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ABSTRACT

In this paper we present a model-based algorithm for
the estimation of three-dimensional motion parame-
ters of an object moving in 3D-space. Photometric
effects are taken into account by adding different illu-
mination models to the virtual scene. Using the ad-
ditional information from three-dimensional geomet-
ric models of the scene leads to linear algorithms for
the parameter estimation of the illumination models
which are all computationally efficient. Experiments
show that the Peak Signal Noise Ratio (PSNR) be-
tween camera and reconstructed synthetic images can
be increased by up to 7 dB compared to global illumi-
nation compensation. The average estimation error
of the motion parameters is at the same time reduced
by 40 %.

1. INTRODUCTION

In recent years, model-based coding techniques for
very low bit rate video compression have received
growing interest [1, 2, 3]. Motion parameters of ob-
jects are estimated from video frames using three-
dimensional models of the objects. These models
describe shape and texture of the objects. At the
decoder the video sequence is synthesized rendering
the models at the estimated positions. Typical ap-
plications for model-based coding are videotelephony,
videoconferencing, multimedia applications or anima-
tion for TV productions.

To extract the object’s relative motion parameters
from two successive video frames the encoder in our
system uses a hierarchical gradient-based scheme that
is combined with a rigid body motion constraint. The
virtual scene is updated by moving the geometric
model according to these parameters. However, due
to errors in the estimation, the position of the model
can differ from the real object’s one and a mismatch
between camera image and synthetic image can occur
in long sequence motion tracking. To avoid this er-
ror accumulation a feedback loop is introduced at the
encoder [2, 4]. The extracted motion parameters are
not only transmitted to the decoder but are also used
to render the same synthetic image at the encoder
(Figure 1). The motion estimation is then performed

between the actual camera frame I(k) and the pre-
vious synthetically generated image I (k —1). This
ensures that the projection of the 3D shape model
and the 2D image are consistent. However, the 3D
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Figure 1: Feedback structure of the coder.

model used for rendering the synthetic images can-
not describe the object in the camera images per-
fectly. Model failures make motion estimation more
difficult and reduce the quality of the synthesized im-
ages. In [5] Pentland showed that illumination has a
large influence on the appearance of the objects. If
the illumination in the real scene and during model
acquisition differs, significant model failures can arise.
For minimization of model failures illumination mod-
els are added to the synthetic scene and both mo-
tion and illumination parameters are estimated alter-
nately. This allows dealing with varying illumination
conditions during the recording of the video sequence.
In this paper we show that adding illumination mod-
els to the synthetic scene improves the accuracy of
the estimated motion parameters as well as the reg-
istration of synthetic and real images. In contrast to
the work of Stauder [6] and Bozdagi et al. [7] three-
dimensional models of the moving objects are used
leading to linear illumination estimation algorithms
with low computational complexity.

2. BASIC GEOMETRY

The three-dimensional scene used for parameter esti-
mation and rendering of the synthetic images consists
of a camera model and a model of the rigid object
moving in 3D space. The camera model and its as-
sociated coordinate systems are shown in Figure 2.



The 3D coordinates of an object point [z y 2|7 are

Figure 2: Scene geometry.

projected onto the image plane assuming perspective
projection:
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Here, f; and f, denote the focal length multiplied
by scaling factors in x- and y-direction, respectively.
These scaling factors transform the image coordinates
into pixel coordinates X, and Y. In addition, they
allow the use of non-square pixel geometries. The two
parameters Xy and Y describe the image center and
its translation from the optical axis due to inaccurate
placement of the CCD-sensor in the camera. For sim-
plicity, normalized pixel coordinates X,, and Y,, are
introduced

X

The object moving in the scene is assumed to be rigid
and therefore the motion can be described by a rota-
tion R around the object center Z. and a translation
t. The 3D position of an object point # after a rigid
body motion is given by

o' = R(T— %)+ Z. +1. (3)

Under the assumption of small rotations between two
successive frames the rotation matrix R can be lin-
earized as follows
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3. MOTION ESTIMATION

The entire image is used for motion estimation and
we set up the optical flow constraint equation for all
pixels

IXp'u—l-Iyp"U—‘rIt:O (5)

where [Ix, Iy,] is the gradient of the intensity at
point [X, Y,], u and v the velocity in x- and y-
direction and I; the intensity gradient in temporal
direction. Instead of computing the optical flow field
by using additional smoothness constraints and then
extracting the motion parameter set from this flow
field, we estimate rotation and translation from (5)
together with the three-dimensional motion equation
of the object
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in a similar way to the method described in [8]. We
now combine (1) and (6) to obtain the projected im-
age points. Assuming only small object motion be-
tween successive frames and using a first order ap-
proximation of the resulting equation leads to the
following relation for the 2D pixel displacements:
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Except for the motion parameters t,,t,,t., 7,7, and
r, all other parameters are known. The object cen-
ter has already been calculated in the previous frame
and the distance z of the object points from the cam-
era origin can be determined from the 3D model of
the object. Combining (5) and (7) results in a linear
equation for the 6 unknown motion parameters that
can be set up at each pixel location that is part of the
object

12

t t
aoTy + a1y + asr, + agz—x +asL +as—= = —1I;. (8)
C C C

The parameters ag to as are given by
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with the abbreviations
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Because the object usually covers more than 6 pix-
els, we obtain an overdetermined system that can be
solved in a least-squares sense. The high number of
equations makes it also possible to discard some po-
tential outliers that can be estimated from the gradi-
ent values before solving the linear system.

The optical flow constraint equation assumes the lu-
minance being locally linear and is therefore only
able to handle very small displacements. To over-
come this requirement a hierarchical coarse-to-fine
approach with subsampled images is used to increase
the range of possible motions. First, an initial es-
timate for the motion parameters is computed from
highly subsampled images. With these parameters
a motion compensated synthetic image is generated
that is now much closer to the camera image. This
step is repeated at higher resolutions to decrease the
residual error. With four different levels of resolution
starting from 44 by 36 pixels and ending with CIF res-
olution the algorithm converges for translations up to
30 pixels and rotations up to 15 degrees between two
successive frames.

4. ILLUMINATION ESTIMATION

To improve the accuracy of the motion estimation and
the realism of the synthesized images the illumination
condition of the scene is taken into account by incor-
poration of illumination models. The parameters of
the models describing the reflectance distribution are
estimated from the video sequence.

The first illumination model presented here is a Lam-
bertian model [9, 10] where the assumed illumina-
tion consists of ambient and directional light. In [6]
Stauder uses this model for object-based coding and
estimates the illumination parameters from two suc-
cessive real video frames with a nonlinear iterative
scheme. Bozdagi et al. [7] determine illumination di-
rection and surface albedo with the method proposed
by Zheng et al. [11] that is based on a surface approx-
imation by spherical patches. In our scheme the illu-
mination differences between a camera image and the
corresponding synthetic image are estimated. The
additional information provided by the object model
simplifies this task and leads to a linear algorithm for
the parameter estimation. The 3D-model is assumed
to be homogeneously illuminated with ambient light
during the acquisition of the model. For each pixel i
belonging to the object we obtain one equation

Icam,i = dsyn,i * (k'amb + kgir - maX(_f' i, 0)) (11)

describing the illumination differences between the
synthetic and the camera images. Icqm and Iy, de-

note the pixel intensities of camera and synthetic im-
age, kqmp and kg the reflection coefficients, [ the
direction of the direct light and 7 = [n, n, n,]7 the
surface normal of unit length corresponding to that
pixel. Both I,,, and 7 are given by the object model.
We therefore have to estimate four parameters: two
specifying the normalized direction of the point light
source [ and the two reflection coefficients kamp and
kgir. Only those equations are considered where the
maximum function is probably different from zero.
Those pixels can be determined from the illumina-
tion direction of the previous frame and we obtain an
overdetermined linear system of equations (12) that
can be solved in a least-squares sense with small com-
putational effort.
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Once the parameters for the illumination model are
obtained the differences between synthetic and cam-
era images can be compensated applying equation
(11) on each pixel of the synthetically rendered frame
which results in an estimate for the camera image.

The Lambertian approach can easily be extended to
handle also non Lambertian reflection functions. For
that purpose higher orders of the surface normal com-
ponents are added to equation (12). Using a second
order approximation leads to
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with nine unknowns in k. The illumination compen-
sation is performed similar to the previous method.
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A third and more general approach for the illumina-
tion estimation is the use of a reflectance map [9].
The reflection which is assumed to be a function of
the surface normal 77 is not defined by an explicit
model, but described by a number of sampling points
for discrete values of the normal vectors represented
by a table. The relation between the pixel intensi-
ties for pixel i of the synthetic image Iy, and the
illuminated camera image I.q, is given by

Icam,i

The discrete entries of the table, approximating the
reflection r(77), can be estimated from the quotients
of real and synthetic pixel intensities If% belonging
to the corresponding normal directions. After acqui-
sition of the reflectance map the synthetic image is
adjusted to the camera image multiplying each pixel
by the reflectance map entry that is specified by the
surface normal at that point.

Below, the estimated reflection function of the head
object in Figure 3 is shown for the three approaches.



The reflection map is depicted in 3 and the approxi-
mations of the Lambertian and the second order ap-
proach can be seen in Figure 4.

Figure 3: Camera image of a head object that is
mainly illuminated from the right (left) and its es-
timated reflectance map (right).
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Figure 4: Estimated reflection function with Lamber-
tian (left) and second order approach (right).

5. EXPERIMENTAL RESULTS

The algorithms are tested for both synthetic and real
image data. To obtain the structure and the texture
for the 3D-model an artificial human head (Figure
3) is scanned with a 3D laser scanner. With this
model a synthetic video sequence (CIF resolution) is
generated and the mean absolute estimation error is
determined. and the results of the estimated motion
parameters are compared to the correct values. For
the synthetic frames the algorithm is very accurate as
can be seen from the first line of Table 1. Addition-
ally, a video sequence with CIF resolution is recorded
with a calibrated camera. Camera calibration is em-
ployed to get the absolute 3D-position of the object
in the camera coordinate system. This enable us to
determine the alignment of the moving object and
the 3D model of the laser scanner. The motion es-
timation is performed both with and without illumi-
nation compensation. The resulting errors averaged
over 14 different motion parameter sets are shown in
Table 1. The average error magnitude is reduced in
all cases when performing an illumination estimation
and compensation. For all three proposed illumina-
tion models similar results are obtained. Even more
evident is the improvement of the similarity between

| A | A, | At

Synthetic sequence || 0.007° | 0.01 mm | 0.06 mm

Video sequence

without illumina- 0.45° | 0.61 mm | 3.9 mm
tion compensation

Video sequence

with illumina- 0.38° | 0.15 mm | 1.5 mm

tion compensation

Table 1: Average error magnitude of the estimated
motion parameters (A®: mean error of the angle of
rotation, At,, At,: error of the translation in x and
z direction).

the camera and the synthetic image after motion com-
pensation and illumination adaption as illustrated in
Figure 5. The PSNR values for the different meth-
ods of illumination compensation are shown in Table
2. In spite of the quite homogeneous illumination
condition during the recording of the video sequence,
with the proposed algorithms increases of up to 7 dB
are achieved compared to a global illumination com-
pensation where only the ambient part of the light
is estimated. The reflectance map and the second
order method showed a slightly better performance
compared to the Lambertian approach.

Figure 5: Frame difference after motion and global il-
lumination compensation (left) and frame difference
with Lambertian approach for illumination compen-
sation (right).

| [ PSNR [ APSNR |

Ambient 29.5 0

Lambert 35.5 6.0
Second order approach 36.5 7.0
Reflectance map 36.5 7.0

Table 2: Average PSNR and increase in PSNR, com-
pared to a global illumination compensation

The illumination estimation is also tested under dif-
ferent illumination conditions where the position and



the number of light sources are varied. Motion and
illumination compensation is performed on the video
sequences and some results of the compensated syn-
thetic sequences are shown in Figure 6.

Figure 6: Original video frames recorded under vary-
ing illumination conditions (left) and synthetic im-
ages after illumination compensation (right).

6. CONCLUSIONS

It has been shown in our paper that illumination
has a large influence on the accuracy of the model-
based motion estimation. Considering photometric
effects increases the performance of the estimation al-
gorithms. For that purpose three illumination models
are proposed which describe illumination differences
between the 3D-model and the real scene. Due to
the fact that surface normals and illumination condi-
tions during the acquisition of the object model are

known, the derived algorithms are linear and exhibit
low computational complexity. Applying the illumi-
nation compensation schemes on real video sequences
reduces the error of the estimated motion parameters
by about 40 % in average and improves the PSNR
between the original and the synthetic image up to 7
dB.
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