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Abstract—Due to the limited depth of field of brightfield micro-
scopes, it is usually impossible to image thick specimens entirely
in focus. By optically sectioning the specimen, the in-focus infor-
mation at the specimen’s surface can be acquired over a range
of images. Commonly based on a high-pass criterion, extended-
depth-of-field methods aim at combining the in-focus information
from these images into a single image of the texture on the spec-
imen’s surface. The topography provided by such methods is usu-
ally limited to a map of selected in-focus pixel positions and is in-
herently discretized along the axial direction, which limits its use
for quantitative evaluation. In this paper, we propose a method that
jointly estimates the texture and topography of a specimen from a
series of brightfield optical sections; it is based on an image forma-
tion model that is described by the convolution of a thick specimen
model with the microscope’s point spread function. The problem is
stated as a least-squares minimization where the texture and topog-
raphy are updated alternately. This method also acts as a decon-
volution when the in-focus PSF has a blurring effect, or when the
true in-focus position falls in between two optical sections. Com-
parisons to state-of-the-art algorithms and experimental results
demonstrate the potential of the proposed approach.

Index Terms—Biomedical image processing, deconvolution, in-
verse problems, optical transfer functions.

I. INTRODUCTION

T
HE limited depth of field of conventional brightfield mi-
croscopes is a significant shortcoming when imaging spec-

imens whose thickness and surface profile extend beyond the
system’s focal range. It is impossible to image such samples en-
tirely in focus with a single acquisition; only those portions that
lie within the depth of field appear in focus and sharp, whereas
the remaining regions are blurred by the system’s point spread
function (PSF). A common way around this limitation consists
in acquiring a series of optical sections of the sample by gradu-
ally moving it through the focal plane. This results in a “z-stack”
of images that collectively contains all available in-focus infor-
mation of the specimen. Such z-stacks can be difficult to inter-
pret, and the success of an automated analysis essentially de-
pends on its ability to correctly identify in-focus information.
Many methods have been proposed for extending the depth of
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field of microscopes, either by optical means [1] or through
image processing [2]–[4], and sometimes via a combination of
both [5]. In practice, it is often achieved via the fusion of im-
ages by means of extended-depth-of-field (EDF) algorithms [6].
In this work, we propose a new model-based alternative to these
approaches which combines the recovery of both the texture and
the topography of the specimen in a single, global optimization
process.

A. Review of Previous Work

1) Optical Techniques: The first type of solution relies on
modified microscope optics along with nonstandard acquisition
schemes. McLachlan described a system for illuminating the
focal plane with a sheet of light that permits integration by
axially scanning over the desired range of the specimen, and
thus, avoids collecting out-of-focus information [7]. Similarly,
Sheppard et al. later proposed confocal microscopy as a means
of scanning and integrating the sample along the axial direction
[1]. An acquisition scheme using structured illumination was
presented by Burke et al. [8]. A further approach consists
in using pupil masks [9]; wave-front coding to increase the
depth-of-field has been demonstrated in [10], [11]. It is also
worth noting that promising results have been achieved via
annular illumination in the case of two-photon fluorescence
microscopy [12].

2) Computational Techniques: None of the above methods
are practical or possible to implement for conventional bright-
field microscopy, and, thus, image processing was exploited
early on to propose alternate solutions. Regrouped under the
denomination of EDF algorithms, this second type of solution
facilitates the visualization and interpretation of z-stack acquisi-
tions by combining the in-focus information from multiple im-
ages into a single fusion image that depicts the specimen entirely
in focus. Due to the thickness and staining of samples prepared
for brightfield microscopy, it is generally assumed that the infor-
mation that appears in focus lies on the surface of the specimen
(we shall refer to this information as the specimen’s texture).
Given a z-stack acquisition, the goal of EDF algorithms thus
lies in determining the in-focus position that corresponds to
the surface of the specimen for every point in the image
plane. Almost all existing EDF methods are variations of the
following scheme:

1) slice-by-slice application of a high-pass criterion;
2) energy measurement in a local neighborhood around each

pixel in every slice ;
3) construction of an in-focus map by selection of the slice

index with maximal energy at every position ;
4) generation of the EDF image based on the in-focus index

map.
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A notable byproduct of the above is the topographical informa-

tion obtained in the form of the in-focus index map.

One of the earliest descriptions of EDF algorithms can be

traced back to Pieper and Korpel; these authors discussed the use

of pointwise criteria based on intensity, as well as nondirectional

finite difference filtering to discriminate for in-focus regions [2].

Subsequently, Sugimoto and Ichioka suggested using the vari-

ance within fixed windows of the acquired z-stack as a possible

sharpness criterion [13]. They also showed that the texture and

topography can be used to generate a stereoscopic representa-

tion of the sample. Itoh et al. adapted this approach to account

for possible intensity variations in reflected light microscopy by

introducing a cylindrical lens into the system and evaluating the

local variance according to the resulting astigmatic aberrations

[14]. Other proposals include high-pass filtering [15] and gra-

dient-based approaches, where the presence of sharp edges is

used to detect in-focus areas [16].

To date, the most successful approaches rely on some form of

multiresolution analysis; e.g., steerable pyramids [17]–[19] and

wavelet decompositions [3], [21]–[24]. By applying a wavelet

transform to every slice, one automatically performs high-pass

filtering at different resolutions. This approach avoids the choice

of a fixed-size filter. The selection of the in-focus slice is per-

formed in the wavelet domain too; i.e., at every resolution level.

For a state-of-the-art wavelet approach, we refer to [6]; this

work also includes a comparative evaluation of the primary EDF

methods.

B. Towards a New Model-Based Approach

The primary goal of all methods outlined above is to yield an

accurate rendition of the sample’s texture. Although the map of

selected in-focus slice positions for every pixel yields some top-

ographical information, this distance map is noisy and coarsely

discretized, and is ill-suited for accurate 3-D reconstruction and

texture mapping. Some approaches (see, e.g., [20]) use local

consistency checks and smoothing to improve the appearance

of the topography, but they do not guarantee an accurate inter-

pretation of the specimen’s surface profile, nor do they suppress

the inherent “staircase” effects.

In this paper, we propose a new algorithm for EDF that uses a

parametric model of image formation to recover the specimen’s
texture and topography through an optimization process. Specif-

ically, we assume that image formation is the result of a 3-D con-

volution between the PSF of the system and the sample, where

the latter is modeled as a texture mapped onto a thin surface,

which is described by a topography map [25]. We then formulate

the EDF reconstruction as a least-squares estimation problem,

and propose a solution by alternate optimization of the texture

and the topography. Compared to the previously discussed EDF

techniques, the topography is not limited to discretized values

anymore, since it can change in a continuous way to maximally

match the measurements. A further advantage is that the tex-

ture estimation process is capable of acting as a deconvolution

in cases where a residual blur remains at the in-focus position,

or when the true in-focus position falls in between two slices.

Compared to classical deconvolution, the texture estimation is

much better conditioned since the whole z-stack contributes to

its estimation—hence, this process can be interpreted as a 2.5-D

deconvolution operation.

C. Organization of the Paper

In the next section, we introduce our image formation model.

After this, in Section III, we formulate the least-squares esti-

mation problem, along with its iterative, gradient-based solu-

tion. Subsequently, we present a simple, computationally effi-

cient Gaussian PSF model and compare it to accurate optical

models (Section IV). The proposed algorithm is then demon-

strated in Section V, where simulations and experimental results

are shown. Finally, there are a number of practical issues raised

by our technique that are investigated in Section VI, where we

also discuss the influence of the PSF model’s accuracy on the

estimation results.

II. IMAGE FORMATION IN BRIGHTFIELD MICROSCOPY

Brightfield microscopes can be configured to use either

transmitted or reflected light (called diascopic or episcopic con-

figurations, respectively), depending on the specimen’s optical

properties. The transmission mode is appropriate for samples

that are sufficiently transparent, whereas the reflection mode

makes it possible to image opaque specimens. Consequently,

we propose an image formation model that applies to both

modalities. For an opaque specimen imaged in reflection, the

object can be modeled as a 3-D surface, which leaves image

formation unchanged. It turns out that this thin surface model is

a valid approximation for the diascopic configuration as well,

under the condition that the specimen is sufficiently thick, such

that its surface alone appears in focus. It should be noted that

in the latter case, this is a somewhat idealized representation

that ignores potential out-of-focus contributions from beneath

the surface of the specimen (note, furthermore, that these

contributions vary depending the local thickness and density

of the specimen). However, it is a necessary simplification to

make our approach feasible, and our experiments indicate that

it does not ensue in a loss of precision in the estimation results

(see Section V). For this approximation to apply, transparent

specimens should be significantly thicker than the system’s
depth of field, which is defined as

NA
(1)

where is the illumination wavelength, is the refractive index

of the immersion medium, and NA designates the numerical

aperture of the objective.

The theoretical developments below and in the following sec-

tions are stated for grayscale or single-channel data. The exten-

sion of these results as well as other issues pertaining to multi-

channel data are presented in Section III-E.

As mentioned, we express the sample as a 3-D sur-

face, described by a topography onto which a texture

is mapped

(2)

where the Dirac distribution represents the surface. The image

formation and acquisition process is modeled as a convolution
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Fig. 1. Image formation: Illustration of the forward model. A texture mapped surface constitutes the object, which is convolved with the 3-D PSF of the system
and sampled to obtain a z-stack acquisition. Phantom data for use in simulations was generated using this model.

between the object and the microscope’s 3-D PSF ,

yielding the volume of acquisitions

(3)

In practice, this is followed by sampling to generate discrete data

(see Fig. 1).

III. JOINT TEXTURE AND TOPOGRAPHY ESTIMATION

We propose to recover the topography and texture based on

the quadratic cost function

(4)

where is the measured image stack. Given this formulation, it

is easy to see that an estimate of the topography will depend on

the texture, and vice versa. Therefore, we resort to an iterative

two-phase optimization method that alternately updates the tex-

ture and the topography, where the texture and the topography

at the th iteration are denoted as and , respectively.

Note that this solution can be interpreted in the context

of maximum likelihood. Under the hypothesis of an additive

white Gaussian noise component on the image formation

model described by (3), the minimization of (4) is equivalent

to maximizing the corresponding likelihood function. In that

setting, the estimation is performed using the expectation-max-

imization algorithm (EM) [26], where the texture represents

the quantity to be estimated, and the topography corresponds

to the hidden state. Specifically, the E-step performs the update

of the texture given the current estimate of the topography

(i.e., the hidden state), whereas the M-step updates the topog-

raphy. This noise model is a valid assumption in the context

of brightfield microscopy, where Gaussian-distributed read-out

noise is the primary source. Nonetheless, in state-of-the-art

cameras, read-out noise can usually be deemed negligible when

compared to signal intensity.

In the following sections, we present the texture and topog-

raphy estimation phases of the algorithm, and discuss some im-

plementation issues. Two methods for texture estimation are de-

scribed: a general one based on a nonseparable PSF model, and

a computationally more efficient one based on a simplified, sep-

arable PSF model.

A. Texture Estimation

1) Exact Model: Given an initial or current estimation

of the topography, we estimate the texture by minimizing the

cost function (4) with respect to

(5)

This minimization cannot be obtained in closed form, and is

achieved by performing a steepest descent on with respect to

the texture . The partial derivatives, easily obtained by

applying the chain rule, are given by

(6)

where stands for the spatial transpose; i.e.,

, and where .

The gradient descent update step then consists of

(7)

where is initialized with . The factor

controls the strength of the update; its optimal value is

obtained by performing a line search, which leads to

(8)

where

(9)

Starting from , several subiterations (index ) defined by (7)

are performed to finally obtain a new estimate of the texture

.
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2) Simplified, Separable Model: We now consider the above

developments in conjunction with the simplest PSF model satis-

factory for our image formation model, and show how this leads

to an efficient and practical algorithm. The model

(10)

can be related to the hypothesis of in-focus information being

correlated with intensity extrema along [2]. Applying this, the

forward model of (3) becomes

(11)

and the cost function accordingly simplifies to

(12)

where . The main point is that the global cost func-

tion can now be decomposed as

(13)

where

(14)

and, consequently, the minimization can be performed in a de-

coupled fashion around the current point . Specifically, the

minimization of with respect to yields

(15)

This expression is essentially a weighted interpolation among

the slices of the z-stack around the position indicated by the to-

pography. The above development can also be considered in the

context of nearest-neighbor deconvolution, where analogous as-

sumptions concerning the decoupling of the image formation

model are made [27]. The key advantage of this simplified al-

gorithm is the stability it lends to the overall estimation when

used in conjunction with the topography estimation algorithm

discussed below. This aspect, together with the use of the gra-

dient-based estimation algorithm to perform deconvolution of

the texture, is detailed at the end of this section and in the dis-

cussion (Section VI).

B. Topography Estimation

In a similar fashion, the topography can be updated using the

latest texture estimate . To this end, we minimize the cost

function with respect to the topography

(16)

The partial derivatives are also obtained using the chain rule as

(17)

where stands for the partial derivative of the PSF with respect

to . Then, the gradient descent update step for the topography

is

(18)

C. Coarse-to-Fine Optimization

The direct dependence of the topography update upon the cur-

rent texture estimate can perturb the algorithm in its ini-

tial stages when strong global adjustments are being made, and

make it converge towards an erroneous local optimum. To deal

with this potential instability, we propose to perform the topog-

raphy estimation in a coarse-to-fine framework, which has the

effect of imposing regularity and robustness to the topography

update, as the following development will show (see also Fig. 3).

In our implementation, we have chosen to represent the to-

pography at resolution in a shift-invariant basis generated by

symmetric B-splines of order dilated by

(19)

with [28], and where the 2-D basis functions are

formed from the tensor product of their 1-D counterparts. The

minimization problem (16) then amounts to finding the “op-

timal” B-spline coefficients . The corresponding partial

derivatives of the criterion are

(20)

where . Thus, the gradient on the coeffi-

cients is essentially a smoothened and downsampled version

of , which can be implemented according to the block

diagram shown in Fig. 2(a), where the smoothing filter
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Fig. 2. Downscaling and upscaling steps in the coarse-to-fine topography esti-
mation algorithm. (a) B-spline gradient coarsening. (b) Fine-scale interpolation
of the B-spline topography model.

is the sampled version of the basis function

in (20). Accordingly, the coefficient update at scale becomes

(21)

The fine scale sampling of the topography (required at each it-

eration) is finally obtained by upsampling and postfiltering

the result, as summarized in Fig. 2(b).

Due to the dependence of on in (4), the line search in (20)

cannot be achieved in closed form. Here, it is desirable to apply

an iterative minimization scheme that does not depend on a pa-

rameter regulating the update step. Unfortunately,

is not necessarily convex, and, thus, a bounded optimization ap-

proach (i.e., via a quadratic upper bound) cannot be deployed.

Instead, we resort to inverse parabolic interpolation, which con-

verges reasonably fast and can by easily controlled via Brent’s
algorithm [29]. In practice, is smooth and has a

unique minimum, and, thus, this scheme proves to be very effi-

cient, requiring only a minimal number of iterations.

D. Implementation

The joint estimation of the texture and topography from a

volume of acquisitions is achieved by alternating iterations of

the methods outlined above. Starting from an initialization of the

texture, we iterate between estimating the topography at scale

and refining the texture. Upon convergence at that scale, the al-

gorithm switches to a finer scale ( in the dyadic case)

and replicates this process. This is repeated until convergence at

scale is reached (see Fig. 3). In order to make this proce-

dure as computationally efficient as possible, the texture estima-

tion is performed using the simplified model at all scales except

. At that stage, the higher precision and especially the

deconvolution capabilities of the exact, gradient-based method

are applied to generate the final fusion image. For the descrip-

tion of the topography, we used cubic B-splines .

E. Refinements for Processing Color Data

We propose to process multichannel data sets via a straight-

forward extension of the algorithm above. While it would be

possible to formulate our method to simultaneously operate on

multiple channels, we believe that doing so during the estima-

tion of the topography does not provide sufficient advantages

when weighted against the resulting increase in computational

cost, and, to a lesser degree, the influence of further degrees

of freedom in the PSF model on the estimation result. Conse-

quently, we chose to perform the estimation on grayscale data,

appropriately converted from the color input. Dyes binding to

Fig. 3. Schematic representation of the optimization algorithm. Starting from
an estimate of the topography p at scale m, the method alternates between
texture and topography estimation until convergence at that scale, after which
the process is repeated at successively finer scales.

Fig. 4. Comparison between a scalar PSF model [30] and its Gaussian approx-
imation for a 10�, 0.3 NA objective for a CCD with 6:7 � 6:7 �m pixels.
Different focal settings are shown. For a given amount of defocus, the same dy-
namic range is used for illustration purposes. The corresponding parameters of
the Gaussian model (22) are � = 0:670 and � = 0:734. A 5-�m increase in
defocus corresponds to a unitary increase in z.

a particular structure such as cell membranes or nuclei are fre-

quently employed in biology; as a result, large specimens tend

to exhibit a strongly dominant color after preparation. Taking

this bias into account by performing the grayscale conversion

using appropriate weights (obtained, for example, using prin-

cipal component analysis) can lead to markedly improved re-

sults, as shown in [20].

The only modification to the single-channel algorithm then

consists of extending the last texture estimation step (after the

topography has converged at scale ) to operate on all

channels in parallel, i.e., by applying each step of (7) individu-

ally to each channel.

IV. THEORETICAL PSF MODEL

The gradient-based algorithms presented above are not bound

to any particular PSF model. In principle, it is therefore pos-

sible to use a highly accurate theoretical model that is poten-

tially axially shift-variant and takes into account spherical aber-

rations, such as the scalar model proposed by Gibson and Lanni

[30]. However, given that the problem is reasonably well posed,

and for the sake of decreasing computational complexity, we

argue for the use of a Gaussian approximation of the micro-

scope’s PSF. Since PSF models are usually formulated for a

single wavelength, they should be integrated over the spectrum

of the light source used. In modern brightfield microscopes, the

light source is well balanced over the visible spectrum, which
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Fig. 5. Simulation results for topography estimation using the variance-based, CWT-based, and model-based algorithms. (a) Ground truth; (b) variance method;
(c) CWT-EDF; (d) model based.

TABLE I
QUANTITATIVE PERFORMANCE COMPARISON FOR TOPOGRAPHY

AND TEXTURE ESTIMATION FOR VARIOUS EDF METHODS

means that the PSF needs to be uniformly integrated over the

interval of visible wavelengths. The result of this integration

is essentially a smoothing effect; in fact, the xy-sections of a

white-light PSF for a low magnification objective closely re-

semble Gaussians.

At each iteration of the topography estimation, the PSF needs

to be sampled over a given support for each point of the topog-

raphy. It is therefore highly advantageous to use a Gaussian PSF

model that is computationally much less complex to evaluate

than an optically accurate PSF that involves numerical integra-

tion. As illustrated in Fig. 4, a good estimate of the PSF can be

obtained by fitting a model of the form

(22)

to a theoretical PSF evaluated according to the optical properties

of the microscope used, or to an experimentally measured PSF.

A key property of brightfield microscopes consists in Köhler

illumination, which is designed to uniformly illuminate the

sample independently of the position of the focus [31]. To

account for this, the PSF needs to be normalized such that the

intensity within each xy-section is equal to unity. This is not

necessarily the case when the Gaussian PSF model is sampled

over the integers. In particular, when tends

towards zero, goes to infinity, which is

physically nonplausible. In order to avoid numerical blow up

when , we further normalize by

(23)

which is the sum over the essential support of the Gaussian.

V. RESULTS

We now present estimation results obtained from several data

sets, first in simulation and then on acquisitions of biological

specimens. Where appropriate, we compare our results to two

reference methods for validation: one based on a local variance

criterion and the other on a wavelet transform. As mentioned

earlier, the former constitutes the classical approach to EDF.

It has a low computational complexity and generally yields re-

sults of reasonable quality, which explains its ongoing popu-

larity. Specifically, we compute the variance in a 5 5 window,

and filter the resulting topography using a Gaussian kernel with

to enforce local smoothness.

Among state-of-the-art wavelet-based methods, we chose the

complex wavelet-based EDF algorithm of [20], co-developed by

two of us (from this point on, we will refer to it as the CWT-EDF

method), which was shown to outperform competing methods

in many instances. This choice is further justified by it being the

only recent method that aims at providing a coherent estimate of

the topography by imposing local smoothness and consistency

constraints.

A. Performance Comparison in Simulation

In order to have a ground truth at our disposal for the com-

parison and qualitative assessment of the results produced by the

above cited methods, we performed a first series of experiments

using a simulated set of acquisitions. A z-stack of images was

generated from a given topography and texture using the object

and image formation model, i.e., by applying the nonstationary

convolution of (9) (see Fig. 1).

In Fig. 5, we compare the topography estimation results ob-

tained on a simulated stack containing eight images of a dome-

shaped object onto which a 256 256 texture was mapped.

The latter was derived from a brightfield image of a histolog-

ical slide containing murine liver tissue. Our implementation of

the CWT-EDF method permits to control the smoothness of the

estimated topography; here, we empirically optimize this step

to maximize the quality of the topography. As expected, the

model-based algorithm correctly recovers the topography, while

the two reference methods only approximately approach the cor-

rect shape. The quality of the estimation results, in terms of the

signal-to-noise ratio , is

documented in Table I. The continuous-domain formulation of

the object model in our approach not only leads to a better esti-

mation of the topography, but also deconvolves the texture at

locations between slices, which accounts for the gain in es-

timation quality of both signals. Care was taken to generate

phantom data containing in-focus information for all -po-

sitions; this explains the relatively good quality of the texture

estimation results for all methods. We initialized our method
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Fig. 6. Individual image slices from the Peyer’s patches stack. Distinct in-focus areas are clearly visible.

Fig. 7. Comparison of texture estimation against a wavelet-based method. The specimen is a sample of Peyer’s patches in the mouse intestine. (a) Texture ob-
tained using the complex wavelet-based algorithm described in [20], with maximal quality settings. (b) Texture resulting from our joint estimation algorithm. The
coarse-to-fine estimation approach ensures local smoothness, which prevents mis-selection artifacts that are typical of approaches that rely on a high-frequency
criterion.

with a flat topography, and performed iterations at the scales

. In general (also for the results on experimental

data), the topography estimation typically requires around five

subiterations, whereas the texture requires only 2–3 steps of the

gradient update to reach convergence.

B. Results on Experimental Data

We now demonstrate the potential of our method on two sets

of experimental acquisitions, one for a transmission setup and

the other for a configuration using reflected light. The first spec-

imen consists of a section of mouse intestine containing Peyer’s
patches, stained using a membrane-labeling dye. The sample

was imaged using a Zeiss Plan–Neofluar , 0.75 NA objec-

tive in air immersion, with a Jenoptik ProgRes CCD camera

with m pixels. 16 optical sections in steps of 3 m

were acquired. The acquisitions have a resolution of 1996

1450 pixels, several of which are shown in Fig. 6.

The topography resulting from the joint estimation, shown

in Fig. 9, clearly reveals the heap-like structure of the sample.

This result was obtained by initializing the algorithm with the

variance method, and by performing iterations at the scales

. In Fig. 7, we compare the texture obtained

with CWT-EDF and our method. At a first glance the results

look similar, but the inspection of some details (see highlights

of Fig. 7 in Fig. 8) reveals a marked improvement with our

method. Notably, there is a complete absence of color artifacts

Fig. 8. Details of the texture estimation comparison from Fig. 7.

typical of wavelet-based methods. Also, the deconvolving ac-

tion of the texture estimation restitutes several in-focus regions

missing from the acquisitions. This is most noticeable around
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Fig. 9. Texture mapping of the estimated texture from the Peyer’s patches stack onto the corresponding estimated topography.

Fig. 10. Individual images from the fly eye stack. Distinct in-focus areas are clearly visible.

the cell boundaries, which appear much sharper (compare also

with [24]).

Some artifacts are present in the topography, especially

around the borders where structures are visible but out of focus

in the acquisitions. These artifacts are direct effects of the

convolution between the topography gradient and the basis

functions during the coarse-scale iterations. As the algorithm

moves to finer scales, a lack of in-focus information prevents

further adjustments in the concerned regions.

Our second test specimen consisted of a common house fly

imaged in reflection using a Zeiss Achroplan , 0.1 NA ob-

jective in air immersion, with a QImaging Retiga CCD camera

with m pixels. The acquisitions were cropped to a

1000 1000 pixel region around the fly’s eye. The z-stack con-

sists of 32 images with a z-step of 20 m.

The topography resulting from the joint estimation, shown in

Fig. 11, reveals the homogeneous structure of the eye. The peaks

present in the topography correspond to small hairs, which are

also visible in the texture (Fig. 12). This result was obtained

by initializing the algorithm with the variance method, and by

performing iterations at the scales .

As these results attest to, recovering an accurate representa-

tion of the topography not only facilitates the analysis of thick

specimens, but also leads to marked improvements in the esti-

mated texture. Furthermore, the experiments confirm that the

2.5-D deconvolution leads to a sharp estimate of the texture

when in-focus information is missing from the acquired data,

or when it falls between acquisitions.

VI. DISCUSSION

There are two key factors that can strongly impact on the

performance of our method. We begin this section by examining

Fig. 11. Texture mapping of the estimated texture from the fly stack onto the
corresponding estimated topography.

the influence of the parameters controlling our Gaussian PSF

model on the quality of the results, and subsequently discuss the

computational performance of our approach in comparison to

competing methods, in connection to which we briefly comment

on possible initializations of the algorithm.

A. Sensitivity to the PSF Model Parameters

When dealing with experimental acquisitions, it frequently

occurs that the PSF can only be approximately determined or

measured. However, since the optimization of the texture and

topography is generally well posed (this is largely dependent

upon the number of acquisitions in the z-stack), the reconstruc-

tion algorithm can be expected to be relatively insensitive to the
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Fig. 12. Fusion image estimated from a z-stack of a fly’s eye.

parameterization of the PSF. This is indeed the case; to a cer-

tain extent, only the in-focus PSF needs to be pre-

cise. Otherwise, due to our assumptions on the specimen, the

deconvolution of the fusion image is either too weak, or results

in out-of-focus information being falsely reallocated to the tex-

ture. The Gaussian PSF approximation holds very well at the

in-focus position and, consequently, does not significantly af-

fect the results.

In theory, an erroneous PSF can have an effect on the gain of

the texture, i.e., lead to a scaling in intensity. This can, in turn,

affect the topography estimation, and is especially problematic

when operating on color data, where it can lead to false color ar-

tifacts. In our algorithm, however, due to the use of the separable

texture estimation step throughout the joint estimation, this ef-

fect is avoided altogether. Indeed, when considering the texture

estimation as an interpolation, the possible values for the texture

are constrained to the dynamic range of the input volume.

Simulations using data generated from the model showed that

an error up to 30% on the parameter in the PSF model (22)

leads to the recovery of the topography without any significant

loss in accuracy.

B. Computational Aspects

Although, due to its sophistication, our approach incurs a

higher computational cost than wavelet-based EDF methods

(which require a forward and inverse transform in combination

with what are essentially point-wise operations), this cost is

largely compensated for by the increased quality of the results.

Nevertheless, the cost can by minimized by employing the sep-

arable texture estimation step whenever deconvolution of the

texture is not necessary (note that it cannot be diminished for

the topography estimation). In practice, it therefore makes sense

to reduce the total number of iterations by computing an initial

estimate of the topography via the variance-based method.

Given such an initialization, many coarse-scale iterations can

be avoided. Using this scenario, our algorithm requires 64 s on

a stack, whereas the CWT-EDF algorithm

requires 16 s. Further means of acceleration could be a topic

for future research.

VII. CONCLUSION

We have presented a new approach to extended depth of field

that constitutes a significant improvement over current methods

in terms of the quality of the results. By stating the problem

as a joint estimation of the sample’s texture and topography,

we are able to successfully recover a continuous and character-

istic representation of the topography, devoid of the discretiza-

tion artifacts present in existing methods. Additionally, the joint

estimation model acts as a 2.5-D deconvolution operation for

the resulting fusion image, which yields sharper textures, espe-

cially when the true in-focus information lies between acquisi-

tion planes. We demonstrated the validity of the approach on

simulated data sets that were generated with a known topog-

raphy, and obtained promising results on experimental acquisi-

tions; improvements due to the continuous topography and tex-

ture deconvolution are clearly visible.

Since the recovered topography is continuous, it would be

feasible to reconstruct a stereoscopic representation to further

enhance the 3-D visualization of the specimen, as was suggested

in [13]. While we presented our method in the context of bright-

field microscopy where it is likely to find its most immediate ap-

plication, it is clear that, due to the relatively low sensitivity to

accuracy of the PSF, the method is applicable to a wider range of

optical systems with a limited depth of field. For example, a 3-D

vision system combining shallow depth of field optics with the

proposed method could be envisaged. In microscopy still, the

method raises the possibility of performing profilometry, where

it should be interesting to see with what accuracy the surface

profile of an object can be quantitatively determined.

Foremost, our results illustrate the potential of a model-based

approach in the context of EDF. Our solution has no pretense

of optimality but should rather be viewed as a proof of con-

cept. There likely is room for exploration and improvement, i.e.,

by applying a different regularization criterion, or by devising

other algorithms that optimize the proposed cost function. A

Java implementation (ImageJ plugin) of this work is available

at http://bigwww.epfl.ch/demo/edf/.
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