quantiles, and whiskers are min/max
values (unless those exceed the 50% quantiles by 1.5 the interquartile range); the median is indicated by the horizontal black line.
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reference approach to see whether estimating weights

reduces prediction error for this specific set of models. In

that sense, we may argue, all the above weight estimation

approaches only serve to separate the wheat from the chaff;

once a set of reasonable models has been identified, equal

weights are apparently a good approach.

CASE STUDIES

All methods discussed above can be applied to simple

regression models, while some explicitly rely on a model’s

likelihood and can thus not be used for non-parametric

approaches. We therefore devised two case studies, the first

being a rather simple example to illustrate the use of all meth-

ods in Table 1, and the second a more complicated species

distribution case study based on a reduced set of methods.

Note that we do not include adaptive regression by mixing

with model screening (ARMS; Yang 2001) because its more

sophisticated variations (Yuan and Yang 2005) are not read-

ily implemented in R, and the basic ARMS is barely different

from AIC model averaging for a preselected set of models.

Case study 1: Simulation with Gaussian response, many

models and few data points

In this first, simulation-based case study, we explore the

variability of model-averaging approaches in the common

case where several partially nested models are fit (see Data

S1 for details and code). The simulation was set up so that

several of the fitted models have similar support as explana-

tions for the data. This was achieved by generating the

response differently in each of two groups (using similar, but

not identical predictors). We simulated 70 data points with 4

predictors yielding 24 = 16 candidate models, and another

70 data points for validation. We computed model weights

in 19 different ways (Table 1) and compared the prediction

error of weighted averages, as well as of the individual mod-

els to the validation data points. Simulation and analyses

were repeated 100 times.

Two results emerged from this simulation that are worth

reporting. First, prediction error (quantified as RMSE) was

similar across the 19 weight-computing approaches, with a

few noticeably poor exceptions (the two MBMC

approaches, minimal variance and the cos-squared scheme;

Fig. 6), and most were no better than those of the best nine

single model predictions. Second, most averaging

approaches gave some weight (w[ 0:01) to 10 or more mod-

els (Table 2), despite models being overlapping and partially

nested, so that we have actually only five (more or less) inde-

pendent models (those containing only one predictor: m2,

m3, m5, m9 and intercept-only m1). In real data sets, such

spreading of weight is the result of data sparseness or

extreme noise, making important effects stand out less;

indeed, half of our candidate models are not hugely differ-

ent, i.e., within DAIC < 4.

Case study 2: Real species presence–absence data, many data

points and a moderate number of predictors

In the second case study, we use data on the real distribu-

tion of short-finned eel (Anguilla australis) in New Zealand

(from Elith et al. 2008). The data are provided in the R pack-

age dismo, already split into a 1000-row training and a 500-

row test data set, and featuring 10 predictors. We ran four dif-

ferent model types (GAM, Random Forest [rF], artificial

neural network [ANN], support vector machine [SVM]) using

all 10 predictors, along with two variations of the GLM (best

models selected by AIC and BIC from the full model contain-

ing the 10 predictors, relevant quadratic terms and all first-

order interactions). For details, see Data S1.

The number of averaging approaches that can be used to

compute model weights is smaller than in the previous case

study, as three of the six models do not report a likelihood

or the number of parameters, precluding the use of

rjMCMC, Bayes factor, (W)AIC, BIC, and Mallows’ Cp.

Because we do not know the underlying data-generating

model, we evaluate the models on the randomly pre-selected

test data provided.

One interesting result is that model averaging was effec-

tively a model selection tool in several cases (Table 3).

Stacking, bootstrapping, JMA, and to a lesser degree mini-

mal variance, BMA-EM, and the model-based model com-

binations yielded non-zero weights for only one (or two)

models. Apparently, these approaches yielded suboptimal
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FIG. 6. Prediction error of different model averaging approaches (100 repetitions) for case study 1. Box represents quartiles, white line
the median. Approaches to the left of the vertical line are very similar, and no better than nine of the candidate models. See Table 1 for list
of approaches, and case study 1 in Data S1 for list and its of the individual models.
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model weights, as these “model selection” outcomes of

model averaging fared worse than those that kept all models

in the set (equal weight, leave-one-out, and cos-squared).

Second, the best two model averaging algorithms in this

case study, apart from the median where varying weights are

used, identified an approximately equal weighting as

TABLE 2. Model weights (averaged across 100 repetitions) given to the 16 linear regression models of case study 1 by different weighting
methods (see Table 1 for abbreviations), arranged by increasing prediction error (last column, median across replications).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 RMSE

rjMCMC median 0.00 0.01 0.00 0.11 0.00 0.00 0.08 0.11 0.00 0.14 0.00 0.09 0.14 0.13 0.10 0.09 1.069

BIC 0.00 0.01 0.00 0.18 0.00 0.03 0.17 0.04 0.00 0.19 0.00 0.04 0.24 0.05 0.05 0.01 1.074

Median† – – – – – – – – – – – – – – – – 1.075

m10‡ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1.076

rjMCMC weights 0.00 0.01 0.00 0.11 0.00 0.00 0.08 0.11 0.00 0.14 0.00 0.09 0.14 0.13 0.10 0.09 1.076

Boot 0.00 0.01 0.00 0.15 0.00 0.04 0.17 0.03 0.00 0.16 0.00 0.08 0.22 0.04 0.07 0.03 1.076

AIC 0.00 0.00 0.00 0.13 0.00 0.02 0.13 0.08 0.00 0.14 0.00 0.08 0.18 0.09 0.09 0.05 1.077

WAIC 0.00 0.00 0.00 0.13 0.00 0.02 0.11 0.09 0.00 0.14 0.00 0.08 0.16 0.10 0.11 0.06 1.078

MMA 0.00 0.00 0.00 0.13 0.00 0.02 0.12 0.08 0.00 0.14 0.00 0.09 0.18 0.10 0.10 0.06 1.078

Stacking 0.00 0.07 0.02 0.08 0.04 0.06 0.13 0.07 0.04 0.06 0.06 0.07 0.11 0.07 0.08 0.04 1.079

JMA 0.00 0.01 0.00 0.16 0.00 0.05 0.22 0.01 0.00 0.19 0.03 0.01 0.29 0.02 0.02 0.00 1.079

Full‡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.086

BMA-EM 0.00 0.08 0.01 0.08 0.02 0.07 0.14 0.06 0.03 0.08 0.10 0.04 0.15 0.06 0.06 0.03 1.104

BayesFactor 0.07 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 1.109

Equal weight 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 1.110

LOO-CV (R2) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 1.110

LOO-CV (RMSE) 0.09 0.06 0.08 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 1.123

MBMC (LM)§ – – – – – – – – – – – – – – – – 1.135

MBMC (rF)§ – – – – – – – – – – – – – – – – 1.181

Minimal variance –1.15 0.42 0.19 0.00 0.64 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.208

Cos-squared 0.00 0.00 0.30 0.00 0.21 0.21 0.02 0.01 0.00 0.00 0.24 0.00 0.00 0.00 0.01 0.00 1.209

Notes: Only the best (m10) and the full model are shown from the 16 candidate models. LOO-CV, leave-one-out cross-validation using R2

or RMSE as measure of model performance. For code see case study 1 in Data SI.
†Weights not available, as different models contribute to the median at each replication.
‡Prediction from individual model.
§Weights are variable. LM and rF refer to a linear model and a Random Forest as supra-model, respectively.

TABLE 3. Model weights given to the six model types of case study 2 (GLM, GAM, Random Forest, artificial neural networks, and support
vector machine) by different weighting methods (see Table 1 for abbreviations), arranged by decreasing fit of the averaged predictions to
test data, assessed as log-likelihood (l) (last column). Hyphen indicates that this model was not considered by the MBMC algorithm.

Method GLMaic GLMbic GAM rF ANN SVM l

Median† (0.176) (0.216) (0.212) (0.162) (0.146) (0.088) �182.84

LOO-CV 0.168 0.168 0.166 0.169 0.165 0.164 �184.82

Equal weight 0.167 0.167 0.167 0.167 0.167 0.167 �184.86

Cos-squared 0.122 0.104 0.178 0.188 0.186 0.221 �185.02

BMA-EM 0.388 0.192 0.000 0.420 0.000 0.000 �185.24

Stacking 0.000 0.000 0.000 1.000 0.000 0.000 �186.82

Bootstrap 0.000 0.000 0.000 1.000 0.000 0.000 �186.83

Minimal variance 0.155 0.469 �0.036 0.58 �0.026 �0.141 �188.45

MBMC (GAM)§ – – * * – – �198.23

MBMC (rF)§ – – – – – – �200.20

JMA 0.000 0.000 0.000 0.000 0.000 1.000 �214.68

MBMC (GLM)§ � � * * � � �268.52

rF‡ 0 0 0 1 0 0 �186.83

GAM‡ 0 0 1 0 0 0 �193.40

ANN‡ 0 0 0 0 1 0 �194.28

GLMaic‡ 1 0 0 0 0 0 �197.48

GLMbic‡ 0 1 0 0 0 0 �197.73

SVM‡ 0 0 0 0 0 1 214.68

Notes: LOO-CV, leave-one-out cross-validation using R2 or RMSE as measure of model performance. For code, see case study 2 in Data S1.
†Weights are proportion of times this model was actually used to compute the median value divided by two. N dashes indicate that this

model was not considered by the MBMC algorithm.
‡Prediction from individual model.
§Weights are variable. Asterisk indicates that a model’s prediction was a significant term in the supra-model. GAM, rF and GLM refer to

three different types of supra-model: a generalized additive model, a Random Forest, and a generalized linear model.
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optimal strategy. That is somewhat surprising, given that

SVM performed relatively poorly (and was excluded by

BMA-EM, but favored by cos-squared as a more indepen-

dent contribution). The likely reason of high weights for the

poor SVM is that averaging-in less correlated predictions

reduces covariances in Eq. 5.

The good performance of the median in both case studies

suggests that using the central value of each prediction,

rather than give constant weights to the model itself, may be

even more effective in reducing variance and thus prediction

error. Further research is needed to clarify if this principle is

indeed valid across many applications.

RECOMMENDATIONS

In this review, we have firstly explained the mechanisms by

which model averaging can improve model predictions and,

second, we have discussed the large diversity of methods that

are available to compute averaging weights. While our general

results and outlook on this field are positive, in the sense that

model averaging is often useful, the complexity of the topic

prevents us from providing final answers about the best

approach for ecologists. Surprisingly many issues seem to be

statistically unresolved, or addressed by quick fixes and even

fundamental questions remain open, which we will discuss

next. It is unsatisfactory to see the large variance in weights

and performance of the different averaging approaches in our

case studies, but also the literature provides too few compar-

isons of model weights to provide robust advice. In general,

our recommendations are thus guided by reducing harm,

rather than suggesting an optimal solution.

Averaged prediction should be accompanied by uncertainty

estimates

Just like any other statistical approach, model averaging

can be used wrongly. Focusing entirely on the predictions,

rather than their uncertainty, can be misleading, Knutti et al.

(2010) showed this for combining precipitation predictions:

spatial heterogeneity cancelled out across models, giving the

erroneous impression of little change when in fact all models

predict large changes (albeit in different regions). Similarly,

King et al. (2008) found that averaging parameters from two

competing models led to no effect of two hypothesized

impacts, although in both models a (different) driver was very

influential. We thus strongly encourage including at least

model-averaged confidence intervals alongside any predic-

tion, possibly in addition to the individual model predictions,

to prevent erroneous interpretation of averaged predictions.

Also, more attention should be paid to the full model. It has

many desirable properties (unbiased parameter estimates,

very good coverage), but suffers from violation of the parsi-

mony principle (“Occam’s razor”) and requires more consid-

eration in which form covariates should be fit. Its larger

prediction error, compared to the over-optimistic single-best

partial model, is the reason for correct confidence intervals.

Dependencies among model predictions should be addressed

Statistical models, which aim to describe the data to which

they are fitted, will often have correlated parameters and fits;

process models may overlap in modelled processes. Having

highly similar models in the model set will inflate the cumula-

tive weight given to them (as illustrated in Appendix S1.6).

One way to handle inflation of weights by highly related

models is to assign prior model probabilities in a Bayesian

framework. Another approach would be to pre-select models

of different types (see next point). Alternatively, the cos-

square scheme of Garthwaite and Mubwandarikwa (2010)

uses the correlation matrix of model projections to appropri-

ately change weights of correlated models. Of the weighting

schemes considered here, it is the only approach doing so, but

it should be noted that the performance of this approach in

our case study was rather poor (Fig. 6, Tables 2 and 3).

Validation-based weighting or validation-based

pre-selection of models

Madigan and Raftery (1994), Draper (1995), Burnham

and Anderson (2002), and more recently Yuan and Yang

(2005) and Ghosh and Yuan (2009), have argued that only

“good” models should be averaged. Different ways of com-

bining model averaging with a model screening step have

been proposed (Augustin et al. 2005, Yuan and Yang 2005,

Ghosh and Yuan 2009), in which model selection precedes

averaging (pre-selection). This will happen implicitly, and in

a single step, if any of the model weight algorithms discussed

above attributes a weight of effectively zero to a model, as

happened in case study 2. How prevalent this effect is in real

world studies is unclear, as weights are rarely reported.

In contrast, some studies select models after the predictions

are made (e.g., Thuiller 2004, Forester et al. 2013). These stud-

ies have averaged either models that predict in the same direc-

tion (along the “consensus axis”; Grenouillet et al. 2010), or

the best 50% in the set (Marmion et al. 2009a), or however

many models one should combine to minimize prediction

error. Such approaches necessitate addressing the challenge of

using data twice (Lauzeral et al. 2015). Post-selection reduces

the ability of “dissenting voices” (i.e., less correlated predic-

tions) to reduce prediction error and instead reinforce the

trend of emphasizing the model type most represented in the

set. As a consequence, their uncertainty estimation will be

overly optimistic. We do not advocate their use.

We suggest to employ validation-based methods of model

averaging rather than relying on model-based estimates of

error. That is, we recommend (leave-one out) cross-valida-

tion and stacking rather than AIC (in line with recommen-

dations of Hooten and Hobbs 2015). Using (semi-)

independent test data gives us some capacity to estimate pre-

dictive bias. In such a setting, it may be less relevant whether

models are pre-selected by validation-based estimates of

error and then averaged with equal weights or weighted by

validation-based estimates of error without pre-selection.

For this to work, however, it is crucial that (cross)-validation

strategies are designed to ensure independence of the valida-

tion data, which is a non-trivial problem in many practical

ecological applications (Roberts et al. 2017).

Process models are no different

In fishery science, averaging process models is relatively

common (Brodziak and Piner 2010), as it is in weather and
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climate science (Krishnamurti et al. 1999, Knutti et al.

2010, Bauer et al. 2015). There are at least two connected

challenges such enterprises face: validation and weighting.

Often process models are tuned/calibrated on all sets of data

available, in the sensible attempt to describe all relevant pro-

cesses in the best possible way. That means, however, that no

independent validation data are available, so that we cannot

use the prediction accuracy of different models to compute

model weights. Consequently, all models receive the same

weight (e.g., in IPCC reports or for economic models), or

some reasonable but statistically ad-hoc construction of

weights is employed (e.g., Giorgi and Mearns 2002). In

recent years, hind-casting has gained in popularity, i.e., eval-

uating models by predicting to past data. This will only be a

useful approach if historic data were not already used to

derive or tune model parameters, and if hindcasting success

is related to prediction success (which it need not be, if pro-

cesses or drivers change).

Cross-validation is often infeasible for large models, as

run-times are prohibitively long. However, the greatest

obstacle to averaging process models is the absence of truly

equivalent alternative models, which predict the same state

variable. Fishery science is one of the few areas of ecology in

which commensurable models exist and are being averaged

in a variety of ways (e.g., Stanley and Burnham 1998,

Brodziak and Legault 2005, Brandon and Wade 2006,

Katsanevakis 2006, Hill et al. 2007, Katsanevakis and

Maravelias 2008, Hollowed et al. 2009, Jiao et al. 2009,

Brodziak and Piner 2010). Carbon and biomass assessments

are also moving in that direction (Hanson et al. 2004, Butler

et al. 2009, Wang et al. 2009, Picard et al. 2012). These

fields could profit from exploring averaging methods such as

minimal variance and cos-squared, which do not require

cross-validation and may perform better than either equal

weights or BMA-EM, and probably better than MBMC’s

potentially overfitted supra-models.

Finally, irrespective of the approach chosen, model averag-

ing studies should report model weights, and predictions

should be accompanied by estimates of prediction uncertainty.

Overall conclusion and recommendations

In conclusion, we find that:

1) Model averaging may, but need not necessarily reduce

prediction errors. Model averaging benefits generally

increase with decreasing covariance of the individual

model predictions and decreasing mean bias of the con-

tributing models. Moreover, while estimating model

weights allows reducing the weight of poor models, this

comes at the expense of introducing additional variance

in the average, reducing the benefits of model averaging.

2) There are currently no generally reliable analytical meth-

ods to calculate frequentist confidence intervals (or P-

values) on model-averaged predictions. Non-parametric

methods, however, such as cross-validation, remain reliable

for estimating predictive errors, and should therefore be

preferred for quantifying predictive uncertainties of model

averages. Bayesian credible intervals are in principle valid

as well, if the typical assumption for Bayesian model selec-

tion, that the true model is among the candidates, is met.

3) From general considerations, we believe that non-parametric

methods that directly target predictive error (e.g., cross-vali-

dation or stacking) are a robust and straightforward choice

for choosing weights. Parametric methods such as AIC, BIC

are faster, but may not always perform equally well. Cross-

validation can be used to test if fixed or estimated weights

perform better than the full or the best model.
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